8 research outputs found

    Privacy-preserving framework for context-aware mobile applications

    Full text link
    In recent years, the pervasiveness of mobile devices, especially mobile phones and personal digital assistants (PDAs), has increased rapidly. At the same time, wireless communication networks have improved considerably and the usage of mobile devices to access the internet is, with decreasing costs, possible almost everywhere and at any time in industrialized countries. However, the usage of mobile technology and mobile applications to support business processes, trans- actions, and personal tasks is still low compared to their potential. The improved capabilities resulted in the introduction of many applications for mobile devices by network operators and software vendors. These services were meant to increase the average revenue per user (ARPU) on top of the voice call income. But many of these services have failed and none of them has led to an improved usage of mobile services today, besides e-mail. A new kind of application, the context-aware application, exploits the ubiquity of the mobile devices in order to fit the personal need or task the user is about to execute satisfactorily. Context-aware systems try to improve the communication with the user by adding information about the current context to the explicit user input and by adapting the output to the current setting of the user. While those applications are seen as important steps to a widespread usage, there are strong factors inhibiting their development and adoption. First of all, the lack of common frameworks handling context data and improv- ing software development increases the cost to build context-aware applications. Each application currently implements its own sensors and logic to handle its data. Furthermore, service providers need to offer tailored services for every con- text of the user. Since no single provider is able to be an expert for all kinds of applications and will not have the necessary number of developers, a common service which finds services of multiple providers for the current situation of the user is needed. All services need to utilize the context attributes which are locally determined by the user’s situation. Development costs are further boosted by the difficulty of developing applications for multiple devices with varying input/output (IO) capabilities like speech output, small and big screens, full qwerty-keyboards, touchscreens, or numeric keypads. From the user’s perspective, privacy also endangers the adoption of mobile services. Context information may include very private data and expose the user’s preferences and habits. While the user may trust a single, well-known, provider to secure the private data and to respect the user’s privacy concerns, the problem increases with more and more smaller service providers

    Preface

    Get PDF

    ICTERI 2020: ІКТ в освіті, дослідженнях та промислових застосуваннях. Інтеграція, гармонізація та передача знань 2020: Матеріали 16-ї Міжнародної конференції. Том II: Семінари. Харків, Україна, 06-10 жовтня 2020 р.

    Get PDF
    This volume represents the proceedings of the Workshops co-located with the 16th International Conference on ICT in Education, Research, and Industrial Applications, held in Kharkiv, Ukraine, in October 2020. It comprises 101 contributed papers that were carefully peer-reviewed and selected from 233 submissions for the five workshops: RMSEBT, TheRMIT, ITER, 3L-Person, CoSinE, MROL. The volume is structured in six parts, each presenting the contributions for a particular workshop. The topical scope of the volume is aligned with the thematic tracks of ICTERI 2020: (I) Advances in ICT Research; (II) Information Systems: Technology and Applications; (III) Academia/Industry ICT Cooperation; and (IV) ICT in Education.Цей збірник представляє матеріали семінарів, які були проведені в рамках 16-ї Міжнародної конференції з ІКТ в освіті, наукових дослідженнях та промислових застосуваннях, що відбулася в Харкові, Україна, у жовтні 2020 року. Він містить 101 доповідь, які були ретельно рецензовані та відібрані з 233 заявок на участь у п'яти воркшопах: RMSEBT, TheRMIT, ITER, 3L-Person, CoSinE, MROL. Збірник складається з шести частин, кожна з яких представляє матеріали для певного семінару. Тематична спрямованість збірника узгоджена з тематичними напрямками ICTERI 2020: (I) Досягнення в галузі досліджень ІКТ; (II) Інформаційні системи: Технології і застосування; (ІІІ) Співпраця в галузі ІКТ між академічними і промисловими колами; і (IV) ІКТ в освіті

    Student Expectations: The effect of student background and experience

    Get PDF
    CONTEXT The perspectives and previous experiences that students bring to their programs of study can affect their approaches to study and the depth of learning that they achieve Prosser & Trigwell, 1999; Ramsden, 2003). Graduate outcomes assume the attainment of welldeveloped independent learning skills which can be transferred to the work-place. PURPOSE This 5-year longitudinal study investigates factors influencing students’ approaches to learning in the fields of Engineering, Software Engineering, and Computer Science, at two higher education institutes delivering programs of various levels in Australia and New Zealand. The study aims to track the development of student approaches to learning as they progress through their program. Through increased understanding of students’ approaches, faculty will be better able to design teaching and learning strategies to meet the needs of an increasingly diverse student body. This paper reports on the first stage of the project. APPROACH In August 2017, we ran a pilot of our survey using the Revised Study Process Questionnaire(Biggs, Kember, & Leung, 2001) and including some additional questions related to student demographics and motivation for undertaking their current program of study. Data were analysed to evaluate the usefulness of data collected and to understand the demographics of the student cohort. Over the period of the research, data will be collected using the questionnaire and through focus groups and interviews. RESULTS Participants provided a representative sample, and the data collected was reasonable, allowing the questionnaire design to be confirmed. CONCLUSIONS At this preliminary stage, the study has provided insight into the student demographics at both institutes and identified aspects of students’ modes of engagement with learning. Some areas for improvement of the questionnaire have been identified, which will be implemented for the main body of the study

    A new strategy for active learning to maximise performance in intensive courses

    Get PDF
    This paper describes an innovation in the delivery of an introductory thermodynamics course offered to students studying towards an engineering qualification. The course was delivered in intensive format, across three weeks of study. Students find it challenging to engage with complex engineering topics in a short period of time, and there is no sizeable study break for pre-exam study. This means that students cannot afford to delay in learning and applying content. Every class must be an opportunity to interact with the content immediately. The innovation described here involved implementing a new daily structure for the course that attempted to mimic the standard process by which students learn material, apply it, study it and practice it in across a traditional-length semester. The new structure involved integrating the lecture and recitation components to the course to increasing the active learning during material delivery, then allowing students to engage in guided study and open-book formative assessment. This paper describes the implementation of this innovation. A brief review of the literature on intensive courses is provided, followed by a description of the approach used in this particular class. The results are then presented, and evaluated in the context of the research and the instructor’s own critical reflection

    Chair a session/Integration of theory and practice in the learning and teaching process

    Get PDF
    The theme for AAEE-2017 is “Integrated Engineering”, which covers a range of sub-themes, such as: Integration of theory and practice in the learning and teaching process Interdisciplinary and cross-disciplinary engineering programs and learning environments Integration of teaching and research in the engineering training process The role and impact of engineering students and educators in the wider community Systems perspectives on engineering education. Integration is also about connections, e.g. between students and teachers, between students in learning together, and between educational institutions and industry and wider society in the engineering education process
    corecore