87 research outputs found

    lPv6 Transition: Why A New Security Mechanisms Model Is Necessary.

    Get PDF
    This paper describes the scenario in the transition oflpv4 to lpv6 with focusing on the security issues involved in each of the transition methods: dual stack and tunneling. Then, the paper analyze the existing security mechanisms available and identify new considerations for a new security model

    The Impact of IPv6 on Penetration Testing

    Get PDF
    In this paper we discuss the impact the use of IPv6 has on remote penetration testing of servers and web applications. Several modifications to the penetration testing process are proposed to accommodate IPv6. Among these modifications are ways of performing fragmentation attacks, host discovery and brute-force protection. We also propose new checks for IPv6-specific vulnerabilities, such as bypassing firewalls using extension headers and reaching internal hosts through available transition mechanisms. The changes to the penetration testing process proposed in this paper can be used by security companies to make their penetration testing process applicable to IPv6 targets

    A New Approach Of Network Intrusion Detection In 6TO4 Tunneling

    Get PDF
    Recent growth of internet users which almost reach the limit of IPv4 address space, make engineers must implement IPv6 to the system. However, the implementation of IPv6 is not easy due to many reasons like compatibility of hardware. Hence, transition mechanisms were proposed to help migration process from IPv4 to IPv6 network. However, there are security considerations of this mechanism due to the double encapsulation of packets. Basically, this mechanism encapsulates IPv6 packets with IPv4 datagram to allow transmission. Attacker from IPv6 network can use this tunneling mechanism to send intrusion without being detected by Network Intrusion Detection System. Normally NIDS only capable to decapsulate packet once, and NIDS like Snort cannot detect payload with protocol 41. Thus, a new approach is needed to handle decapsulation of second layer of packet, and extraction for the needed information for detection. This design adds a secondary decapsulation process of NIDS when NIDS detects a 6to4 packets. The design will decapsulate the second layer, and extract the information from the payload and continue to the detection process. The detection process itself is signature-based, where intrusions’ unique and repetitive information are defined inside the ruleset. The design implemented to Java-based NIDS for testing purpose, and run under attack simulations. According to the test, all attacks are detected as True Positive detection with several reply packets detected as False Negative detection

    Feasible Threats By Manipulating Tunneling Packet On 6to4 Network

    Get PDF
    Tunneling mechanism becomes the most delicate transition mechanism compared to other transition mechanism, Dual Stack and Address Translation because tunneling offers easier way to start migrating from IPv4 to IPv6 and offers a smooth transition. 6to4 tunneling is automatic tunneling to conquer migration issues. In fact, tunnel transition mechanism is believed to be susceptible from several type of attacks. On 6to4 tunneling, Neighbor Discovery Protocol message becomes a potential media to exploit by attacker. It starts with deploying a controlled testbed network environment and running several scenario DoS attack by manipulating NDP message through 6to4 tunneling. The expected result is to prove that attacking methods is feasible and effective

    Evaluating the security vulenerabilities of the IP6to4 tunnelling mechanism

    Get PDF
    The two versions of Internet Protocol (IP) rely on mechanisms that will convert one protocol to the other and vice versa. Version 4 is still prevalent in the Internet backbone and version 6 in most private networks. In this research we focus on the automatic tunnelling mechanism that provides the encapsulation at one end of the transition tunnel and the de-encapsulation at the other end dependant on the direction of transition. In our research we asked: How secure is the automatic tunnelling mechanism? It is a simple question but important given the number of times transition may occur in any communication and the potential for vulnerabilities. To test the capability of the software instance we launched attacks on the inside and the outside of the tunnel; recorded performance variations and noted opportunities for information sniffing. In all instances the results show weaknesses that can be exploited and the potential for an outsider to not only launch for example DoS attacks but to also disrupt the information being managed in the tunnel. How secure is the automatic tunnelling mechanism

    IPv6: a new security challenge

    Get PDF
    Tese de mestrado em Segurança Informática, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2011O Protocolo de Internet versão 6 (IPv6) foi desenvolvido com o intuito de resolver alguns dos problemas não endereçados pelo seu antecessor, o Protocolo de Internet versão 4 (IPv4), nomeadamente questões relacionadas com segurança e com o espaço de endereçamento disponível. São muitos os que na última década têm desenvolvido estudos sobre os investimentos necessários à sua adoção e sobre qual o momento certo para que o mesmo seja adotado por todos os players no mercado. Recentemente, o problema da extinção de endereçamentos públicos a ser disponibilizado pelas diversas Region Internet registry – RIRs - despertou o conjunto de entidades envolvidas para que se agilizasse o processo de migração do IPv4 para o IPv6. Ao contrário do IPv4, esta nova versão considera a segurança como um objetivo fundamental na sua implementação, nesse sentido é recomendado o uso do protocolo IPsec ao nível da camada de rede. No entanto, e devido à imaturidade do protocolo e à complexidade que este período de transição comporta, existem inúmeras implicações de segurança que devem ser consideradas neste período de migração. O objetivo principal deste trabalho é definir um conjunto de boas práticas no âmbito da segurança na implementação do IPv6 que possa ser utilizado pelos administradores de redes de dados e pelas equipas de segurança dos diversos players no mercado. Nesta fase de transição, é de todo útil e conveniente contribuir de forma eficiente na interpretação dos pontos fortes deste novo protocolo assim como nas vulnerabilidades a ele associadas.IPv6 was developed to address the exhaustion of IPv4 addresses, but has not yet seen global deployment. Recent trends are now finally changing this picture and IPv6 is expected to take off soon. Contrary to the original, this new version of the Internet Protocol has security as a design goal, for example with its mandatory support for network layer security. However, due to the immaturity of the protocol and the complexity of the transition period, there are several security implications that have to be considered when deploying IPv6. In this project, our goal is to define a set of best practices for IPv6 Security that could be used by IT staff and network administrators within an Internet Service Provider. To this end, an assessment of some of the available security techniques for IPv6 will be made by means of a set of laboratory experiments using real equipment from an Internet Service Provider in Portugal. As the transition for IPv6 seems inevitable this work can help ISPs in understanding the threats that exist in IPv6 networks and some of the prophylactic measures available, by offering recommendations to protect internal as well as customers’ networks

    Is current 6TO4 relay deployment adequate?

    Get PDF
    6to4 is a mechanism for providing IPv6 connectivity where native IPv6 is still unavailable. 6to4 is based on relay routers deployment. The anycast technique is used to address relays, and each relay’s advertisement may be seen globally or only within a limited scope. The number of available relays is important to this mechanism’s robustness, as well as their geographic location. Due to the details of the mechanism, limited scope relays are not easy to find, despite the fact their location and existence is key to evaluate suitability of current deployment

    Analysis of IPv6 through Implementation of Transition Technologies and Security attacks

    Get PDF
    IPv6 provides more address space, improved address design, and greater security than IPv4. Different transition mechanisms can be used to migrate from IPv4 to IPv6 which includes dual stack networks, tunnels and translation technologies. Within all of this, network security is an essential element and therefore requires special attention. This paper analyses two transition technologies which are dual stack and tunnel. Both technologies are implemented using Cisco Packet Tracer and GNS3. This work will also analyse the security issues of IPv6 to outline the most common vulnerabilities and security issues during the transition. Finally, the authors will design and implement the dual stack, automatic and manual tunnelling transition mechanisms using Riverbed Modeler simulation tool to analyse the performance and compare with the native IPv4 and IPv6 networks
    corecore