5,715 research outputs found

    The Landscape of Computing Symmetric nn-Variable Functions with 2n2n Cards

    Full text link
    Secure multi-party computation using a physical deck of cards, often called card-based cryptography, has been extensively studied during the past decade. Many card-based protocols to securely compute various Boolean functions have been developed. As each input bit is typically encoded by two cards, computing an nn-variable Boolean function requires at least 2n2n cards. We are interested in optimal protocols that use exactly 2n2n cards. In particular, we focus on symmetric functions, where the output only depends on the number of 1s in the inputs. In this paper, we formulate the problem of developing 2n2n-card protocols to compute nn-variable symmetric Boolean functions by classifying all such functions into several NPN-equivalence classes. We then summarize existing protocols that can compute some representative functions from these classes, and also solve some of the open problems by developing protocols to compute particular functions in the cases n=4n=4, 55, 66, and 77

    Conclave: secure multi-party computation on big data (extended TR)

    Full text link
    Secure Multi-Party Computation (MPC) allows mutually distrusting parties to run joint computations without revealing private data. Current MPC algorithms scale poorly with data size, which makes MPC on "big data" prohibitively slow and inhibits its practical use. Many relational analytics queries can maintain MPC's end-to-end security guarantee without using cryptographic MPC techniques for all operations. Conclave is a query compiler that accelerates such queries by transforming them into a combination of data-parallel, local cleartext processing and small MPC steps. When parties trust others with specific subsets of the data, Conclave applies new hybrid MPC-cleartext protocols to run additional steps outside of MPC and improve scalability further. Our Conclave prototype generates code for cleartext processing in Python and Spark, and for secure MPC using the Sharemind and Obliv-C frameworks. Conclave scales to data sets between three and six orders of magnitude larger than state-of-the-art MPC frameworks support on their own. Thanks to its hybrid protocols, Conclave also substantially outperforms SMCQL, the most similar existing system.Comment: Extended technical report for EuroSys 2019 pape

    Using Five Cards to Encode Each Integer in Z/6Z\mathbb{Z}/6\mathbb{Z}

    Full text link
    Research in secure multi-party computation using a deck of playing cards, often called card-based cryptography, dates back to 1989 when Den Boer introduced the "five-card trick" to compute the logical AND function. Since then, many protocols to compute different functions have been developed. In this paper, we propose a new encoding scheme using five cards to encode each integer in Z/6Z\mathbb{Z}/6\mathbb{Z}. Using this encoding scheme, we develop protocols that can copy a commitment with 13 cards, add two integers with 10 cards, and multiply two integers with 16 cards. All of our protocols are the currently best known protocols in terms of the required number of cards. Our encoding scheme can also be generalized to encode integers in Z/nZ\mathbb{Z}/n\mathbb{Z} for other values of nn as well

    Secure Identification in Social Wireless Networks

    Get PDF
    The applications based on social networking have brought revolution towards social life and are continuously gaining popularity among the Internet users. Due to the advanced computational resources offered by the innovative hardware and nominal subscriber charges of network operators, most of the online social networks are transforming into the mobile domain by offering exciting applications and games exclusively designed for users on the go. Moreover, the mobile devices are considered more personal as compared to their desktop rivals, so there is a tendency among the mobile users to store sensitive data like contacts, passwords, bank account details, updated calendar entries with key dates and personal notes on their devices. The Project Social Wireless Network Secure Identification (SWIN) is carried out at Swedish Institute of Computer Science (SICS) to explore the practicality of providing the secure mobile social networking portal with advanced security features to tackle potential security threats by extending the existing methods with more innovative security technologies. In addition to the extensive background study and the determination of marketable use-cases with their corresponding security requirements, this thesis proposes a secure identification design to satisfy the security dimensions for both online and offline peers. We have implemented an initial prototype using PHP Socket and OpenSSL library to simulate the secure identification procedure based on the proposed design. The design is in compliance with 3GPP‟s Generic Authentication Architecture (GAA) and our implementation has demonstrated the flexibility of the solution to be applied independently for the applications requiring secure identification. Finally, the thesis provides strong foundation for the advanced implementation on mobile platform in future

    Card-Based Cryptography Meets Formal Verification

    Get PDF
    Card-based cryptography provides simple and practicable protocols for performing secure multi-party computation with just a deck of cards. For the sake of simplicity, this is often done using cards with only two symbols, e.g., ♣ and ♡ . Within this paper, we also target the setting where all cards carry distinct symbols, catering for use-cases with commonly available standard decks and a weaker indistinguishability assumption. As of yet, the literature provides for only three protocols and no proofs for non-trivial lower bounds on the number of cards. As such complex proofs (handling very large combinatorial state spaces) tend to be involved and error-prone, we propose using formal verification for finding protocols and proving lower bounds. In this paper, we employ the technique of software bounded model checking (SBMC), which reduces the problem to a bounded state space, which is automatically searched exhaustively using a SAT solver as a backend. Our contribution is threefold: (a) we identify two protocols for converting between different bit encodings with overlapping bases, and then show them to be card-minimal. This completes the picture of tight lower bounds on the number of cards with respect to runtime behavior and shuffle properties of conversion protocols. For computing AND, we show that there is no protocol with finite runtime using four cards with distinguishable symbols and fixed output encoding, and give a four-card protocol with an expected finite runtime using only random cuts. (b) We provide a general translation of proofs for lower bounds to a bounded model checking framework for automatically finding card- and run-minimal (i.e., the protocol has a run of minimal length) protocols and to give additional confidence in lower bounds. We apply this to validate our method and, as an example, confirm our new AND protocol to have its shortest run for protocols using this number of cards. (c) We extend our method to also handle the case of decks on symbols ♣ and ♡, where we show run-minimality for two AND protocols from the literature

    Private Function Evaluation with Cards

    Get PDF
    Card-based protocols allow to evaluate an arbitrary fixed Boolean function on a hidden input to obtain a hidden output, without the executer learning anything about either of the two (e.g., [12]). We explore the case where implements a universal function, i.e., is given the encoding ⟨⟩ of a program and an input and computes (⟨⟩,)=(). More concretely, we consider universal circuits, Turing machines, RAM machines, and branching programs, giving secure and conceptually simple card-based protocols in each case. We argue that card-based cryptography can be performed in a setting that is only very weakly interactive, which we call the “surveillance” model. Here, when Alice executes a protocol on the cards, the only task of Bob is to watch that Alice does not illegitimately turn over cards and that she shuffles in a way that nobody knows anything about the total permutation applied to the cards. We believe that because of this very limited interaction, our results can be called program obfuscation. As a tool, we develop a useful sub-protocol II_{II}↑ that couples the two equal-length sequences , and jointly and obliviously permutes them with the permutation ∈ that lexicographically minimizes (). We argue that this generalizes ideas present in many existing card-based protocols. In fact, AND, XOR, bit copy [37], coupled rotation shuffles [30] and the “permutation division” protocol of [22] can all be expressed as “coupled sort protocols”

    Analog, hybrid, and digital simulation

    Get PDF
    Analog, hybrid, and digital computerized simulation technique

    Card-Based Cryptography Meets Formal Verification

    Get PDF
    Card-based cryptography provides simple and practicable protocols for performing secure multi-party computation (MPC) with just a deck of cards. For the sake of simplicity, this is often done using cards with only two symbols, e.g., ♣ and ♡. Within this paper, we target the setting where all cards carry distinct symbols, catering for use-cases with commonly available standard decks and a weaker indistinguishability assumption. As of yet, the literature provides for only three protocols and no proofs for non-trivial lower bounds on the number of cards. As such complex proofs (handling very large combinatorial state spaces) tend to be involved and error-prone, we propose using formal verification for finding protocols and proving lower bounds. In this paper, we employ the technique of software bounded model checking (SBMC), which reduces the problem to a bounded state space, which is automatically searched exhaustively using a SAT solver as a backend. Our contribution is twofold: (a) We identify two protocols for converting between different bit encodings with overlapping bases, and then show them to be card-minimal. This completes the picture of tight lower bounds on the number of cards with respect to runtime behavior and shuffle properties of conversion protocols. For computing AND, we show that there is no protocol with finite runtime using four cards with distinguishable symbols and fixed output encoding, and give a four-card protocol with an expected finite runtime using only random cuts. (b) We provide a general translation of proofs for lower bounds to a bounded model checking framework for automatically finding card- and length-minimal protocols and to give additional confidence in lower bounds. We apply this to validate our method and, as an example, confirm our new AND protocol to have a shortest run for protocols using this number of cards

    Card-Based Cryptography Meets Formal Verification

    Get PDF
    Card-based cryptography provides simple and practicable protocols for performing secure multi-party computation (MPC) with just a deck of cards. For the sake of simplicity, this is often done using cards with only two symbols, e.g., ♣ and ♡. Within this paper, we target the setting where all cards carry distinct symbols, catering for use-cases with commonly available standard decks and a weaker indistinguishability assumption. As of yet, the literature provides for only three protocols and no proofs for non-trivial lower bounds on the number of cards. As such complex proofs (handling very large combinatorial state spaces) tend to be involved and error-prone, we propose using formal verification for finding protocols and proving lower bounds. In this paper, we employ the technique of software bounded model checking (SBMC), which reduces the problem to a bounded state space, which is automatically searched exhaustively using a SAT solver as a backend. Our contribution is twofold: (a) We identify two protocols for converting between different bit encodings with overlapping bases, and then show them to be card-minimal. This completes the picture of tight lower bounds on the number of cards with respect to runtime behavior and shuffle properties of conversion protocols. For computing AND, we show that there is no protocol with finite runtime using four cards with distinguishable symbols and fixed output encoding, and give a four-card protocol with an expected finite runtime using only random cuts. (b) We provide a general translation of proofs for lower bounds to a bounded model checking framework for automatically finding card- and length-minimal protocols and to give additional confidence in lower bounds. We apply this to validate our method and, as an example, confirm our new AND protocol to have a shortest run for protocols using this number of cards
    corecore