1,094 research outputs found

    Securing IEEE P1687 On-chip Instrumentation Access Using PUF

    Get PDF
    As the complexity of VLSI designs grows, the amount of embedded instrumentation in system-on-a-chip designs increases at an exponential rate. Such structures serve various purposes throughout the life-cycle of VLSI circuits, e.g. in post-silicon validation and debug, production test and diagnosis, as well as during in-field test and maintenance. Reliable access mechanisms for embedded instruments are therefore key to rapid chip development and secure system maintenance. Reconfigurable scan networks defined by IEEE Std. P1687 emerge as a scalable and cost-effective access medium for on-chip instrumentation. The accessibility offered by reconfigurable scan networks contradicts security and safety requirements for embedded instrumentation. Embedded instrumentation is an integral system component that remains functional throughout the lifetime of a chip. To prevent harmful activities, such as tampering with safety-critical systems, and reduce the risk of intellectual property infringement, the access to embedded instrumentation requires protection. This thesis provides a novel, Physical Unclonable Function (PUF) based secure access method for on-chip instruments which enhances the security of IJTAG network at low hardware cost and with less routing congestion

    Security aspects in cloud based condition monitoring of machine tools

    Get PDF
    In the modern competitive environments companies must have rapid production systems that are able to deliver parts that satisfy highest quality standards. Companies have also an increased need for advanced machines equipped with the latest technologies in maintenance to avoid any reduction or interruption of production. Eminent therefore is the need to monitor the health status of the manufacturing equipment in real time and thus try to develop diagnostic technologies for machine tools. This paper lays the foundation for the creation of a safe remote monitoring system for machine tools using a Cloud environment for communication between the customer and the maintenance service company. Cloud technology provides a convenient means for accessing maintenance data anywhere in the world accessible through simple devices such as PC, tablets or smartphones. In this context the safety aspects of a Cloud system for remote monitoring of machine tools becomes crucial and is, thus the focus of this pape

    A Survey on Security Threats and Countermeasures in IEEE Test Standards

    Get PDF
    International audienceEditor's note: Test infrastructure has been shown to be a portal for hackers. This article reviews the threats and countermeasures for IEEE test infrastructure standards

    A Novel Sequence Generation Approach to Diagnose Faults in Reconfigurable Scan Networks

    Get PDF
    With the complexity of nanoelectronic devices rapidly increasing, an efficient way to handle large number of embedded instruments became a necessity. The IEEE 1687 standard was introduced to provide flexibility in accessing and controlling such instrumentation through a reconfigurable scan chain. Nowadays, together with testing the system for defects that may affect the scan chains themselves, the diagnosis of such faults is also important. This article proposes a method for generating stimuli to precisely identify permanent high-level faults in a IEEE 1687 reconfigurable scan chain: the system is modeled as a finite state automaton where faults correspond to multiple incorrect transitions; then, a dynamic greedy algorithm is used to select a sequence of inputs able to distinguish between all possible faults. Experimental results on the widely-adopted ITC'02 and ITC'16 benchmark suites, as well as on synthetically generated circuits, clearly demonstrate the applicability and effectiveness of the proposed approach: generated sequences are two orders of magnitude shorter compared to previous methodologies, while the computational resources required remain acceptable even for larger benchmarks

    New techniques for functional testing of microprocessor based systems

    Get PDF
    Electronic devices may be affected by failures, for example due to physical defects. These defects may be introduced during the manufacturing process, as well as during the normal operating life of the device due to aging. How to detect all these defects is not a trivial task, especially in complex systems such as processor cores. Nevertheless, safety-critical applications do not tolerate failures, this is the reason why testing such devices is needed so to guarantee a correct behavior at any time. Moreover, testing is a key parameter for assessing the quality of a manufactured product. Consolidated testing techniques are based on special Design for Testability (DfT) features added in the original design to facilitate test effectiveness. Design, integration, and usage of the available DfT for testing purposes are fully supported by commercial EDA tools, hence approaches based on DfT are the standard solutions adopted by silicon vendors for testing their devices. Tests exploiting the available DfT such as scan-chains manipulate the internal state of the system, differently to the normal functional mode, passing through unreachable configurations. Alternative solutions that do not violate such functional mode are defined as functional tests. In microprocessor based systems, functional testing techniques include software-based self-test (SBST), i.e., a piece of software (referred to as test program) which is uploaded in the system available memory and executed, with the purpose of exciting a specific part of the system and observing the effects of possible defects affecting it. SBST has been widely-studies by the research community for years, but its adoption by the industry is quite recent. My research activities have been mainly focused on the industrial perspective of SBST. The problem of providing an effective development flow and guidelines for integrating SBST in the available operating systems have been tackled and results have been provided on microprocessor based systems for the automotive domain. Remarkably, new algorithms have been also introduced with respect to state-of-the-art approaches, which can be systematically implemented to enrich SBST suites of test programs for modern microprocessor based systems. The proposed development flow and algorithms are being currently employed in real electronic control units for automotive products. Moreover, a special hardware infrastructure purposely embedded in modern devices for interconnecting the numerous on-board instruments has been interest of my research as well. This solution is known as reconfigurable scan networks (RSNs) and its practical adoption is growing fast as new standards have been created. Test and diagnosis methodologies have been proposed targeting specific RSN features, aimed at checking whether the reconfigurability of such networks has not been corrupted by defects and, in this case, at identifying the defective elements of the network. The contribution of my work in this field has also been included in the first suite of public-domain benchmark networks

    Layered security for IEEE 1687 using a Bimodal Physically Unclonable Function

    Get PDF
    In this paper, a layered security mechanism for IEEE 1687 is proposed using a new class of physically unclonable function (PUF) called Bimodal PUF. It moves beyond the conventional single-challenge single-response PUF by introducing a second response to the PUF gained from the same single challenge. As an advantage, a double-response PUF forms two-layer security solution, one at the hardware layer by limiting the access to the embedded instrument and the second one for the data layer by securing the output data that needs to be transmitted. Experiments conducted with FPGA show that such advantages come in place at a small silicon area overhead, up to 1.4%, for a 64-bit security key. This is known to be sufficient enough to resist brute-force and machine learning attack

    Anti-Tamper Method for Field Programmable Gate Arrays Through Dynamic Reconfiguration and Decoy Circuits

    Get PDF
    As Field Programmable Gate Arrays (FPGAs) become more widely used, security concerns have been raised regarding FPGA use for cryptographic, sensitive, or proprietary data. Storing or implementing proprietary code and designs on FPGAs could result in the compromise of sensitive information if the FPGA device was physically relinquished or remotely accessible to adversaries seeking to obtain the information. Although multiple defensive measures have been implemented (and overcome), the possibility exists to create a secure design through the implementation of polymorphic Dynamically Reconfigurable FPGA (DRFPGA) circuits. Using polymorphic DRFPGAs removes the static attributes from their design; thus, substantially increasing the difficulty of successful adversarial reverse-engineering attacks. A variety of dynamically reconfigurable methodologies exist for implementation that challenge designers in the reconfigurable technology field. A Hardware Description Language (HDL) DRFPGA model is presented for use in security applications. The Very High Speed Integrated Circuit HDL (VHSIC) language was chosen to take advantage of its capabilities, which are well suited to the current research. Additionally, algorithms that explicitly support granular autonomous reconfiguration have been developed and implemented on the DRFPGA as a means of protecting its designs. Documented testing validates the reconfiguration results and compares power usage, timing, and area estimates from a conventional and DRFPGA model

    Circuit-Variant Moving Target Defense for Side-Channel Attacks on Reconfigurable Hardware

    Get PDF
    With the emergence of side-channel analysis (SCA) attacks, bits of a secret key may be derived by correlating key values with physical properties of cryptographic process execution. Power and Electromagnetic (EM) analysis attacks are based on the principle that current flow within a cryptographic device is key-dependent and therefore, the resulting power consumption and EM emanations during encryption and/or decryption can be correlated to secret key values. These side-channel attacks require several measurements of the target process in order to amplify the signal of interest, filter out noise, and derive the secret key through statistical analysis methods. Differential power and EM analysis attacks rely on correlating actual side-channel measurements to hypothetical models. This research proposes increasing resistance to differential power and EM analysis attacks through structural and spatial randomization of an implementation. By introducing randomly located circuit variants of encryption components, the proposed moving target defense aims to disrupt side-channel collection and correlation needed to successfully implement an attac

    Architecting a One-to-many Traffic-Aware and Secure Millimeter-Wave Wireless Network-in-Package Interconnect for Multichip Systems

    Get PDF
    With the aggressive scaling of device geometries, the yield of complex Multi Core Single Chip(MCSC) systems with many cores will decrease due to the higher probability of manufacturing defects especially, in dies with a large area. Disintegration of large System-on-Chips(SoCs) into smaller chips called chiplets has shown to improve the yield and cost of complex systems. Therefore, platform-based computing modules such as embedded systems and micro-servers have already adopted Multi Core Multi Chip (MCMC) architectures overMCSC architectures. Due to the scaling of memory intensive parallel applications in such systems, data is more likely to be shared among various cores residing in different chips resulting in a significant increase in chip-to-chip traffic, especially one-to-many traffic. This one-to-many traffic is originated mainly to maintain cache-coherence between many cores residing in multiple chips. Besides, one-to-many traffics are also exploited by many parallel programming models, system-level synchronization mechanisms, and control signals. How-ever, state-of-the-art Network-on-Chip (NoC)-based wired interconnection architectures do not provide enough support as they handle such one-to-many traffic as multiple unicast trafficusing a multi-hop MCMC communication fabric. As a result, even a small portion of such one-to-many traffic can significantly reduce system performance as traditional NoC-basedinterconnect cannot mask the high latency and energy consumption caused by chip-to-chipwired I/Os. Moreover, with the increase in memory intensive applications and scaling of MCMC systems, traditional NoC-based wired interconnects fail to provide a scalable inter-connection solution required to support the increased cache-coherence and synchronization generated one-to-many traffic in future MCMC-based High-Performance Computing (HPC) nodes. Therefore, these computation and memory intensive MCMC systems need an energy-efficient, low latency, and scalable one-to-many (broadcast/multicast) traffic-aware interconnection infrastructure to ensure high-performance. Research in recent years has shown that Wireless Network-in-Package (WiNiP) architectures with CMOS compatible Millimeter-Wave (mm-wave) transceivers can provide a scalable, low latency, and energy-efficient interconnect solution for on and off-chip communication. In this dissertation, a one-to-many traffic-aware WiNiP interconnection architecture with a starvation-free hybrid Medium Access Control (MAC), an asymmetric topology, and a novel flow control has been proposed. The different components of the proposed architecture are individually one-to-many traffic-aware and as a system, they collaborate with each other to provide required support for one-to-many traffic communication in a MCMC environment. It has been shown that such interconnection architecture can reduce energy consumption and average packet latency by 46.96% and 47.08% respectively for MCMC systems. Despite providing performance enhancements, wireless channel, being an unguided medium, is vulnerable to various security attacks such as jamming induced Denial-of-Service (DoS), eavesdropping, and spoofing. Further, to minimize the time-to-market and design costs, modern SoCs often use Third Party IPs (3PIPs) from untrusted organizations. An adversary either at the foundry or at the 3PIP design house can introduce a malicious circuitry, to jeopardize an SoC. Such malicious circuitry is known as a Hardware Trojan (HT). An HTplanted in the WiNiP from a vulnerable design or manufacturing process can compromise a Wireless Interface (WI) to enable illegitimate transmission through the infected WI resulting in a potential DoS attack for other WIs in the MCMC system. Moreover, HTs can be used for various other malicious purposes, including battery exhaustion, functionality subversion, and information leakage. This information when leaked to a malicious external attackercan reveals important information regarding the application suites running on the system, thereby compromising the user profile. To address persistent jamming-based DoS attack in WiNiP, in this dissertation, a secure WiNiP interconnection architecture for MCMC systems has been proposed that re-uses the one-to-many traffic-aware MAC and existing Design for Testability (DFT) hardware along with Machine Learning (ML) approach. Furthermore, a novel Simulated Annealing (SA)-based routing obfuscation mechanism was also proposed toprotect against an HT-assisted novel traffic analysis attack. Simulation results show that,the ML classifiers can achieve an accuracy of 99.87% for DoS attack detection while SA-basedrouting obfuscation could reduce application detection accuracy to only 15% for HT-assistedtraffic analysis attack and hence, secure the WiNiP fabric from age-old and emerging attacks
    corecore