68,266 research outputs found

    Deep Learning-Based Dynamic Watermarking for Secure Signal Authentication in the Internet of Things

    Full text link
    Securing the Internet of Things (IoT) is a necessary milestone toward expediting the deployment of its applications and services. In particular, the functionality of the IoT devices is extremely dependent on the reliability of their message transmission. Cyber attacks such as data injection, eavesdropping, and man-in-the-middle threats can lead to security challenges. Securing IoT devices against such attacks requires accounting for their stringent computational power and need for low-latency operations. In this paper, a novel deep learning method is proposed for dynamic watermarking of IoT signals to detect cyber attacks. The proposed learning framework, based on a long short-term memory (LSTM) structure, enables the IoT devices to extract a set of stochastic features from their generated signal and dynamically watermark these features into the signal. This method enables the IoT's cloud center, which collects signals from the IoT devices, to effectively authenticate the reliability of the signals. Furthermore, the proposed method prevents complicated attack scenarios such as eavesdropping in which the cyber attacker collects the data from the IoT devices and aims to break the watermarking algorithm. Simulation results show that, with an attack detection delay of under 1 second the messages can be transmitted from IoT devices with an almost 100% reliability.Comment: 6 pages, 9 figure

    Designing and Operating Safe and Secure Transit Systems: Assessing Current Practices in the United States and Abroad, MTI Report 04-05

    Get PDF
    Public transit systems around the world have for decades served as a principal venue for terrorist acts. Today, transit security is widely viewed as an important public policy issue and is a high priority at most large transit systems and at smaller systems operating in large metropolitan areas. Research on transit security in the United States has mushroomed since 9/11; this study is part of that new wave of research. This study contributes to our understanding of transit security by (1) reviewing and synthesizing nearly all previously published research on transit terrorism; (2) conducting detailed case studies of transit systems in London, Madrid, New York, Paris, Tokyo, and Washington, D.C.; (3) interviewing federal officials here in the United States responsible for overseeing transit security and transit industry representatives both here and abroad to learn about efforts to coordinate and finance transit security planning; and (4) surveying 113 of the largest transit operators in the United States. Our major findings include: (1) the threat of transit terrorism is probably not universal—most major attacks in the developed world have been on the largest systems in the largest cities; (2) this asymmetry of risk does not square with fiscal politics that seek to spread security funding among many jurisdictions; (3) transit managers are struggling to balance the costs and (uncertain) benefits of increased security against the costs and (certain) benefits of attracting passengers; (4) coordination and cooperation between security and transit agencies is improving, but far from complete; (5) enlisting passengers in surveillance has benefits, but fearful passengers may stop using public transit; (6) the role of crime prevention through environmental design in security planning is waxing; and (7) given the uncertain effectiveness of antitransit terrorism efforts, the most tangible benefits of increased attention to and spending on transit security may be a reduction in transit-related person and property crimes

    Formulating a Strategy for Securing High-Speed Rail in the United States, Research Report 12-03

    Get PDF
    This report presents an analysis of information relating to attacks, attempted attacks, and plots against high-speed rail (HSR) systems. It draws upon empirical data from MTI’s Database of Terrorist and Serious Criminal Attacks Against Public Surface Transportation and from reviews of selected HSR systems, including onsite observations. The report also examines the history of safety accidents and other HSR incidents that resulted in fatalities, injuries, or extensive asset damage to examine the inherent vulnerabilities (and strengths) of HSR systems and how these might affect the consequences of terrorist attacks. The study is divided into three parts: (1) an examination of security principles and measures; (2) an empirical examination of 33 attacks against HSR targets and a comparison of attacks against HSR targets with those against non-HSR targets; and (3) an examination of 73 safety incidents on 12 HRS systems. The purpose of this study is to develop an overall strategy for HSR security and to identify measures that could be applied to HSR systems currently under development in the United States. It is hoped that the report will provide useful guidance to both governmental authorities and transportation operators of current and future HSR systems

    Towards a Layered Architectural View for Security Analysis in SCADA Systems

    Full text link
    Supervisory Control and Data Acquisition (SCADA) systems support and control the operation of many critical infrastructures that our society depend on, such as power grids. Since SCADA systems become a target for cyber attacks and the potential impact of a successful attack could lead to disastrous consequences in the physical world, ensuring the security of these systems is of vital importance. A fundamental prerequisite to securing a SCADA system is a clear understanding and a consistent view of its architecture. However, because of the complexity and scale of SCADA systems, this is challenging to acquire. In this paper, we propose a layered architectural view for SCADA systems, which aims at building a common ground among stakeholders and supporting the implementation of security analysis. In order to manage the complexity and scale, we define four interrelated architectural layers, and uses the concept of viewpoints to focus on a subset of the system. We indicate the applicability of our approach in the context of SCADA system security analysis.Comment: 7 pages, 4 figure

    Smart Grid Security: Threats, Challenges, and Solutions

    Get PDF
    The cyber-physical nature of the smart grid has rendered it vulnerable to a multitude of attacks that can occur at its communication, networking, and physical entry points. Such cyber-physical attacks can have detrimental effects on the operation of the grid as exemplified by the recent attack which caused a blackout of the Ukranian power grid. Thus, to properly secure the smart grid, it is of utmost importance to: a) understand its underlying vulnerabilities and associated threats, b) quantify their effects, and c) devise appropriate security solutions. In this paper, the key threats targeting the smart grid are first exposed while assessing their effects on the operation and stability of the grid. Then, the challenges involved in understanding these attacks and devising defense strategies against them are identified. Potential solution approaches that can help mitigate these threats are then discussed. Last, a number of mathematical tools that can help in analyzing and implementing security solutions are introduced. As such, this paper will provide the first comprehensive overview on smart grid security

    A survey on cyber security for smart grid communications

    Get PDF
    A smart grid is a new form of electricity network with high fidelity power-flow control, self-healing, and energy reliability and energy security using digital communications and control technology. To upgrade an existing power grid into a smart grid, it requires significant dependence on intelligent and secure communication infrastructures. It requires security frameworks for distributed communications, pervasive computing and sensing technologies in smart grid. However, as many of the communication technologies currently recommended to use by a smart grid is vulnerable in cyber security, it could lead to unreliable system operations, causing unnecessary expenditure, even consequential disaster to both utilities and consumers. In this paper, we summarize the cyber security requirements and the possible vulnerabilities in smart grid communications and survey the current solutions on cyber security for smart grid communications. © 2012 IEEE
    • …
    corecore