535 research outputs found

    An SDN-based architecture for security provisioning in Fog-to-Cloud (F2C) computing systems

    Get PDF
    The unstoppable adoption of cloud and fog computing is paving the way to developing innovative services, some requiring features not yet covered by either fog or cloud computing. Simultaneously, nowadays technology evolution is easing the monitoring of any kind of infrastructure, be it large or small, private or public, static or dynamic. The fog-to-cloud computing (F2C) paradigm recently came up to support foreseen and unforeseen services demands while simultaneously benefiting from the smart capacities of the edge devices. Inherited from cloud and fog computing, a challenging aspect in F2C is security provisioning. Unfortunately, security strategies employed by cloud computing require computation power not supported by devices at the edge of the network, whereas security strategies in fog are yet on their infancy. Put this way, in this paper we propose Software Defined Network (SDN)-based security management architecture based on a master/slave strategy. The proposed architecture is conceptually applied to a critical infrastructure (CI) scenario, thus analyzing the benefits F2C may bring for security provisioning in CIs.Peer ReviewedPostprint (published version

    Security and Privacy for Green IoT-based Agriculture: Review, Blockchain solutions, and Challenges

    Get PDF
    open access articleThis paper presents research challenges on security and privacy issues in the field of green IoT-based agriculture. We start by describing a four-tier green IoT-based agriculture architecture and summarizing the existing surveys that deal with smart agriculture. Then, we provide a classification of threat models against green IoT-based agriculture into five categories, including, attacks against privacy, authentication, confidentiality, availability, and integrity properties. Moreover, we provide a taxonomy and a side-by-side comparison of the state-of-the-art methods toward secure and privacy-preserving technologies for IoT applications and how they will be adapted for green IoT-based agriculture. In addition, we analyze the privacy-oriented blockchain-based solutions as well as consensus algorithms for IoT applications and how they will be adapted for green IoT-based agriculture. Based on the current survey, we highlight open research challenges and discuss possible future research directions in the security and privacy of green IoT-based agriculture

    Security architecture for Fog-To-Cloud continuum system

    Get PDF
    Nowadays, by increasing the number of connected devices to Internet rapidly, cloud computing cannot handle the real-time processing. Therefore, fog computing was emerged for providing data processing, filtering, aggregating, storing, network, and computing closer to the users. Fog computing provides real-time processing with lower latency than cloud. However, fog computing did not come to compete with cloud, it comes to complete the cloud. Therefore, a hierarchical Fog-to-Cloud (F2C) continuum system was introduced. The F2C system brings the collaboration between distributed fogs and centralized cloud. In F2C systems, one of the main challenges is security. Traditional cloud as security provider is not suitable for the F2C system due to be a single-point-of-failure; and even the increasing number of devices at the edge of the network brings scalability issues. Furthermore, traditional cloud security cannot be applied to the fog devices due to their lower computational power than cloud. On the other hand, considering fog nodes as security providers for the edge of the network brings Quality of Service (QoS) issues due to huge fog device’s computational power consumption by security algorithms. There are some security solutions for fog computing but they are not considering the hierarchical fog to cloud characteristics that can cause a no-secure collaboration between fog and cloud. In this thesis, the security considerations, attacks, challenges, requirements, and existing solutions are deeply analyzed and reviewed. And finally, a decoupled security architecture is proposed to provide the demanded security in hierarchical and distributed fashion with less impact on the QoS.Hoy en día, al aumentar rápidamente el número de dispositivos conectados a Internet, el cloud computing no puede gestionar el procesamiento en tiempo real. Por lo tanto, la informática de niebla surgió para proporcionar procesamiento de datos, filtrado, agregación, almacenamiento, red y computación más cercana a los usuarios. La computación nebulizada proporciona procesamiento en tiempo real con menor latencia que la nube. Sin embargo, la informática de niebla no llegó a competir con la nube, sino que viene a completar la nube. Por lo tanto, se introdujo un sistema continuo jerárquico de niebla a nube (F2C). El sistema F2C aporta la colaboración entre las nieblas distribuidas y la nube centralizada. En los sistemas F2C, uno de los principales retos es la seguridad. La nube tradicional como proveedor de seguridad no es adecuada para el sistema F2C debido a que se trata de un único punto de fallo; e incluso el creciente número de dispositivos en el borde de la red trae consigo problemas de escalabilidad. Además, la seguridad tradicional de la nube no se puede aplicar a los dispositivos de niebla debido a su menor poder computacional que la nube. Por otro lado, considerar los nodos de niebla como proveedores de seguridad para el borde de la red trae problemas de Calidad de Servicio (QoS) debido al enorme consumo de energía computacional del dispositivo de niebla por parte de los algoritmos de seguridad. Existen algunas soluciones de seguridad para la informática de niebla, pero no están considerando las características de niebla a nube jerárquica que pueden causar una colaboración insegura entre niebla y nube. En esta tesis, las consideraciones de seguridad, los ataques, los desafíos, los requisitos y las soluciones existentes se analizan y revisan en profundidad. Y finalmente, se propone una arquitectura de seguridad desacoplada para proporcionar la seguridad exigida de forma jerárquica y distribuida con menor impacto en la QoS.Postprint (published version

    On the Integration of Blockchain and SDN: Overview, Applications, and Future Perspectives

    Get PDF
    Blockchain (BC) and software-defined networking (SDN) are leading technologies which have recently found applications in several network-related scenarios and have consequently experienced a growing interest in the research community. Indeed, current networks connect a massive number of objects over the Internet and in this complex scenario, to ensure security, privacy, confidentiality, and programmability, the utilization of BC and SDN have been successfully proposed. In this work, we provide a comprehensive survey regarding these two recent research trends and review the related state-of-the-art literature. We first describe the main features of each technology and discuss their most common and used variants. Furthermore, we envision the integration of such technologies to jointly take advantage of these latter efficiently. Indeed, we consider their group-wise utilization—named BC–SDN—based on the need for stronger security and privacy. Additionally, we cover the application fields of these technologies both individually and combined. Finally, we discuss the open issues of reviewed research and describe potential directions for future avenues regarding the integration of BC and SDN. To summarize, the contribution of the present survey spans from an overview of the literature background on BC and SDN to the discussion of the benefits and limitations of BC–SDN integration in different fields, which also raises open challenges and possible future avenues examined herein. To the best of our knowledge, compared to existing surveys, this is the first work that analyzes the aforementioned aspects in light of a broad BC–SDN integration, with a specific focus on security and privacy issues in actual utilization scenarios

    On the Integration of Blockchain and SDN: Overview, Applications, and Future Perspectives

    Full text link
    Blockchain (BC) and Software-Defined Networking (SDN) are leading technologies which have recently found applications in several network-related scenarios and have consequently experienced a growing interest in the research community. Indeed, current networks connect a massive number of objects over the Internet and in this complex scenario, to ensure security, privacy, confidentiality, and programmability, the utilization of BC and SDN have been successfully proposed. In this work, we provide a comprehensive survey regarding these two recent research trends and review the related state-of-the-art literature. We first describe the main features of each technology and discuss their most common and used variants. Furthermore, we envision the integration of such technologies to jointly take advantage of these latter efficiently. Indeed, we consider their group-wise utilization -- named BC-SDN -- based on the need for stronger security and privacy. Additionally, we cover the application fields of these technologies both individually and combined. Finally, we discuss the open issues of reviewed research and describe potential directions for future avenues regarding the integration of BC and SDN. To summarize, the contribution of the present survey spans from an overview of the literature background on BC and SDN to the discussion of the benefits and limitations of BC-SDN integration in different fields, which also raises open challenges and possible future avenues examined herein. To the best of our knowledge, compared to existing surveys, this is the first work that analyzes the aforementioned aspects in light of a broad BC-SDN integration, with a specific focus on security and privacy issues in actual utilization scenarios.Comment: 42 pages, 14 figures, to be published in Journal of Network and Systems Management - Special Issue on Blockchains and Distributed Ledgers in Network and Service Managemen

    A Decade of Research in Fog computing: Relevance, Challenges, and Future Directions

    Full text link
    Recent developments in the Internet of Things (IoT) and real-time applications, have led to the unprecedented growth in the connected devices and their generated data. Traditionally, this sensor data is transferred and processed at the cloud, and the control signals are sent back to the relevant actuators, as part of the IoT applications. This cloud-centric IoT model, resulted in increased latencies and network load, and compromised privacy. To address these problems, Fog Computing was coined by Cisco in 2012, a decade ago, which utilizes proximal computational resources for processing the sensor data. Ever since its proposal, fog computing has attracted significant attention and the research fraternity focused at addressing different challenges such as fog frameworks, simulators, resource management, placement strategies, quality of service aspects, fog economics etc. However, after a decade of research, we still do not see large-scale deployments of public/private fog networks, which can be utilized in realizing interesting IoT applications. In the literature, we only see pilot case studies and small-scale testbeds, and utilization of simulators for demonstrating scale of the specified models addressing the respective technical challenges. There are several reasons for this, and most importantly, fog computing did not present a clear business case for the companies and participating individuals yet. This paper summarizes the technical, non-functional and economic challenges, which have been posing hurdles in adopting fog computing, by consolidating them across different clusters. The paper also summarizes the relevant academic and industrial contributions in addressing these challenges and provides future research directions in realizing real-time fog computing applications, also considering the emerging trends such as federated learning and quantum computing.Comment: Accepted for publication at Wiley Software: Practice and Experience journa
    • …
    corecore