1,477 research outputs found

    A Mini Review of Lifi Technology : Security Issue

    Get PDF
    Visible Light Communication (VLC) is an extension of Light Fidelity (LiFi) that uses full duplex communication or fully networked wireless communication. LiFi is one of the top technologies for solving wireless fidelity (WiFi) issues. Communication over LiFi is one of its major advantages. However, no security system is infallible. The purpose of this paper is to conduct a mini review of LIFI technology in terms of security issues. As a new technology, Lifi is still not widely known for its security issues. Literature reviews are a necessary step to determining the issues related to Lifi technology. A descriptive qualitative approach is used in this paper to describe the data. As a result, several studies have documented security issues related to LiFi technology, including data modification, spoofing, and jamming

    Visible Light Communication Cyber Security Vulnerabilities For Indoor And Outdoor Vehicle-To-Vehicle Communication

    Get PDF
    Light fidelity (Li-Fi), developed from the approach of Visible Light Communication (VLC), is a great replacement or complement to existing radio frequency-based (RF) networks. Li-Fi is expected to be deployed in various environments were, due to Wi-Fi congestion and health limitations, RF should not be used. Moreover, VLC can provide the future fifth generation (5G) wireless technology with higher data rates for device connectivity which will alleviate the traffic demand. 5G is playing a vital role in encouraging the modern applications. In 2023, the deployment of all the cellular networks will reach more than 5 billion users globally. As a result, the security and privacy of 5G wireless networks is an essential problem as those modern applications are in people\u27s life everywhere. VLC security is as one of the core physical-layer security (PLS) solutions for 5G networks. Due to the fact that light does not penetrate through solid objects or walls, VLC naturally has higher security and privacy for indoor wireless networks compared to RF networks. However, the broadcasting nature of VLC caused concerns, e.g., eavesdropping, have created serious attention as it is a crucial step to validate the success of VLC in wild. The aim of this thesis is to properly address the security issues of VLC and further enhance the VLC nature security. We analyzed the secrecy performance of a VLC model by studying the characteristics of the transmitter, receiver and the visible light channel. Moreover, we mitigated the security threats in the VLC model for the legitimate user, by 1) implementing more access points (APs) in a multiuser VLC network that are cooperated, 2) reducing the semi-angle of LED to help improve the directivity and secrecy and, 3) using the protected zone strategy around the AP where eavesdroppers are restricted. According to the model\u27s parameters, the results showed that the secrecy performance in the proposed indoor VLC model and the vehicle-to-vehicle (V2V) VLC outdoor model using a combination of multiple PLS techniques as beamforming, secure communication zones, and friendly jamming is enhanced. The proposed model security performance was measured with respect to the signal to noise ratio (SNR), received optical power, and bit error rate (BER) Matlab simulation results

    Physical layer security against eavesdropping in the internet of drones (IoD) based communication systems

    Get PDF
    rones or unmanned aerial vehicles (UAVs) communication technology, which has recently been thoroughly studied and adopted by 3GPP standard (Release 15) due to its dynamic, flexible, and flying nature, is expected to be an integral part of future wireless communications and Internet of drones (IoD) applications. However, due to the unique transmission characteristics and nature of UAV systems including broadcasting, dominant line of site and poor scattering, providing confidentiality for legitimate receivers against unintended ones (eavesdroppers) appears to be a challenging goal to achieve in such scenarios. Besides, the special features of UAVs represented by having limited power (battery-operated) and precessing (light RAM and CPU capabilities), makes applying complex cryptography approaches very challenging and inefficient for such systems. This motives the utilization of alternative approaches enabled by physical layer security (PLS) concept for securing UAV-based systems. Techniques based on PLS are deemed to be promising due to their ability to provide inherent secrecy that is complexity independent, where no matter what computational processing power the eavesdropper may have, there is no way to decrypt the PLS algorithms. This work is dedicated to highlight and overview the latest advances and state of art researches on the field of applying PLS to UAV systems in a unified and structured manner. Particularity, it discusses and explains the different, possible PLS scenarios and use cases of UAVs, which are categorized based on how the drone is utilized and employed in the communication system setup. The main classified categories include the deployment of the flying, mobile UAV as a 1) base station (BS), 2) user equipment (UE), 2) relay, or 4) jammer. Then, recommendations and future open research issues are stated and discussed.No sponso

    Kajian Aspek Security Pada Jaringan Informasi Dan Komunikasi Berbasis Visible Light Communication

    Get PDF
    Cahaya tampak dapat dimanfaatkan sebagai media informasi ataupun komunikasi, teknologi ini dikenal dengan istilah Visible Light Communication yang menawarkan beberapa keunggulan dibandingkan komunikasi nirkabel lainnya seperti RF dan IR. Yakni cakupan bandwidth lebih lebar dan bebas lisensi, aman bagi kesehatan manusia dan tidak terganggu interferensi elektromagnetik. Sistem VLC terdiri atas tiga bagian besar, yakni bagian transmitter dengan menggunakan devais LED, kanal yang berupa ruang bebas (free space) dan receiver dengan menggunakan devais photodetector atau image camera. Penerapan VLC berlandaskan pedoman IEEE 802.15.17 yang mana baru dirancang dalam waktu 5 tahun belakangani ini (sejak tahun 2009), meliputi meliputi layer fisik (physical layer) dan layer MAC (medium access control).  Sebagaimana teknologi komunikasi pada umumnya, VLC juga menyediakan akses security yang dibahas pada bagian layer MAC. Namun pada praktiknya masih belum begitu masif dilakukan oleh para peneliti. Hal ini sangat wajar karena mengingat VLC merupakan teknologi yang sedang dalam tahap pengembangan yang menjadikan penelitian VLC umumnya berfokus pada ‘bagaimana meningkatkan speed dari keterbatasan komponen-komponen pembangun (IC, photodiode, LED, transistor, dll) yang tersedia saat ini\u27. Tantangan teknologi VLC selain target peningkatan kecepatan bit-rate, mobility communication, mengurangi interference noise, menyediakan layanan multi-acces juga salah satunya adalah isu security. Makalah ini merupakan studi literature (review paper) yang didapatkan dari dokumen-dokumen hasil peneltian baik di jurnal dan conference terkait dengan praktik-praktik security VLC yang pernah dilakukan dengan skema indoor maupun outdoor

    Survey and Systematization of Secure Device Pairing

    Full text link
    Secure Device Pairing (SDP) schemes have been developed to facilitate secure communications among smart devices, both personal mobile devices and Internet of Things (IoT) devices. Comparison and assessment of SDP schemes is troublesome, because each scheme makes different assumptions about out-of-band channels and adversary models, and are driven by their particular use-cases. A conceptual model that facilitates meaningful comparison among SDP schemes is missing. We provide such a model. In this article, we survey and analyze a wide range of SDP schemes that are described in the literature, including a number that have been adopted as standards. A system model and consistent terminology for SDP schemes are built on the foundation of this survey, which are then used to classify existing SDP schemes into a taxonomy that, for the first time, enables their meaningful comparison and analysis.The existing SDP schemes are analyzed using this model, revealing common systemic security weaknesses among the surveyed SDP schemes that should become priority areas for future SDP research, such as improving the integration of privacy requirements into the design of SDP schemes. Our results allow SDP scheme designers to create schemes that are more easily comparable with one another, and to assist the prevention of persisting the weaknesses common to the current generation of SDP schemes.Comment: 34 pages, 5 figures, 3 tables, accepted at IEEE Communications Surveys & Tutorials 2017 (Volume: PP, Issue: 99
    corecore