4,519 research outputs found

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Percolation and Connectivity in the Intrinsically Secure Communications Graph

    Get PDF
    The ability to exchange secret information is critical to many commercial, governmental, and military networks. The intrinsically secure communications graph (iS-graph) is a random graph which describes the connections that can be securely established over a large-scale network, by exploiting the physical properties of the wireless medium. This paper aims to characterize the global properties of the iS-graph in terms of: (i) percolation on the infinite plane, and (ii) full connectivity on a finite region. First, for the Poisson iS-graph defined on the infinite plane, the existence of a phase transition is proven, whereby an unbounded component of connected nodes suddenly arises as the density of legitimate nodes is increased. This shows that long-range secure communication is still possible in the presence of eavesdroppers. Second, full connectivity on a finite region of the Poisson iS-graph is considered. The exact asymptotic behavior of full connectivity in the limit of a large density of legitimate nodes is characterized. Then, simple, explicit expressions are derived in order to closely approximate the probability of full connectivity for a finite density of legitimate nodes. The results help clarify how the presence of eavesdroppers can compromise long-range secure communication.Comment: Submitted for journal publicatio

    Finite-Block-Length Analysis in Classical and Quantum Information Theory

    Full text link
    Coding technology is used in several information processing tasks. In particular, when noise during transmission disturbs communications, coding technology is employed to protect the information. However, there are two types of coding technology: coding in classical information theory and coding in quantum information theory. Although the physical media used to transmit information ultimately obey quantum mechanics, we need to choose the type of coding depending on the kind of information device, classical or quantum, that is being used. In both branches of information theory, there are many elegant theoretical results under the ideal assumption that an infinitely large system is available. In a realistic situation, we need to account for finite size effects. The present paper reviews finite size effects in classical and quantum information theory with respect to various topics, including applied aspects

    Jamming Games in the MIMO Wiretap Channel With an Active Eavesdropper

    Full text link
    This paper investigates reliable and covert transmission strategies in a multiple-input multiple-output (MIMO) wiretap channel with a transmitter, receiver and an adversarial wiretapper, each equipped with multiple antennas. In a departure from existing work, the wiretapper possesses a novel capability to act either as a passive eavesdropper or as an active jammer, under a half-duplex constraint. The transmitter therefore faces a choice between allocating all of its power for data, or broadcasting artificial interference along with the information signal in an attempt to jam the eavesdropper (assuming its instantaneous channel state is unknown). To examine the resulting trade-offs for the legitimate transmitter and the adversary, we model their interactions as a two-person zero-sum game with the ergodic MIMO secrecy rate as the payoff function. We first examine conditions for the existence of pure-strategy Nash equilibria (NE) and the structure of mixed-strategy NE for the strategic form of the game.We then derive equilibrium strategies for the extensive form of the game where players move sequentially under scenarios of perfect and imperfect information. Finally, numerical simulations are presented to examine the equilibrium outcomes of the various scenarios considered.Comment: 27 pages, 8 figures. To appear, IEEE Transactions on Signal Processin
    • …
    corecore