35,597 research outputs found

    Secure Multi-Party Computation in Large Networks

    Get PDF
    We describe scalable protocols for solving the secure multi-party computation (MPC) problem among a significant number of parties. We consider both the synchronous and the asynchronous communication models. In the synchronous setting, our protocol is secure against a static malicious adversary corrupting less than a 1/31/3 fraction of the parties. In the asynchronous environment, we allow the adversary to corrupt less than a 1/81/8 fraction of parties. For any deterministic function that can be computed by an arithmetic circuit with mm gates, both of our protocols require each party to send a number of messages and perform an amount of computation that is O~(m/n+n)\tilde{O}(m/n + \sqrt n). We also show that our protocols provide statistical and universally-composable security. To achieve our asynchronous MPC result, we define the threshold counting problem and present a distributed protocol to solve it in the asynchronous setting. This protocol is load balanced, with computation, communication and latency complexity of O(logn)O(\log{n}), and can also be used for designing other load-balanced applications in the asynchronous communication model

    Peer-to-Peer Secure Multi-Party Numerical Computation Facing Malicious Adversaries

    Full text link
    We propose an efficient framework for enabling secure multi-party numerical computations in a Peer-to-Peer network. This problem arises in a range of applications such as collaborative filtering, distributed computation of trust and reputation, monitoring and other tasks, where the computing nodes is expected to preserve the privacy of their inputs while performing a joint computation of a certain function. Although there is a rich literature in the field of distributed systems security concerning secure multi-party computation, in practice it is hard to deploy those methods in very large scale Peer-to-Peer networks. In this work, we try to bridge the gap between theoretical algorithms in the security domain, and a practical Peer-to-Peer deployment. We consider two security models. The first is the semi-honest model where peers correctly follow the protocol, but try to reveal private information. We provide three possible schemes for secure multi-party numerical computation for this model and identify a single light-weight scheme which outperforms the others. Using extensive simulation results over real Internet topologies, we demonstrate that our scheme is scalable to very large networks, with up to millions of nodes. The second model we consider is the malicious peers model, where peers can behave arbitrarily, deliberately trying to affect the results of the computation as well as compromising the privacy of other peers. For this model we provide a fourth scheme to defend the execution of the computation against the malicious peers. The proposed scheme has a higher complexity relative to the semi-honest model. Overall, we provide the Peer-to-Peer network designer a set of tools to choose from, based on the desired level of security.Comment: Submitted to Peer-to-Peer Networking and Applications Journal (PPNA) 200

    Peer-to-Peer Secure Multi-Party Numerical Computation

    Full text link
    We propose an efficient framework for enabling secure multi-party numerical computations in a Peer-to-Peer network. This problem arises in a range of applications such as collaborative filtering, distributed computation of trust and reputation, monitoring and numerous other tasks, where the computing nodes would like to preserve the privacy of their inputs while performing a joint computation of a certain function. Although there is a rich literature in the field of distributed systems security concerning secure multi-party computation, in practice it is hard to deploy those methods in very large scale Peer-to-Peer networks. In this work, we examine several possible approaches and discuss their feasibility. Among the possible approaches, we identify a single approach which is both scalable and theoretically secure. An additional novel contribution is that we show how to compute the neighborhood based collaborative filtering, a state-of-the-art collaborative filtering algorithm, winner of the Netflix progress prize of the year 2007. Our solution computes this algorithm in a Peer-to-Peer network, using a privacy preserving computation, without loss of accuracy. Using extensive large scale simulations on top of real Internet topologies, we demonstrate the applicability of our approach. As far as we know, we are the first to implement such a large scale secure multi-party simulation of networks of millions of nodes and hundreds of millions of edges.Comment: 10 pages, 2 figures, appeared in the 8th IEEE Peer-to-Peer Computing, Aachen, Germany, Sept. 200

    Privacy-preserving Cross-domain Routing Optimization -- A Cryptographic Approach

    Full text link
    Today's large-scale enterprise networks, data center networks, and wide area networks can be decomposed into multiple administrative or geographical domains. Domains may be owned by different administrative units or organizations. Hence protecting domain information is an important concern. Existing general-purpose Secure Multi-Party Computation (SMPC) methods that preserves privacy for domains are extremely slow for cross-domain routing problems. In this paper we present PYCRO, a cryptographic protocol specifically designed for privacy-preserving cross-domain routing optimization in Software Defined Networking (SDN) environments. PYCRO provides two fundamental routing functions, policy-compliant shortest path computing and bandwidth allocation, while ensuring strong protection for the private information of domains. We rigorously prove the privacy guarantee of our protocol. We have implemented a prototype system that runs PYCRO on servers in a campus network. Experimental results using real ISP network topologies show that PYCRO is very efficient in computation and communication costs

    Scalable secure multi-party network vulnerability analysis via symbolic optimization

    Full text link
    Threat propagation analysis is a valuable tool in improving the cyber resilience of enterprise networks. As these networks are interconnected and threats can propagate not only within but also across networks, a holistic view of the entire network can reveal threat propagation trajectories unobservable from within a single enterprise. However, companies are reluctant to share internal vulnerability measurement data as it is highly sensitive and (if leaked) possibly damaging. Secure Multi-Party Computation (MPC) addresses this concern. MPC is a cryptographic technique that allows distrusting parties to compute analytics over their joint data while protecting its confidentiality. In this work we apply MPC to threat propagation analysis on large, federated networks. To address the prohibitively high performance cost of general-purpose MPC we develop two novel applications of optimizations that can be leveraged to execute many relevant graph algorithms under MPC more efficiently: (1) dividing the computation into separate stages such that the first stage is executed privately by each party without MPC and the second stage is an MPC computation dealing with a much smaller shared network, and (2) optimizing the second stage by treating the execution of the analysis algorithm as a symbolic expression that can be optimized to reduce the number of costly operations and subsequently executed under MPC.We evaluate the scalability of this technique by analyzing the potential for threat propagation on examples of network graphs and propose several directions along which this work can be expanded

    Privacy-Preserving Image Classification Using Convolutional Neural Networks

    Get PDF
    The process of image classification using convolutional neural networks (CNNs) often relies on access to large, annotated datasets and the use of cluster or cloud-based computing resources. However, many classification applications such as those in healthcare or defense introduce privacy concerns that prevent the collection of such data and the use of pre-existing large scale computing systems. Although many solutions to privacy preserving machine learning have previously been explored, the added computational complexity incurred with training on encrypted values inhibits these systems from executing in real-time. One of the most promising solutions that facilitates secure machine learning is secure multi-party computation (MPC), which relies on segmenting data across multiple devices such that the original data cannot be reconstructed without recombining each of the data segments. This thesis explores the efficacy of training CNNs on encrypted data using MPC techniques and utilizes several optimization techniques to lessen the computational and communication overheads incurred from doing so. The goals are to create a privacy-preserving CNN framework that achieves testing accuracy similar to a non-secure model while introducing the least amount of computational overhead. To this end, a multi-party encryption scheme was used to encrypt all floating point values used in training, and federated learning was incorporated to reduce the effects of the computational overhead by parallelizing the training of the network. The developed secure CNN was able to achieve validation accuracy within 1.1-2.8% of a baseline CNN on the MNIST dataset and 9.9-19.4% on the CIFAR-10 dataset. This decreased accuracy is caused by rounding errors incurred by performing multiple continuous arithmetic computations in the secure domain during training, however the accuracy results of the secure CNN indicate that training can be performed on encrypted values. The cost of performing training on encrypted values was found to range from between 8 - 21x more computation time in comparison to a non-secure baseline implementation due to the added computational complexity and communication overhead required to perform training on secure values. This additional training time, however, was shown to be able to be mitigated through the use of federated averaging by performing training on multiple devices in parallel
    corecore