
Clemson University Clemson University

TigerPrints TigerPrints

All Theses Theses

May 2021

Privacy-Preserving Image Classification Using Convolutional Privacy-Preserving Image Classification Using Convolutional

Neural Networks Neural Networks

David Karl Langbehn
Clemson University, dklangbe@gmail.com

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Recommended Citation Recommended Citation
Langbehn, David Karl, "Privacy-Preserving Image Classification Using Convolutional Neural Networks"
(2021). All Theses. 3542.
https://tigerprints.clemson.edu/all_theses/3542

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for
inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact
kokeefe@clemson.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Clemson University: TigerPrints

https://core.ac.uk/display/479105779?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://tigerprints.clemson.edu/
https://tigerprints.clemson.edu/all_theses
https://tigerprints.clemson.edu/theses
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3542&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/3542?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3542&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

Privacy-Preserving Image Classification Using
Convolutional Neural Networks

A Dissertation

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Computer Engineering

by

David Karl Langbehn

May 2021

Accepted by:

Dr. Melissa Smith, Committee Chair

Dr. Adam Hoover

Dr. Jerome McClendon

Abstract

The process of image classification using convolutional neural networks (CNNs)

often relies on access to large, annotated datasets and the use of cluster or cloud-based

computing resources. However, many classification applications such as those in healthcare

or defense introduce privacy concerns that prevent the collection of such data and the use

of pre-existing large scale computing systems. Although many solutions to privacy preserv-

ing machine learning have previously been explored, the added computational complexity

incurred with training on encrypted values inhibits these systems from executing in real-

time. One of the most promising solutions that facilitates secure machine learning is secure

multi-party computation (MPC), which relies on segmenting data across multiple devices

such that the original data cannot be reconstructed without recombining each of the data

segments.

This thesis explores the efficacy of training CNNs on encrypted data using MPC

techniques and utilizes several optimization techniques to lessen the computational and com-

munication overheads incurred from doing so. The goals are to create a privacy-preserving

CNN framework that achieves testing accuracy similar to a non-secure model while intro-

ducing the least amount of computational overhead. To this end, a multi-party encryption

scheme was used to encrypt all floating point values used in training, and federated learning

was incorporated to reduce the effects of the computational overhead by parallelizing the

training of the network.

The developed secure CNN was able to achieve validation accuracy within 1.1-2.8%

of a baseline CNN on the MNIST dataset and 9.9-19.4% on the CIFAR-10 dataset. This

ii

decreased accuracy is caused by rounding errors incurred by performing multiple continuous

arithmetic computations in the secure domain during training, however the accuracy results

of the secure CNN indicate that training can be performed on encrypted values. The

cost of performing training on encrypted values was found to range from between 8 - 21×

more computation time in comparison to a non-secure baseline implementation due to the

added computational complexity and communication overhead required to perform training

on secure values. This additional training time, however, was shown to be able to be

mitigated through the use of federated averaging by performing training on multiple devices

in parallel.

iii

Dedication

I dedicate this work to my loving wife as without your continuous support, none of

this would have been attainable. Your encouragement has allowed me to overcome challenges

that I never thought possible, my gratitude for which could never be fully expressed in

words.

iv

Acknowledgments

I would like to express my gratitude to Dr. Jerome McClendon for his support and

guidance throughout the completion of this research. I would also like to thank my advisor

Dr. Melissa Smith for all of her steadfast support throughout my graduate career and Dr.

Adam Hoover for agreeing to serve on my advisory committee.

I would like to also thank my friends and family for their support and belief in me,

and all of the members of the FCTL group for their valuable help and advice throughout

this research.

v

Table of Contents

Title Page . i

Abstract . ii

Dedication . iv

Acknowledgments . v

List of Tables . viii

List of Figures . ix

1 Introduction . 1
1.1 Motivation . 1
1.2 Contributions . 2
1.3 Thesis Outline . 3

2 Background . 5
2.1 Image Classification . 5
2.2 Convolutional Neural Networks . 7
2.3 Federated Learning . 14
2.4 Secure Multi-Party Computation . 15
2.5 Encryption Protocols . 17

3 Related Work . 19
3.1 Secure Machine Learning Techniques . 19
3.2 Federated Learning with Encrypted Data 21
3.3 Secure Multi-Party Computation in Machine Learning 22
3.4 Summary . 24

4 Experimental Design . 25
4.1 Hypothesis and Research Goals . 25
4.2 Datasets . 26
4.3 Security Model . 28
4.4 Baseline Architecture . 32
4.5 Secure Architecture . 39
4.6 Measurements . 40

vi

5 Results . 42
5.1 MNIST . 42
5.2 CIFAR-10 . 60
5.3 Communication Simulation . 73

6 Conclusions and Future Work . 75
6.1 Conclusions . 75
6.2 Future Work . 77

Appendices . 79
A Hyperparameter Effects on Computation Time 80

Bibliography . 86

vii

List of Tables

5.1 MNIST Baseline Hyperparameters . 43
5.2 CIFAR-10 Baseline Hyperparameters . 60
5.3 MNIST Communication Rounds per Training Image 73
5.4 CIFAR-10 Communication Rounds per Training Image 74

1 MNIST Filter Size . 80
2 MNIST Number of Filters . 80
3 MNIST Federated Averaging . 81
4 MNIST 5-Layer Filter Size . 81
5 MNIST 5-Layer Number of Filters . 81
6 MNIST Secure Number of Filters . 82
7 MNIST Secure Federated Averaging . 82
8 CIFAR-10 Filter Size . 83
9 CIFAR-10 Number of Filters . 83
10 CIFAR-10 Federated Averaging . 84
11 CIFAR-10 5-Layer Filter Size . 84
12 CIFAR-10 5-Layer Number of Filters . 84
13 CIFAR-10 Secure Number of Filters . 85
14 CIFAR-10 Secure Federated Averaging . 85

viii

List of Figures

2.1 Example CNN used for image classification 6
2.2 Basic CNN Layer Configurations . 7
2.3 Convolutional layer functionality during the forward propagation of data

through the network using a 3 × 3 filter and a stride of 1 10
2.4 Pooling layer feature reduction using 2 × 2 filters and a stride of 2 11
2.5 Softmax layer functionality during forward propagation 13
2.6 Example MPC secret-sharing scheme [22] 16

4.1 Example images from the MNIST dataset 27
4.2 Example images from the CIFAR-10 dataset 28
4.3 Standard 32-bit floating point representation 28
4.4 Baseline CNN architecture with 1 convolutional layer, 28 × 28 input image

and eight 3 × 3 convolutional filters pictured 33
4.5 Modified baseline CNN architecture with 2 convolutional layers, 32 × 32

input image and eight 5 × 5 convolutional filters pictured 34
4.6 Effects of input padding for a 3x3 convolutional filter 35
4.7 (a) Max pooling function with 2 × 2 filter and a stride of 2, (b) Average

pooling function with 2 × 2 filter and a stride of 2 [33] 36
4.8 Secure Backpropagation . 40

5.1 MNIST Accuracy Comparisons . 44
5.2 Convolutional layer filters for the MNIST dataset colorized for (a) 3 × 3 filter

size (b) 5 × 5 filter size . 44
5.3 MNIST Training Epochs . 45
5.4 MNIST Learning Rate . 47
5.5 MNIST Filter Size . 48
5.6 MNIST Number of Filters . 49
5.7 MNIST Federated Averaging . 50
5.8 MNIST 5-Layer Network Filter Size . 51
5.9 MNIST 5-Layer Network Number of Filters 52
5.10 MNIST Secure Training Epochs . 54
5.11 MNIST Secure Learning Rate . 55
5.12 MNIST Secure Number of Filters . 56
5.13 MNIST Secure Federated Averaging . 57
5.14 MNIST Accuracy Comparisons Between Baseline and Secure Architectures 58
5.15 MNIST Timing Comparisons Between Baseline and Secure Architectures . 59

ix

5.16 Convolutional layer filters for the CIFAR-10 dataset colorized for (a) 3 × 3
filter size (b) 5 × 5 filter size . 61

5.17 CIFAR-10 Training Epochs . 61
5.18 CIFAR-10 Learning Rate . 62
5.19 CIFAR-10 Filter Size . 63
5.20 CIFAR-10 Number of Filters . 64
5.21 CIFAR-10 Federated Averaging . 64
5.22 CIFAR-10 5-Layer Network Filter Size . 65
5.23 CIFAR-10 5-Layer Network Number of Filters 66
5.24 CIFAR-10 Secure Training Epochs . 67
5.25 CIFAR-10 Secure Learning Rate . 68
5.26 CIFAR-10 Secure Number of Filters . 69
5.27 CIFAR-10 Secure Federated Averaging . 70
5.28 CIFAR Accuracy Comparisons Between Baseline and Secure Architectures . 71
5.29 CIFAR-10 Timing Comparisons Between Baseline and Secure Architectures 72

x

Chapter 1

Introduction

1.1 Motivation

The field of computer vision has seen major improvements in recent years with the

advent of deep learning architectures such as convolutional neural networks and recurrent

neural networks. These advancements have pushed the boundary of what is possible when

it comes to classifying the objects present in images and tracking moving images through

multiple frames of video as well as have proven useful in other related fields such as speech

recognition and text classification. However, the drawback of these artificial intelligence

(AI)-based methods compared to previous hand-tuned techniques is the large datasets re-

quired to train these networks. Access to these datasets and to the underlying features

learned from them poses a significant challenge in many fields where human privacy and

other security concerns are a priority.

Previous research has explored multiple approaches for addressing this challenge,

with the primary goal being to perform computations directly on the encrypted data. This

capability opens up the possibility to train these complex networks on non-secure devices

such as largescale cloud computing servers without the unencrypted data being available to

third parties. With the scope of AI-based recognition and classification solutions broadening

to more fields and access to high performance computing (HPC) resources becoming easier

1

to obtain, the need for privacy-preserving algorithms is growing substantially.

Currently, two emerging encryption schemes include the capability to perform arith-

metic computations on encrypted data, each with its own limitations. While the first of

these approaches explored in this research, homomorphic encryption (HE), facilitates solv-

ing of Boolean or arithmetic circuits between two encrypted values without access to a

secret key, its disadvantage is the added computational complexity required to perform any

operation in the encrypted domain as well as the inability to perform an arbitrary number

of computations without increasing the errors in the result. Multiplication between two

encrypted values is its primary weak point as the output is prone to errors accruing from

small amounts of noise added through the encryption scheme. As many image classification

systems perform thousands to millions of multiplications in a single training or validation

cycle, these errors compound and lead to meaningless outputs. This issue limits the use less

computationally expensive versions of this scheme as we need an encryption scheme that

can handle multiplications with less overhead.

The second encryption scheme that explored here is secure multi-party computa-

tion (MPC), which trades computational overhead for communication overhead. Various

encryption protocols have been developed that support MPC, each based on the basic idea

of splitting shares of a single encrypted value across multiple devices such that if each device

performs the same set of instructions on its share, a later recombination of all shares will

have the same computations performed on the final output. However, while this approach

again adds complexity when dealing with multiplication, there are optimization techniques

that allow multiplication between two encrypted values in only a few rounds of communi-

cation.

1.2 Contributions

In addressing these issues, this research offers several contributions which can be

summarized as follows. First, a basic convolutional neural network was developed as a

2

baseline for measuring the most time-consuming computations that would benefit from

running on a distributed architecture. Next, an MPC scheme was created to perform the

floating-point arithmetic required for these expensive computations to run on a non-secure

device or server. Doing so involved minimizing the total rounding error incurred by doing

each secure computation so that it had the least total affect on the desired output. Mini-

mizing these errors is important as they can compound significantly through many repeated

computations in the secure domain. Once a complete MPC scheme that could handle each

type of operation required to train the network was developed, it was integrated into a secure

network that uses encrypted values for all inputs, outputs, and intermediate values needing

to be accessed by a third party during training. Finally, optimization techniques such as

federated learning were introduced to limit the added communication and computational

overhead incurred through the use of the MPC scheme.

The secure architecture developed in this work was evaluated against the baseline

architecture to determine the feasibility of performing the backwards phase of learning in

the encrypted domain. This backpropagation training phase was chosen because through

testing it was determined to be the most computationally expensive and as such would

benefit from running on a third party computing platform. The goal of this network is to

achieve accuracy results similar to the baseline architecture, with the additional overhead

not offsetting the potential improvements gained from the utilization of more computational

power. To test the feasibility of such a network, the proposed MPC scheme was simulated

since implementing the communication protocols required to run the network on multiple

devices was outside of the scope of this research.

1.3 Thesis Outline

This thesis is organized as follows. Chapter 2 provides background information on

image classification techniques and the calculations involved in convolutional neural net-

works in addition to detailing federated learning and the encryption protocols used in this

3

research. Chapter 3 summarizes the methods used and the results from past research rele-

vant to secure machine learning. Chapter 4 details the experimental design, including the

implementation details and the network layout of both the baseline and secure architectures

as well as the measurements used to test the efficacy of the secure implementation. Chap-

ter 5 presents the results of the privacy preserving CNN, comparing them to the baseline

architecture as well as to other methods used in literature. Chapter 7 concludes with obser-

vations regarding the capability of the proposed architecture as well as detailing suggested

areas for future work.

4

Chapter 2

Background

This chapter introduces key concepts used in image classification as well as provides

details on the algorithms used in this research, beginning with the image classification tech-

niques and datasets commonly used in this field. The second section details convolutional

neural networks (CNNs) including the layer types commonly used in them, followed by

an introduction into federated learning and the various strategies for distributed learning.

The fourth section covers secure multi-party computation (MPC) including implementa-

tion details as well as highlighting the advantages and disadvantages of this encryption

approach. This chapter concludes with details about the MPC encryption protocol used in

this research.

2.1 Image Classification

Image classification, which entails analyzing an entire image in order to assign it

labels, typically refers to cases where only one object appears in an image, whereas object

detection refers to classifying multiple objects within a single image. Multiple classification

methods have been developed over the years, with the main goal being to reduce the number

of images a system classifies incorrectly [29]. Most of these methods rely on some form of

feature extraction, which allows a system to analyze the most relevant pixels in an image

5

Figure 2.1: Example CNN used for image classification

rather than analyzing each pixel individually. This approach also results in a reduction in

the dimensionality of the image data, subsequently reducing the computational complexity

of the classification. In image classification, for example, these features, which can take the

form of shapes, edges, or patterns that occur within the image, can be either hand tuned for

a given dataset or learned directly from the data through the process of machine learning.

Early classification techniques were based on supervised learning and statistical

analysis of a dataset and relied on user input to hand-tune model parameters [26]. These

algorithms include support vector machines, k-nearest neighbor, linear regression, and naive

Bayes. While these earlier methods were able to achieve high accuracy across numerous

datasets, each implementation requires the fine tuning of multiple parameters, meaning

they require much effort to create and are not generalizable.

The field of image classification has seen major improvements in recent years with

the introduction of neural network-based approaches [31]that rely on algorithms that allow

the system to learn features without the need for human input and, as such, can determine

features that are more meaningful for a given dataset than might be decided by a user. Neu-

ral network-based techniques such as CNNs have proven to be more robust across multiple

datasets than previous statistical learning methods, surpassing previous methodologies in

classification accuracy for many widely used datasets [16].

6

conv

28x28 26x26x8 13x13x8

maxpool

10

softmax

Figure 2.2: Basic CNN Layer Configurations

2.2 Convolutional Neural Networks

Convolutional Neural Networks were first proposed as a method of image classifi-

cation in 1989 [21], but it wasn’t until recently that their performance outpaced current

statistical learning techniques [20]. A typical CNN uses different layers to learn features

from a set of input data. These features are typically stored as local weights that are used

by the layer to calculate its output. For a given layer function f , the output of the layer

yli,j,k at location (i, j) of the k-th feature map and layer l is calculated by:

yli,j,k = f(wl
k, x

l
i,j) + blk (2.1)

where wl
k is the weight vector and blk is the bias term of the k-th filter of the l-th layer, and

xli,j is a region of the input to layer l centered at location (i, j) [14].

A typical CNN begins with a convolutional layer that performs a convolution be-

tween an input image and a set of filters consisting of trainable weights used to extract

features from the input data. The output of this layer is then used as input for a pooling

layer, which reduces the dimensionality of the extracted features because neighboring pixels

in an image often have similar values, meaning a convolutional layer will produce similar

values for neighboring pixels in its output. The output of the pooling layer is then fed into

either additional convolutional layers or an output layer that determines the class the input

7

image belongs to [34]. These layers are described in more detail in Sections 2.2.2 - 2.2.4.

Many modern CNNs make use of multiple layer types, with the best performing

CNNs typically utilizing multiple layers totaling to hundreds of thousands of features present

in the network. As such the computational complexity of these networks can make training

times prohibitively long when running on a CPU. However, many of the algorithms used by

individual layers have proven to be parallelizable on GPUs, and overall training times can

be drastically shortened using such methods [8]. In addition, pre-processing the training

data has been found to increase classification accuracy, as well as limit the over-fitting of

weights to the training data [7].

2.2.1 Backpropagation

As a network trains on a set of data, both the weights and biases of each layer

are updated using a loss function to minimize classification error by propagating the error

of the prediction backwards through the network and updating the weights of each layer

relative to their impact on the final output of the network [21]. This backpropagation of

error through the network is ultimately what enables the learning of features to occur as

the initial weights used for each layer are typically randomized at the beginning of training.

The classification error of the network is calculated through the use of a loss function.

While many such functions exist, a cross-entropy loss function is detailed here as it was used

in this research. The goal of a loss function is to describe how sure a network is of each

prediction: If a network is confident it has identified the correct class, then it can be assumed

that it has correctly learned the underlying features of that class. Cross-entropy loss can

be calculated as:

L = −ln(pc) (2.2)

where the loss L is the value we wish to minimize, c is the value of the correct class, and

pc is the predicted probability for class c. The value of L, which is calculated during the

8

forward pass of the network, is subsequently propagated backwards through the network

so that each layer may update its weights based on whether the prediction was accurate or

not.

Stochastic gradient descent (SGD) is one loss optimization method used to back-

propagate this loss through the network. In SGD, the act of minimizing the loss is performed

after each image is passed through the network. As a result, a higher number of iterations

are typically required to find global minima than for other techniques such as batch gradient

descent; however this is offset computationally by requiring each image to pass through the

network only once. SGD, an iterative algorithm, is generally written as:

w = w − η

n

n∑
i=1

∇Li(w) (2.3)

where w is the weight parameter that is to be updated, η is the learning rate of the network,

∇ is the loss gradient of the previous layer, and Li(w) is the value of the loss function for

the i-th image. The gradient ∇, which can be viewed as the input to a layer during the

backwards pass through the network, describes the loss of the network relative to a given

layer’s output during the forward pass. To calculate this gradient, a layer must temporarily

store its input during forward propagation.

2.2.2 Convolutional Layer

CNNs get their name from the use of convolutional layers in the network. These

convolutional layers take an image as input, and performs a set of convolutions between

that image and a set of filters that store the layer’s weights. This set of convolutions can

be written as:

yi,j,k =
N∑

n=1

M∑
m=1

xi+n,j+m ∗ wn,m,k (2.4)

where an output pixel yi,j,k represents a convolution between an N ×M region of the input

x and filter wk. Given k filters and no padding of the input, this results in an output of size

9

Input Image Filter Output

Figure 2.3: Convolutional layer functionality during the forward propagation of data
through the network using a 3 × 3 filter and a stride of 1

I −N − 1× J −M − 1×K where the input to the layer is of size I × J . When no padding

is used it is important to note the shrinking of the output relative to the input, as the use

of multiple convolutional layers in a network is limited by the size of the filters.

The goal of performing convolutions on an image with a set of filters is to extract

features from that image, with each filter responsible for extracting a different type of

feature. These features, which can range from edges, shapes, colors or textures, are used to

help the network classify an image as one of multiple classes. For example, if the network is

designed to distinguish between different types of animals, features relating to fur or color

may be learned.

The act of learning these features occurs during the backpropagation of loss gradients

through the network, and the weight values are updated based on their impact on the overall

loss of the network as in Equation (2.3) using:

∂L

∂wn,m,k
=

I∑
i=1

J∑
j=1

xi+n,j+m ∗ ∇i,j,k (2.5)

to find the effect of a single weight on the network’s loss where ∇ is the loss gradient

10

Input Image Output

Pooling Function

Figure 2.4: Pooling layer feature reduction using 2 × 2 filters and a stride of 2

propagated from the previous layer and x was the input to the layer during forward prop-

agation. If multiple convolutional layers are used in a network, the gradient ∂L
∂input has to

be propagated to the previous layers as well, calculated as:

∂L

∂inputi,j
=

N∑
n=1

M∑
m=1

∇i+n,j+m,k ∗ wn,m,k (2.6)

2.2.3 Pooling Layer

Pooling layers are used to reduce the size of their input, and as such decrease the

number of weights required in subsequent layers in the network. Typically, a pooling layer

is placed after a convolutional layer in the network, with many types of pooling functions

being found in literature. As these functions simply reduce the dimensionality of an input,

they do not require any trainable weights.

Two of the most common types of pooling layers are max pooling and average

pooling. Max pooling layers propagate the maximum value of each P × P region of the

input, where P is a predetermined pooling size. For example, using a value of P = 2

leads to a reduction of the width and height of the input by a factor of two. During

backpropagation the loss gradient is passed through to the maximum pixel in each region

11

as it was the only value that influences the output of the network. While average pooling

layers follow the same reduction principle, they propagate the average value of a P × P

region of the input. The loss gradient for the layer is calculated by multiplying the gradient

by 1
P×P and assigning the error to every pixel in a pooling block. Using max pooling layers

rather than average pooling layers generally leads to higher classification accuracy for a

given network as the maximum value of a pooling region is often more meaningful than the

average.

2.2.4 Softmax Layer

The softmax layer is a fully connected layer that uses the softmax function as its

activation function. The purpose of this layer is to create a probability distribution to

determine the network’s confidence in a given prediction. This is accomplished in part by

calculating an intermediate value corresponding to the totals of the network, t as follows:

t = w ∗ input+ b (2.7)

where w and b are the weights and biases of the softmax layer, respectively. To create a

probability distribution such that all values of ti sum to one, the softmax activation function

is applied:

softmax(ti) =
eti∑n
j=1 e

tj
(2.8)

the output of which should be highest for ti = c, signifying a correct classification.

To update the weights and biases of the softmax layer during training, its effect on

the total loss of the system is calculated. The loss function for the cross-entropy function

described in (2.2) can be written as:

∂L

∂outs(i)
=


0 if i 6= c

− 1
pi

if i = c

(2.9)

12

Figure 2.5: Softmax layer functionality during forward propagation

where outs(i) is the output of the softmax layer for class i in the forward direction and pi

is the predicted probability of class i. The result is the initial gradient of the network and

is fed as input to the softmax layer during backpropagation.

Multiple local gradients are calculated in order to calculate the output gradient that

will be used as input for the previous layer in the network as well as to update the weights

of the softmax layer as in Equation (2.3). The first of these intermediate gradients is the

loss gradient of the output with respect to the totals, which is used to calculate the local

gradients and is written as:

S =
∑
i

eti

∂outs(i)

∂t
=


−etceti

S2 if i 6= c

etc (S−etc)
S2 if i = c

(2.10)

Next the gradients ∂L
∂w , ∂L

∂b , and ∂L
∂input are calculated, with gradient ∂L

∂w being used

to update the softmax layer’s weights, ∂L
∂b to update the layer’s biases, and ∂L

∂input returned

13

to be used as input to the previous layer during backpropagation. These are calculated as:

∂L

∂w
=

∂L

∂out
∗ ∂out

∂t
∗ ∂t
∂w

∂L

∂b
=

∂L

∂out
∗ ∂out

∂t
∗ ∂t
∂b

∂L

∂input
=

∂L

∂out
∗ ∂out

∂t
∗ ∂t

∂input

(2.11)

where

∂t

∂w
= input

∂t

∂b
= 1

∂t

∂input
= w

(2.12)

2.3 Federated Learning

Federated learning has been recently proposed as a learning strategy that leverages

distributed computing across multiple devices in order to keep a user’s training data private

[27]. The idea behind this approach is that each participating device, often referred to as

clients, uses its local training dataset to compute updates to a global model accessible by

all clients. Instead of each client sharing its data with a global server during training, these

clients share only their updates to the model, which can be combined to create a more

accurate global model.

Federated learning has proven to be a successful strategy for training models across

a large number of devices, with multiple examples found in mobile applications [3], in-

cluding various image classification applications, language model applications used in voice

recognition and next-word-prediction for touch-screen keyboards. Federated learning can

be leveraged in these fields to create accurate global models and more personalized local

models, which together can provide provide localized predictions on non-IID data [39].

14

However, federated learning has grown to encompass more than mobile machine

learning and has proven useful as a parallelization method in use cases where data are

collected from multiple sources by the same client [17]. In such cases where data privacy

is not a concern, federated learning can be utilized to leverage distributed computing. In

such a system, individual data collecting nodes can perform training on their local models

in parallel, drastically reducing training times.

Different strategies have been proposed for combining local models into a global

model [23], one example being federated stochastic gradient descent (FedSGD), where all the

data from a random sample of nodes are used to compute a set of gradients. These gradients

are then averaged into a global gradient by a server, proportional to the number of data

samples provided by each node. A second approach is federated averaging, a generalization

of FedSGD in which each node performs training on a single batch of training data and then

exchanges the updated weights of its local model with the server to be averaged. In this

strategy since the local model for each node is initialized the same, averaging the changes

to the weights of each is the same as averaging the local gradients.

One of the important concerns with federated learning is the communication over-

head incurred through transmitting network parameters between the clients and a server

holding a global model. To address this issue, additional strategies for communicating up-

dates that look to reduce the communication cost of transmitting large quantities of data

between devices have been proposed [18]. Such strategies include restricting the dimension-

ality of shared parameters through the use of quantization and subsampling to limit the

size of communications between clients and server.

2.4 Secure Multi-Party Computation

The privacy of user-held data is of major concern in many fields such as healthcare

and banking, and as the prevalence of machine learning algorithms continues to grow, ma-

chine learning techniques that guarantee privacy are becoming increasingly more important.

15

Figure 2.6: Example MPC secret-sharing scheme [22]

The ultimate goal of a privacy-preserving machine learning model is to keep all data used

in the model encrypted such that no information about the training data or labels can be

obtained without proper authentication nor indirectly accessed through model parameters

such as the weights and biases used for individual layers. A privacy-preserving model should

also be resistant to the influence of unauthorized outside forces through methods such as

inference attacks.

Multiple methods have been proposed to create privacy-preserving machine learning

models, with the basic principle of most solutions focusing the ability to perform computa-

tions between two encrypted values. By enabling computations in the encrypted domain,

these strategies can leverage computation resources such as large cloud-based clusters as

no plain-text is used in running the machine learning model. This approach, unlike other

methodologies such as using AES encryption to send encrypted training values to a server

running the model, requires that both parties need to be trusted with the data.

One encryption method that allows for arithmetic computations between encrypted

values is secure multi-party computation (MPC). MPC enables encrypted computations

through the use of a secret sharing scheme where a single piece of data is mapped to m

16

shares and split among m parties [13]. These shares are created such that these parties

can perform arithmetic functions between two shares, and when recombined, the output

will have the identical operations performed on it. Typically, these shares are created as

random elements in a finite field that add up to the secret value modulo the size of the field.

Each individual share, thus, appears randomly distributed in the field, and data security

is maintained in an MPC system as long as all parties do not collude to reconstruct the

original data.

2.5 Encryption Protocols

Multiple MPC encryption protocols have been developed over the years, each at-

tempting to reduce the communication and computational overhead required for performing

computations in the encrypted domain. Most of these protocols are based on a secret shar-

ing scheme as described earlier rather than the circuit garbling protocols commonly found

in two-party computation schemes [2]. While circuit garbling protocols such as Yao’s [40]

benefit from few rounds of communication between parties during computation, they are

inherently limited to Boolean circuit evaluation.

One secure computation protocol that has received significant scientific attention

recently is the SPDZ protocol [10], which has proven adaptable to multiple uses of secure

computation as it supports as few as two parties. In addition, many optimization techniques

have also been proposed to decrease the communication rounds between parties during

computation. One such technique for decreasing inter-party communication is for certain

values needed during computation to be pre-computed during an offline phase by the secret-

sharing client [9]. This technique is explored further in Section 6.2.

Secrets used in this protocol exist in a finite ring of integers based on a large prime

17

Q and are created as:

si =


random in range(0, Q) if 0 ≤ i < N − 1

(d−
∑N−1

i=0 si) % Q if i = N − 1

(2.13)

where si is the ith share of data d for N total shares. To reconstruct plain-text data from

N shares, the following is performed:

d =

(
N−1∑
i=0

si

)
% Q (2.14)

As this form of secret generation is based in a finite set of integers, extra steps

are needed to implement the SPDZ protocol for computations dealing with floating point

values. One method is to convert these floating point values into fixed point values and

then scale those into integers over a predefined range. Extra overhead, however, is added

in this method as multiplication between two of these values requires re-scaling the output

to ensure the correct decimal placement. Because of this technique, the SPDZ protocol has

been proven adaptable for use in various machine learning algorithms [6].

Other protocols have also been proposed to deal with floating point computations in

the secure domain without using fixed point representations for the encrypted data [1], one

example being utilizing the binary representation of floating point values to create integer

representations of a single floating point value. Implementation details for the encryption

protocol used in this research are included in Section 4.3.

18

Chapter 3

Related Work

This chapter explores literature that relates to this research area, beginning with

the various implementations for integrating secure data in machine learning, including the

advantages and disadvantages of each. Next, the federated learning strategies that have

been applied to secure learning algorithms are analyzed, followed by a comparison of the

architecture implementations that utilize secure multi-party computation and details the

shortcomings of previous works. The final section summarizes the chapter and provides

comparisons between these related works and the work completed in this research.

3.1 Secure Machine Learning Techniques

The multiple use cases for secure machine learning exemplify the various approaches

taken by researchers to implement secure machine learning algorithms. CryptoDL [15]

adopted CNNs to facilitate homomorphic encryption (HE) by approximating activation

functions with low-order polynomials. While the network was able to achieve accuracy

results within 0.04% of the baseline model, CryptoDL relies on models trained on unen-

crypted data and only performs predictions in the encrypted domain. A second scheme

found in [24] proposes using different HE schemes to identify images for intelligent trans-

portation systems using cloud computing devices. This framework doubly encrypts each

19

image such that a secure server fully decrypts each image for training, and a non-secure

cloud server subsequently performs classification on a partially encrypted image. Similar to

CryptoDL, this method relies on using non-encrypted images for training but has the added

complexity of requiring two separate servers to run the forwards and backwards phases of

training/validation.

CryptoNets [12] also uses HE to encrypt a neural network similar to [15] and [24].

The disadvantages of this proposed method, however, involve efficiency and security as it

assumes a server already has a trained model. Only the inputs and intermediate values

are encrypted in this work, while the weights of the network are not encrypted to take

advantage of more efficient HE multiplication schemes. However, this poses a privacy risk

because according to [30] features of a network can be used to aid in adversarial attacks

against a network as well as to provide details about the inputs and outputs of a network.

SHE [25] utilizes the leveled fast HE over torus (LTFHE) encryption scheme to implement

the ReLU activation function as well as the max pooling layers. This was an improvement

over CryptoNet as it supports these extra layer types and, thus, can run on the ImageNet

dataset, which, at the time it was developed, no other leveled HE model could.

These methods were all able to achieve high validation accuracy results; however,

the use of non-secure pre-trained models impacts the overall security of a network if they

are used on non-trusted devices. Utilizing encryption for classification only also limits the

possible use cases of such networks as being able to train a model on encrypted data would

allow for the utilization of larger non-secure computation sources such as pre-existing cloud

computing solutions.

More recent work such as CryptoNN [38] look to address these previous limitations

by performing both training and prediction using encrypted data. This proposed framework

uses functional encryption which allows for partial decryption of data unlike HE where the

data is either fully hidden or fully revealed. Using functional encryption, CryptoNN is able

to perform both forward and backward passes through the network with encrypted data,

enabling training on encrypted inputs and labels. While the ability to perform training

20

in the encrypted domain was a first for crypto based approaches, as opposed to secure

multi-party computation based approaches covered in 3.3, a limitation of this work is that

there are only two rounds of secure computations in the network. The first of these rounds

occurs with the encrypted image during the forward propagation and the second with the

encrypted label during backpropagation, meaning all resulting computations of the network

are in plaintext. Thus, though the computations are more efficient, it results in privacy

concerns as discussed previously.

3.2 Federated Learning with Encrypted Data

As federated learning requires exchanging model parameters among multiple partic-

ipants, the possibility of leaking information about the training data is a security concern

that needs to be addressed in systems where each participant prefers to keep its own data

private. While different approaches to privacy-preserving federated learning have been ex-

plored previously in literature using a number of different encryption techniques such as

differential privacy, HE, and secure multi-party computation, these solutions aim to guar-

antee data privacy, support high communication efficiency, and be resilient to participant

dropout and multiple types of inference attacks.

One implementation of secure federated learning [35] uses secure multi-party com-

putation techniques to encrypt the local weights of each device before they are aggregated

into a global model. This weighted average of the encrypted weights is calculated by the

data aggregator, with the added security of a differential privacy protocol being used to en-

sure that the resulting average cannot be used by colluding clients to re-create the weights

of others.

A second approach [4] explores using secure aggregation, a class of MPC where a

group of mutually distrustful parties collaborate to compute an aggregate value, to train a

deep neural network with federated learning. More specifically, this work investigates possi-

ble solutions to such challenges faced by federated learning systems as participant dropout

21

and malicious users and defines a theoretical solution for a practical secure aggregation

protocol. [5] extends this work by analyzing the computation and communication costs in-

curred by implementing a secure aggregation protocol to minimize the effect of user dropout

and the overhead associated with the proposed model.

The framework proposed in [36] utilizes differential privacy (DP) to prevent informa-

tion leakage of client data. This DP scheme adds artificial noise to each client’s data before

aggregation to ensure that the aggregator cannot learn the true nature of each client’s local

models. However, this method involves a trade-off between the performance of the network

and the level of privacy protection gained from DP. As a result, its accuracy suffers in com-

parison to other approaches when ensuring the same level of security against differential

attacks.

Hybrid Alpha [37] employs a functional encryption scheme to perform secure multi-

party computation. This implementation aims to lessen the communication overhead in-

curred through both federated learning and MPC while at the same time being robust

against honest-but-curious and colluding participants. The use of functional encryption

compared to other schemes such as DP or HE was shown to reduce the training time of the

model by 68%, while maintaining accuracy results similar to other MPC implementations.

3.3 Secure Multi-Party Computation in Machine Learning

The use of secure multi-party computation (MPC) protocols for distributed machine

learning has been researched less frequently than similar HE implementations; however, the

benefits of MPC compared to HE for certain applications has led to an emergence of addi-

tional research being conducted in this field. These benefits include the use of secret sharing

that prohibits an attacker from re-creating the encrypted data without compromising ev-

ery device in the system as well as lower error rates when performing computations in the

secure domain. One of the primary limitations for HE-derived architectures is that most

current implementations require training using plain-text data. If a model is trained on

22

encrypted data, however, the same encryption keys used during training must be reused

during the inference stage, resulting in one of two scenarios, neither ideal: Either the keys

are shared with a third party during the inference stage, meaning all data can be decrypted

by a non-secure source, or the trained model can be used only by a data owner, limiting

the scalability and use cases of such an architecture.

An additional disadvantage to using HE schemes for machine learning is the perfor-

mance loss experienced when creating deeper architectures, caused by their limitations in

performing concurrent arithmetic computations between two encrypted values without the

error of each computation growing exponentially as well as the vanishing gradient problem

introduced by using the easier to implement sigmoid activation function compared to ReLU.

One of the earlier implementations of using MPC for privacy-preserving machine

learning is detailed in [32]. The architecture proposed in this work utilizes the SPDZ en-

cryption protocol to train a CNN using two-party MPC connections. The model implements

the convolutional, pooling and dense layers using SPDZ as well as an approximation of the

ReLU activation function. The softmax layer was not implemented, however as it requires

exponentiation, which SPDZ does not support. The disadvantages of the approach pro-

posed in this work are the security risks due to not encoding the entire network as well as

the loss of accuracy and immense overhead incurred from the secret-sharing scheme.

The framework created in [28] uses a specialized 3-party protocol that is tailored

towards functions commonly used in neural networks as opposed to more general 3-party

and MPC frameworks based on solving arithmetic or Boolean circuits. This MPC protocol

was used in implementing a CNN that achieved state-of-the-art classification accuracy while

achieving a 6-533× communication overhead reduction compared to approaches found in

previous work. This reduction in communication overhead is attributed primarily to an

improvement in computational complexity for non-linear functions as well as the decrease

in the number of communications required after the offline phase.

23

3.4 Summary

This chapter analyzed the advantages and disadvantages of various implementations

of privacy-preserving neural networks. This analysis of past research influenced the design

and implementation of the model developed in the research presented here. The work

presented in this thesis aims to build upon these works as follows:

1. Expanding upon the MPC scheme presented in [32] to facilitate the entirety of back-

propagation to occur in the secure domain with no plain-text values visible to the

network.

2. Implementing a basic version of floating point scheme presented in [1] to facilitate

the necessary arithmetic functions needed to perform the backpropagation phase of

training on secure values.

3. Building off of the ideas presented in [35] regarding the encryption of local weights

before aggregating them into a global model to enable federated learning between

encrypted values

24

Chapter 4

Experimental Design

This chapter covers the design and implementation details of the work conducted

for this research. It begins by establishing the goals for this study as well as the hypothesis

it intends to test. Then it details the datasets used in testing the validity of this research,

followed by the details on the security protocol implemented in this work. The fourth and

fifth sections provide the architecture designs used to test the baseline and secure versions

of the image classification model, and it concludes with the types of measurements used to

prove the validity of this study.

4.1 Hypothesis and Research Goals

The goal of this research is to enable the training of a CNN in an encrypted domain

through the use of simulated MPC techniques. The use case of such a system would allow

untrusted third-party servers to perform the computationally expensive parts of training,

while trusted parties can make use of the decrypted model to perform testing on plaintext.

To this end, a basic CNN was created in C++ to use as a baseline for testing, and a second

version of the network was created that could make use of an encrypted floating point

scheme in order to perform the backpropagation phase of training on encrypted values.

Federated learning techniques were also incorporated into each model in order to weigh the

25

possible parallelization benefits for training against the validation accuracy losses incurred

through distributed learning.

The research question posed in this work is whether or not the proposed security

protocols are conducive to performing the large amounts of computations necessary for

training in an encrypted setting. We propose that integrating the proposed security model

into a CNN will have a slight negative impact on the accuracy of the network, with the ma-

jority of the impact coming from increased training times. We test this through comparing

the validation accuracy achieved by the secure model against that of the baseline, as well

as modeling the communication overhead in order to measure its impact on training times.

4.2 Datasets

Multiple datasets have been created over the years to test the efficacy of image

classification techniques. These datasets are typically composed of a number of different

classes, with each image belonging to a single class, for example an image of a cat or dog.

Image classification datasets typically contain thousands to millions of individual images

and may contain tens to thousands of distinct classes.

Images in a dataset are divided into either a training set or a validation set for

testing, with each containing examples of all classes. The reasoning for dividing the dataset

into these two subsets is for the image classification system to have access to the training set

while learning to prevent the system from learning directly from the validation set. Doing so

reinforces the system’s ability to classify novel images as opposed to memorizing a solution

for every given input. The size of the validation set relative to the size of the training

set is a ratio that needs to be considered when tuning an image classification system as

an overabundance of training samples can cause over-fitting to occur in the trained model.

This over-fitting leads to the system learning only features present in the training set instead

of broader features present in the entire dataset, thus causing a decrease in the validation

accuracy of the system.

26

Figure 4.1: Example images from the MNIST dataset

The MNIST dataset is widely used in the field of image classification and is often

used as a baseline to compare the performance of different image classification systems.

The MNIST dataset contains 60,000 grayscale images of handwritten digits between zero

and nine, with each image being normalized to 28× 28 pixels [11]. It is typically split into

50,000 training images and 10,000 validation images when training a classifier. Both the

baseline and secure architectures developed in this research were tested primarily using the

MNIST dataset, and are discussed in sections 4.4 and 4.5.

Another popular image classification dataset, CIFAR-10, contains the ten classes

of airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck [19]. It includes

60,000 32 × 32 pixel RGB images and is split into 50,000 training and 10,000 test images.

While the classification networks created in this research were primarily created based on

the MNIST dataset, the CIFAR-10 dataset was also used to test the validity of the proposed

classifiers on more complex data.

27

Figure 4.2: Example images from the CIFAR-10 dataset

00 1 1 1 1 1 0 0 0 1 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Sign Exponent (p - 8 bits) Fraction (v - 23 bits)

Figure 4.3: Standard 32-bit floating point representation

4.3 Security Model

The security model used in this work was significantly influenced by the protocol

defined in [1], with several modifications made to fit the scope of this research. The work of

Aliasgari et al. introduced methods for performing secure computations on floating point

numbers using a secret sharing scheme similar to the protocols discussed in Section 2.5.

This framework is based in a multi-party setting where each party is given an encrypted

share of an input and jointly calculates the encrypted output of a given function.

These input shares are created from the standard representation of a floating point

number as shown in Figure 4.3, which consists of a significand or base value v and an

28

exponent p, combined as follows to create the floating point number x:

x = (1− 2s) ∗ (1− z) ∗ v ∗ 2p (4.1)

where s is a bit representing the sign of the number and z is the zero bit which is set to

1 when x = 0. Each floating point value x can thus be represented as a 4-tuple integer

(v, p, z, s), where v is limited to l-bits and p is limited to k-bits such that l + k equals the

precision of the floating point value (i.e. 32 or 64-bit). For a 32-bit floating point value the

range of v and p is thus limited to v ∈ [2l−1, 2l) and p ∈ (−2k−1, 2k − 1). If l = 24 and

k = 8, then the 4-tuple will have the same range as standard single-precision floating point

values. The values of the 4-tuple (v, p, z, s) are calculated from an input x as:

p = blog2(|x|)c − l + 1 v = b|x| ∗ 2−1∗pc

s =


1 if x < 0

0 if x >= 0

z =


1 if x = 0

0 otherwise

(4.2)

In the proposed encryption scheme, the 4-tuples are created by the data holder

and then secret-shared to each participating party. As the values of the 4-tuple are all

integers, the MPC encryption protocols previously explored such as SPDZ can be applied

to facilitate encrypted integer arithmetic on the shared values. For the scope of this research,

this added encryption was not implemented; however, each 4-tuple is treated as containing

private values for the secure architecture detailed in Section 4.5.

The floating point operations detailed in [1] were simplified to eliminate the need to

use the secure bit-wise operations necessary for fully secure arithmetic functions; however,

the base algorithms for floating point addition, subtraction, multiplication and division were

maintained to ensure computational correctness. While these simplified algorithms can still

make use of added integer encryption schemes, certain functions such as exponentiation

need to be modified further in order to work with such schemes.

29

The CNN used for the secure architecture requires only addition, subtraction, mul-

tiplication, and division to occur in the encrypted domain. As such, these are the only

functions created to work with the encrypted floating point scheme. Of the four basic

arithmetic functions, only addition, subtraction, and multiplication between two encrypted

values are required as the only division that occurs in the network uses a constant value

as the denominator. For this reason, division was implemented as simply a multiplication

with the inverse of the denominator as the constant value is public and unencrypted.

These basic arithmetic functions were implemented to work for two encrypted in-

puts, i.e. 〈[v1], [p1], [z1], [s1]〉 + 〈[v2], [p2], [z2], [s2]〉 (throughout this work variables denoted

with square brackets can be further encrypted using a secret sharing scheme). When an op-

eration is performed between an encrypted 4-tuple value and a non-encrypted floating point

value, the non-encrypted value is first transformed into 4-tuple form before the arithmetic

operation is performed.

Multiplication between two encrypted floating point values 〈[v1], [p1], [z1], [s1]〉 and

〈[v2], [p2], [z2], [s2]〉 to produce 〈[v], [p], [z], [s]〉 can be expressed mathematically as:

(1− 2(s1 ⊕ s2)) ∗ (1− (z1 ∨ z2)) ∗ v1 ∗ v2 ∗ 2p1+p2 (4.3)

However, extra steps are needed so that neither v nor p exceed its allowed ranges for a

given l and k. This is to ensure that any given 4-tuple value may be converted back into a

standard floating point value without overflowing the allocated bits used to store both the

base and exponent values.

To ensure that the base value of the output fits within l bits, the product of v1 and

v2 is shifted to the right l bits as shown in lines 1-2 below. Doing so can limit the precision of

multiplications as the least significant bits are discarded; however, it is necessary to ensure

that the encrypted value can be properly reconstructed. The value of p also needs to take

this l-bit shift into account, and as a result l is added to the sum of p1 and p2 (Line 3). The

sign and zero bits of the product are determined by the corresponding inputs as shown on

30

lines 4-5.

〈[v], [p], [z], [s]〉 ← Multiply(〈[v1], [p1], [z1], [s1]〉, 〈[v2], [p2], [z2], [s2]〉)

1. [t]← [v1][v2]

2. [v]← [t] >> l

3. [p]← [p1] + [p2] + l

4. [s]← [s1] XOR [s2]

5. [z]← [z1] OR [z2]

Addition between two encrypted 4-tuples 〈[v1], [p1], [z1], [s1]〉 and 〈[v2], [p2], [z2], [s2]〉

can be expressed as:

((1− 2s1) ∗ (1− z1) ∗ v1 ∗ 2p1) + ((1− 2s2) ∗ (1− z2) ∗ v2 ∗ 2p2) (4.4)

Similar to multiplication, extra care needs to be taken to ensure that the values of v and p

fit within their respective ranges. The value of the output exponential p should be scaled to

either p1 or p2, whichever is greater, to ensure that the largest number of significant digits

are retained through the summation (Line 3 below). Thus, the base value corresponding

to the input with the smaller exponent needs to be scaled to match the larger exponent

(Line 6 or 11, with the scaled base being stored in [b]). This scaled base is then checked to

make sure it is within the range (INT MIN, INT MAX) determined as INT MAX = 2l. If

the value of [b] is outside of this range, then it needs to be re-scaled to fit within the range

of appropriate values by modifying its corresponding exponent value as shown in lines 8-9

and 13-14. This updated base value [t] is then added to the base of the other 4-tuple input

while taking the signs of the original inputs into account (Lines 10 and 15).

31

〈[v], [p], [z], [s]〉 ← Add(〈[v1], [p1], [z1], [s1]〉, 〈[v2], [p2], [z2], [s2]〉)

1. if ([z1]) return 〈[v2], [p2], [z2], [s2]〉

2. if ([z2]) return 〈[v1], [p1], [z1], [s1]〉

3. [p]← Max([p1], [p2])

4. [s]← [s1] if ([p1] ≥ [p2]) else [s2]

5. if ([p1] < [p2]) goto 11.

6. [b]← [v2] / Pow(2, [p1]− [p2])

7. [t]← [b] if (INT MIN < [b] < INT MAX), goto 10.

8. [t]← [v2] / Pow(2, [p1]− [p2] + 1)

9. [p]← [p] + 1

10. [v]← |(1− 2 ∗ [s1]) ∗ [v1] + (1− 2 ∗ [s2]) ∗ [t]|, goto 16.

11. [b]← [v1] / Pow(2, [p2]− [p1])

12. [t]← [b] if (INT MIN < [b] < INT MAX), goto 15.

13. [t]← [v1] / Pow(2, [p2]− [p1] + 1)

14. [p]← [p] + 1

15. [v]← |(1− 2 ∗ [s2]) ∗ [v2] + (1− 2 ∗ [s1]) ∗ [t]|

16. [z]← 0

Subtraction between two 4-tuples in this scheme is performed as an addition between

the same values by simply inverting the sign bit in the second operand. This is performed

by creating a new 4-tuple 〈[v3], [p3], [z3], [s3]〉 such that [v3] = [v2], [p3] = [p2], [z3] = [z2],

[s3] = 1− [s2], and then adding 〈[v1], [p1], [z1], [s1]〉 and 〈[v3], [p3], [z3], [s3]〉.

4.4 Baseline Architecture

4.4.1 Design

The baseline architecture used for this research, as visualized in Figure 4.4, is a

simple CNN created in C++ consisting of a single convolutional layer followed by a pooling

32

Convolution Average
Pooling

Softmax

28

28
26

26

8

13

13

10

8

Figure 4.4: Baseline CNN architecture with 1 convolutional layer, 28 × 28 input image
and eight 3 × 3 convolutional filters pictured

layer and a softmax layer as the output activation layer. This CNN was originally designed

to be as simple as possible while still achieving relatively high validation accuracy on the

MNIST dataset. The decisions to base this research on a basic CNN as well as to develop

all of the network functions instead of using pre-made frameworks such as Tensorflow or

Pytorch were made for a few key reasons.

First, the simplicity of this architecture facilitates an easier integration of the se-

curity model than if the secure architecture was based on current state-of-the-art CNNs.

Second, while the validation accuracy of this architecture is lower than that of state-of-the-

art models, the smaller size of the proposed model requires far fewer computations and as

such requires only a fraction of the training time of more complex models. This decreased

training time led to a more rapid testing cycle while creating and tuning the network.

The baseline architecture was built from the ground up to facilitate the intricate

changes needed to integrate the security model described described in Section 4.3. Doing

so instead of using a pre-existing machine learning framework also allowed for testing of

individual components from the baseline and secure architectures to better measure the

accuracy and timing differences between them. A preliminary version of the baseline model

was created in Python; however, a speedup in both training and testing times of approxi-

mately 100× was noticed after porting this model to C++.

The limitations of the simplistic CNN became apparent when testing the CIFAR-

10 dataset. Unlike the MNIST dataset, which contains fewer features present in a given

33

Convolution Average
Pooling

Softmax

32

32
28

28
8

14

14

10

8
10

10
8

Convolution

5

5
8

Average
Pooling

Figure 4.5: Modified baseline CNN architecture with 2 convolutional layers, 32 × 32 input
image and eight 5 × 5 convolutional filters pictured

image, images in the CIFAR-10 dataset cover a much broader spectrum of possible features.

Because of this added complexity and the reduction in validation accuracy incurred by using

such a sparse network, a modified version of the 3-layer network was created as pictured in

Figure 4.5. This modified network makes use of a second convolutional layer placed after

the output of the first pooling layer, with a subsequent pooling layer placed before the

final softmax layer. The performance and limitations of these two baseline architectures are

discussed further in Chapter 5.

Multiple parameters used in the convolutional and pooling layers had to be initially

decided upon to determine the shapes of each layer’s inputs and outputs. These differ from

the tuned parameters, or hyperparameters, that can be tested and modified in order to

achieve the highest validation accuracy results for a given network configuration. The testing

of these various hyperparameter configurations for each network is discussed throughout

Chapter 5.

Convolutional layers extract features from an input through convolving said input

with a set of filters. The number of convolutions performed between the input and a single

filter is determined by the size of the filter and the stride, or number of pixels that the filter

traverses between convolutions. Both the size and number of filters used in the convolutional

layers were treated as hyperparameters in this research, and their effects on the training

times and accuracy of the network are shown in Chapter 5. The stride of these filters,

however, was selected to be a fixed parameter, and a stride length of 1 was selected so that

every possible sub-region of an input image was convolved with the set of filters.

34

Input Image Output Input Image Output

No Input Padding Input Padding

Figure 4.6: Effects of input padding for a 3x3 convolutional filter

Another key decision that had to be made when designing the convolutional layers

for the network were whether or not padding should be used on the layer’s input. Performing

convolutions on an M × N image with a FM × FC filter results in the output being size

M−(FM −1)×N−(FN −1). If this reduction in output dimensionality is not desired, then

the input can be padded on all sides with FM pixels, given the filter is of shape FM × FM .

Doing so leads to the output of the convolution having the same M×N shape as the original

unpadded input, as seen in Figure 4.6. This similarity is preferred if the network includes

a large number of layers as a continual shrinking of intermediate layers due to the inclusion

of multiple convolutional layers limits the feature dimensionality subsequent layers as well

as the total number of layers that can be utilized.

A pooling layer reduces the dimensionality of its input by propagating a single value

calculated from a group of pixels forward to its output layer. These groups of pixels are

determined by two layer parameters, the filter size and the stride of the filter. The filter

size determines the amount of data reduction the pooling layer performs; for example, a

2 × 2 filter will reduce the output dimensions to one half of the input dimensions given a

stride of 2 is used. The stride determines how the pooling filter moves across the input. If

the stride matches the size of the filter, then each sub-region of the input is reduced a single

time with no overlap in pixels. In this research, all pooling layers utilized 2 × 2 filters and

a stride of 2 to achieve a 4:1 feature reduction throughout the network.

As discussed in Section 4.3, only the basic arithmetic functions are enabled in the

35

(a) (b)

Figure 4.7: (a) Max pooling function with 2 × 2 filter and a stride of 2, (b) Average
pooling function with 2 × 2 filter and a stride of 2 [33]

proposed security model. While this is adequate for implementing the backpropagation

functions for convolutional and softmax layers, it limits the types of pooling layers that can

be used in the network. A max pooling layer was originally used for the 3-layer architecture

due to its well documented success for use in CNNs as often the maximum value in a group

of pixels carries more meaning for a network than other metrics about that group. For

example, if one pixel in that region has a value well outside the range of the other pixels,

then often it correlates to a prominent feature present in the input.

As comparisons between two 4-tuple encrypted values are not possible in the pro-

posed security model due to possible data leakage, a different pooling function needed to

be implemented in the baseline architecture to ensure the layout of the secure and non-

secure versions of the architecture were kept identical. Because of this an average pooling

layer was used as it maintains the same feature reducing ability as a max pooling layer,

the only difference being that the average of a group of pixels is propagated rather than

the maximum. As a result, less important features have more impact on the network as

a whole as opposed to the most prominent features, resulting in a slight loss in validation

accuracy of the network. Examples of these two pooling functions are shown in Figure 4.7a

and 4.7b, and the differences in validation accuracy resulting from the use of max pooling

versus average pooling in the baseline architecture are shown in Chapter 5.1.

The initialization of the weights used by both the convolutional and softmax layers

36

often determines how well a network is able to learn features and, as such, how well the

network performs in classifying images. In this work, each weight was initialized to a random

floating point value between 0 and 1, and then scaled based on the number of weights used

in that layer. This scaling is necessary as not every weight should contribute equally to the

performance of a network, and having too many weights close to 1 can cause instability in

the network. To address this issue, the following scaling was applied:

wconv = random in range(0, 1)/(FN ∗ FM)

wsoftmax = random in range(0, 1)/(Nfilters ∗Msoftmax ∗Nsoftmax)

(4.5)

where the convolutional layer uses Nfilters total filters of size FN × FM , and the input to

the softmax layer is of size Msoftmax × Nsoftmax. These scaling factors were determined

empirically through initial testing of the baseline architecture.

4.4.2 C++ Implementation

The layers used in the baseline CNN were all created as classes in C++, with layer

parameters stored as class variables and the various forward and backpropagation functions

implemented as member functions. Organizing the layers in this manner facilitated linking

them together to form a network in a more concise manner, and it allowed for each layer to

be tested individually during development. These layer functions were linked to create the

baseline architecture by routing the output of one function as the input to the subsequent

layer function. For example, the output of the forward propagation function of the convo-

lutional layer was used as input to the average pooling forward propagation function. In

backpropagation the direction that each layer occurs is reversed so the output, or gradient,

from the pooling layer is then used as input for the convolutional backpropagation function.

The two datasets used in testing the baseline architecture are comprised of either

grayscale or RGB images. The data represented as a single pixel in these images is stored as

either a single 8-bit value in the case of grayscale images or three 8-bit values corresponding

37

to the red, green, and blue channels of the pixel. As such, the data for a given pixel is

in the range [0, 255], which is well outside the range for useful computations within the

network. Typically neural networks deal with floating point data within the range (−1, 1)

as consecutive arithmetic operations in this range cannot result in values growing to infinity.

To address this issue, each input image was normalized to the range [−0.5, 0.5] before being

fed into the network. These normalized pixel values were calculated as:

pi normalized =
pi input

255
− 0.5 (4.6)

Distributed learning was incorporated into the baseline architecture through feder-

ated averaging. This was accomplished through the use of an averaging function that is

called after each node in the distributed learning model has finished training on its batch of

images. This function averages each node’s local weight values for each layer into a global

set of weights that is then sent to each node. These new global weights are subsequently

updated individually by each node until a second batch is completed. This process of fed-

erated averaging continues until all of the images in the training set have been exhausted.

For the scope of this research, the nodes participated in the federated averaging scheme run

in series on a single device instead of in parallel across multiple devices.

Both the number of images contained in a single batch as well as the total number of

nodes performing training were treated as hyperparameters in this research, and the effects

of modifying these values can be found in Chapter 5. The same set of initial weights are

distributed to each node participating in training; however, it is possible that individual

nodes would achieve better results if they are given different sets of weights at the begin-

ning of training. Exploration of this modification and other possible improvements to this

distributed learning technique can be found in Section 6.2.

38

4.5 Secure Architecture

The goal of the secure architecture developed here is to perform training in an en-

crypted domain where no plain-text data is needed to properly train the model. This was

accomplished by integrating the security model described in Section 4.3 into the backprop-

agation phase of training where the network’s weights are updated. The security model

could also be integrated into the forward propagation phase of training in theory if addi-

tional functions between secure values are implemented. This would allow for the entirety

of training as well as testing to be performed on encrypted data, but this added complex-

ity was outside the scope of this research. Future improvements and incorporation of the

security model are described in Section 6.2.

The secure 4-tuple scheme was integrated into the baseline architecture by first cre-

ating modified backpropagation functions for each of the layer types. This was accomplished

by utilizing a class structure to store the 4-tuple floating point values and using operator

overloading to modify how arithmetic functions operate between two variables. Utilizing

C++ classes in this way made implementing secure versions of the backpropagation func-

tions easier as only the data types used in a function had to be modified, not the core

algorithms of each function.

Creating a network from these modified layer functions requires converting the plain-

text floating point data into secure 4-tuple values at the beginning of the backpropagation

phase. This encryption occurs after the initial loss gradient has been calculated as in Equa-

tion (2.9), the encrypted version of which is used as input for the secure softmax backprop-

agation function. All of the intermediate values required to perform backpropagation have

to be converted as the aim of the secure architecture is to prevent any form of data leakage

during training. This includes not only the inputs and outputs for each layer function, but

also the layer weights as well as values calculated during the forward propagation phase

of training such as the last input to a layer. Other than the added overhead required for

encrypting and decrypting each value used in training, the secure network is implemented

39

Convolution Average
Pooling

Softmax

Decode Encode

Figure 4.8: Secure Backpropagation

similarly to the baseline model as a set of concurrent layer functions.

Once the backpropagation for an image has finished, the updated encrypted weights

and biases have to be decrypted in order to use them again during the forward propagation

of the next training image. As the forward section of training is assumed to occur on a

trusted device, these updated values no longer have to remain encrypted. This general

functionality of the secure architecture is shown in Figure 4.8.

The federated averaging scheme described in Section 4.4.2 was incorporated in the

secure architecture through the use of a function that computes the averages of each node’s

secure weights and biases. This federated averaging function was implemented to take the

plain-text weights and biases used in the forward propagation of training as input and

compute the averages of these values on encrypted versions of them. For a fully secure

distributed learning model, it is assumed that each node participating in training is per-

forming computations on a non-secure device and as such would require the entirety of its

learning algorithms to run in the secure domain. This would require a slight modification to

the secure averaging scheme as the inputs and outputs would remain in the secure domain

during training, reducing the overhead incurred from encrypting and decrypting each value

during averaging. This added network complexity is explored in Section 6.2.

4.6 Measurements

The primary metrics used for validation of the work completed in this research

are the classification accuracy found when testing a network configuration, the execution

40

times of the various layer functions, and the overhead incurred from the use of the use of

the security model as well as the federated learning techniques employed. The validation

accuracy for a given network configuration is calculated as the percentage of images correctly

classified during testing compared to the total number of images in the validation set.

Training accuracy was an additional metric measured in this research; however, it does not

fully describe the performance of a classifier as training can result in over-fitting of weights

to the features only present in the training set. This can cause the training accuracy to be

several percentage points higher than the testing accuracy, and is not indicative of better

network performance. These results for the baseline and secure architectures are presented

in Chapter 5.

41

Chapter 5

Results

This chapter documents the results gathered from testing different network config-

urations and hyperparameters used during training. Section 5.1 covers the results gathered

from testing on the MNIST dataset and details the baseline network results in 5.1.1 and

the secure network results in 5.1.2. Section 5.2 covers the results gathered from testing

on the CIFAR-10 dataset with sections 5.2.1 and 5.2.2 covering the baseline and secure

architecture results respectively. Section 5.3 details the communication overhead required

by the security model in order to perform training. All results detailed in this section were

obtained by running the networks on 2.33GHz processors with 12GB of RAM, and detailed

timing results for each test are included in appendix A.

5.1 MNIST

The MNIST dataset was used exclusively during the development of both the base-

line and secure architectures as its simplicity allowed for a sparse network to be developed

while still achieving relatively high validation accuracy results. The simplicity of the dataset

also allowed for faster development iterations as both training and testing on this dataset

are less computationally expensive than larger and more complex datasets. This faster de-

velopment cycle facilitated rapid modification and testing of individual layer functions for

42

improving the accuracy and optimization of the developed networks.

5.1.1 Baseline Architecture

This section covers various hyperparmeter and network configurations tested for

the baseline architecture training on the MNIST dataset. Table 5.1 shows the baseline

hyperparameters that were selected as the control group for measuring the impact of varying

the different hyperparameters. Explanations for these values are detailed later in the section

when discussing the impact of varying each parameter independently.

Table 5.1: MNIST Baseline Hyperparameters

Training Epochs Learning Rate Filter Size Number of Filters

8 0.005 3 × 3 8

The baseline architecture originally contained a max pooling layer instead of an

average pooling layer as discussed in Section 4.4.1. This original network configuration

was found to have the highest validation accuracy of all of the architectures trained on the

MNIST dataset. These results, shown in Figure 5.1, validate the theory that a max pooling

layer is better able to propagate the most important features extracted by the convolu-

tional layer than an average pooling layer. However, average pooling layers were used in all

subsequent versions of the baseline and secure architectures because, as stated previously,

average pooling layers the proposed security model does not support the comparisons be-

tween encrypted 4-tuple values that would be required to implement the backpropagation

of weights through a secure max pooling layer.

43

Maxpool Avgpool Secure Avgpool FedAvg Secure FedAvg

0.920

0.940

0.960

0.980

Network Configuration

T
es

t
A

cc
u

ra
cy

MNIST Accuracy Comparisons

Figure 5.1: The hyperparameters used in this test were: 0.005 learning rate, eight 3 × 3
convolutional filters, 8 training epochs, and 4 nodes / 100 images per batch for the

federated averaging schemes

(a) (b)

Figure 5.2: Convolutional layer filters for the MNIST dataset colorized for (a) 3 × 3 filter
size (b) 5 × 5 filter size

The training of a CNN can be visualized by viewing the weights used in the convo-

lutional layer. These filter weights are used to extract features from the input image, and

visualizing them can give insights on what types of features a network was able to learn. A

visualization of the convolutional layer filters for the baseline 3-layer network can be seen

in Figure 5.2 for both 3 × 3 and 5 × 5 filter sizes. In both cases only eight filters were used

44

to train the network, and they were colorized in the figure by making the maximum value

of each filter brighter in the image and the minimum values darker. Neither of these visual-

ized filters display features that correspond to typical human-tuned filters commonly used

in image processing, such as filters that determine edges or shapes in an image, showing

that the network was able to learn features from the dataset from a random initialization.

One of the most important hyperparameters that determines how well a classification

network learns is the number of epochs that it trains before performing validation testing.

A training epoch in this research consists of performing forward and backpropagation of

each image through the network in order to update the weights of each layer. Performing

numerous training epochs in a row allows the network to train on each image multiple times

and generally leads to an increase in validation accuracy as the network is able to better

learn the features present in the training set. This isn’t always the case, however, as over-

fitting may occur in which the network weights reflect only the data in the training set and

not the entire dataset as a whole. Other examples that can cause a decrease in validation

accuracy to occur as more training epochs are performed are explored in Section 5.1.2.

0 5 10 15 20 25 30 35

0.910

0.915

0.920

0.925

Training Epoch

T
es

t
A

cc
u

ra
cy

MNIST Training Epochs

Figure 5.3: The hyperparameters used in this test were: 0.005 learning rate, and eight 3 ×
3 convolutional filters

45

The effect of performing multiple training epochs was investigated by testing on

the validation set after each epoch had completed. For typical experiments, all training

epochs finish before a single round of validation testing occurs; however, conducting testing

after each epoch allows for viewing the validation accuracy of a network over the course

of training. Conducting testing in this way has no impact on the learned values of the

network as testing of an image only performs the forward propagation functions and does

not update any layer weights or biases. Figure 5.3 shows how the validation accuracy

changes over time for the 3-layer baseline architecture, showing a reduction in learning

occurs after twelve training epochs.

While the maximum validation accuracy of 92.4% is achieved after training for 32

epochs, the plateauing of improvement that occurs earlier makes the use of extra training

epochs essentially redundant for our testing purposes as the extra 0.1% improvement in

accuracy comes at the cost of tripling training time. Due to this large computational cost

for little accuracy improvement, a baseline of 8 training epochs was used throughout this

research as typically the validation accuracy of the network is still improving at this point

in training, and using a smaller number of training epochs allows for training to occur over

a more reasonable time-frame.

46

0 1 2 3 4 5 6 7 8
0.905

0.910

0.915

0.920

Training Epoch

T
es

t
A

cc
u

ra
cy

MNIST Learning Rate

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
0.010

Figure 5.4: The hyperparameters used in this test were: eight 3 × 3 convolutional filters,
and 8 training epochs

The impact of the learning rate used while training was measured similar to the

number of training epochs, meaning the validation accuracy of the network was tested

after each epoch. The learning rate of a network determines the magnitude of updates to

the weights and biases of each layer due to the loss gradient during backpropagation as

represented by Equation (2.3). Larger learning rates allow for these values to change more

drastically over a shorter number of training cycles, whereas smaller learning rates lead to a

network learning in a more gradual manner. In this research learning rates ranging between

0.001 and 0.01 were tested, the results of which can be seen in Figure 5.4.

After eight training epochs, it was noticed that both larger and smaller learning

rates achieved a lower validation accuracy than learning rates in the middle of the tested

range. Due to this trend, a learning rate of 0.005 was used as the baseline when testing the

impact of other hyperparameters on the accuracy of the network.

47

3x3 5x5 7x7

0.915

0.916

0.917

0.918

0.919

0.920

Convolutional Filter Size

T
es

t
A

cc
u

ra
cy

MNIST Filter Size

Figure 5.5: The hyperparameters used in this test were: 0.005 learning rate, eight
convolutional filters, and 8 training epochs

The size of the filters used in the convolutional layer dictates the size of features

that can be extracted from an input image. As padding was not used in this study, this

filter size also dictates the size of each layer placed after it, and as such the number of

learnable weights and biases of those other layers. Figure 5.5 compares the three filter

sizes that were tested, with the 3 × 3 filters displaying the best performance. For datasets

with larger images, a convolutional filter this small typically would not be able to properly

detect meaningful features, but the small size of the images in the MNIST dataset prove to

contain more learnable features at this smaller size for this sparse network configuration.

Utilizing a smaller filter size also directly impacts both the training and testing times for the

network as fewer computations are required compared to larger filter sizes. This reduction

in computation time can be seen in Table 1.

48

8 12 24 32 48 64 128

0.920

0.920

0.921

0.921

0.922

Number of Convolutional Filters

T
es

t
A

cc
u

ra
cy

MNIST Number of Filters

Figure 5.6: The hyperparameters used in this test were: 0.005 learning rate, 3 × 3
convolutional filters, and 8 training epochs

The number of filters used in a convolutional layer determines the number of unique

features that a network can learn from a dataset. As such, using a small number of filters

often prohibits a network from learning all available features, thus negatively impacting

the validation accuracy of the network. In the case of the MNIST dataset, however, there

is a small range of features present across the dataset as each image is simple in nature.

As a result, a much lower number of convolutional filters are required to properly train a

network, suggesting smaller networks may be used to achieve similar validation accuracy as

larger networks training on more complex datasets.

The effect of the number of filters used on validation accuracy was tested for a range

of 8-128 as shown in Figure 5.6. Increasing the number of convolutional filters beyond 24

had no apparent effect on the test accuracy of the network after eight epochs, and the

effect of using more than 8 filters was negligible, with a total difference in test accuracy

of only 0.2%. Similar to the size of the convolutional filters, the number of filters used in

the convolutional layer directly impacts the size of each subsequent layer in the network.

49

Because of this, the total computation time required to train or test the network is directly

proportional to the number of convolutional filters used as shown in Table 2.

2/100 4/100 8/50 16/25

0.916

0.918

0.920

0.922

0.924

Number of Nodes / Batch Size

T
es

t
A

cc
u

ra
cy

MNIST Federated Averaging

Figure 5.7: The hyperparameters used in this test were: 0.005 learning rate, eight 3 × 3
convolutional filters, and 8 training epochs

The inclusion of federated averaging in the baseline architecture was tested using

a range of simulated training nodes as well as varying batch sizes. The number of nodes

tested varied from 2-16, and the batch sizes were selected for these configurations such that

the network never trained on more than 400 images per averaging cycle. This value was

selected as the total training set size of 50,000 is divisible by it and utilizing a smaller batch

size increases the rate at which the global model is able to learn. The accuracy results from

this testing displayed in Figure 5.7 show that as the number of training nodes increases, the

validation accuracy of the network decreases. This trend is due to the lack of image variety

that each node has access to during a single averaging round, leading to less performant

training of local weights.

The trade-off for this increased accuracy is that the portion of the training set dis-

tributed to each node is larger for smaller node counts, limiting the parallelization benefits of

50

training with federated averaging as the training time for each node is directly proportional

to the number of nodes as seen in Table 3. As the number of nodes increases, the overhead

incurred by the federated averaging algorithm also increases; however, this overhead is small

in proportion to training times for all but 16 nodes.

3x3 5x5 7x7
0.750

0.800

0.850

0.900

Convolutional Filter Size

T
es

t
A

cc
u

ra
cy

MNIST 5-Layer Network Filter Size

Figure 5.8: The hyperparameters used in this test were: 0.005 learning rate, eight
convolutional filters, and 8 training epochs

Although a 5-layer version of the baseline architecture was created initially in an

attempt to increase the validation accuracy achieved on the CIFAR-10 dataset, it was tested

on the MNIST dataset as well. This network configuration uses two convolutional layers,

each followed by an average pooling layer with a softmax layer supplying the network’s

final output. The results from the testing showed that this more complex network was

unable to achieve a higher validation accuracy than the basic 3-layer network for all tested

hyperparameter configurations, with certain configurations even causing the network to fail

training entirely.

The first hyperparameter tested with this 5-layer network was the size of the con-

volutional filters shown in Figure 5.8. Both the 3 × 3 and 7 × 7 configurations resulted in

51

a decrease in validation accuracy, and using 5 × 5 filters caused the network to fail training

before reaching 8 epochs. This training failure occurred due to the layer weights inflating to

infinity as no activation functions were used to prevent this from occurring. Possible future

solutions to this issue are provided in section 6.2. Timing results for this test are provided

in Table 5, with the convolutional and pooling layer times combined for the two instances

of each layer.

8 12 24 32

0.895

0.900

0.905

0.910

Number of Convolutional Filters

T
es

t
A

cc
u

ra
cy

MNIST 5-Layer Network Number of Filters

Figure 5.9: The hyperparameters used in this test were: 0.005 learning rate, 3 × 3
convolutional filters, and 8 training epochs

The second hyperparameter tested with the 5-layer network configuration was the

number of convolutional filters, the results being shown in Figure 5.9. Similar to the testing

of the size of the filters, validation accuracy was lower for this network in comparison to the

3-layer network using the same number of filters. Timing results for this test are included

in Table 5 in Appendix A.

The decrease in accuracy of the 5-layer baseline architecture compared to the 3-layer

architecture is likely due to a number of factors. As stated previously, neither configuration

included activation functions to help prevent over-fitting and weight inflation, and it is

52

possible that this addition to the network would increase the validation accuracy achieved

with the larger network. The testing also found that the performance of the 5-layer network

was highly dependent on the random initialization of each layer’s weights, and it is possible

that different initializations of these weights may provide additional accuracy. Due to this

poor performance, all of the secure architectures used in this research were based on the 3-

layer architecture instead of integrating the security model into both network configurations.

5.1.2 Secure Architecture

The secure 3-layer architecture was tested using the same baseline hyperparameters

as the non-secure architecture as listed in Table 5.1 with the exception of the number

of training epochs being 4 for most cases instead of 8. This modification was made as

training would fail for certain test cases after 5 to 7 epochs as shown in Figure 5.10. This

training failure is due to the rounding error incurred from performing numerous additions

and multiplications between two 4-tuple secure values, which can cause a weight inflation

similar to that observed with the 5-layer network. Possible solutions to this error introduced

by the security model are explored in Section 6.2.

53

0 5 10 15 20 25 30 35

0.200

0.400

0.600

0.800

Training Epoch

T
es

t
A

cc
u

ra
cy

MNIST Secure Training Epochs

Figure 5.10: The hyperparameters used in this test were: 0.005 learning rate, and eight 3
× 3 convolutional filters

The impact of learning rate on validation accuracy was tested for the secure ar-

chitecture similar to the baseline architecture as shown in Figure 5.11. As shown in this

figure, the different learning rates tested had a large impact on the training performance

of the network. Larger learning rates led to earlier training failure as the weights used in

the network inflated to values that caused the final output loss to grow to infinity. This

is apparent in Figure 5.11 as the validation accuracy drops off the graph after a certain

number of training epochs. While several learning rates such as 0.001 displayed better ac-

curacy over time than the baseline 0.005 learning rate, a learning rate of 0.005 was used for

subsequent testing of the secure architecture to provide more consistent comparisons to the

baseline architecture.

54

0 1 2 3 4 5 6 7 8
0.870

0.880

0.890

0.900

0.910

Training Epoch

T
es

t
A

cc
u

ra
cy

MNIST Secure Learning Rate

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
0.010

Figure 5.11: The hyperparameters used in this test were: eight 3 × 3 convolutional filters,
and 8 training epochs

The impact of the size of the convolutional layer filters on validation accuracy could

not be measured for the secure architecture due to the 5 × 5 and 7 × 7 filter tests failing

during the first training epoch. This result is again due to the inflation of layer weights

caused by the calculation error incurred from performing numerous computations in the

secure domain. Performing one convolution with a 5 × 5 filter versus a 3 × 3 filter requires

almost three times as many additions and multiplications between 4-tuple values to occur,

expediting the rate at which these errors accumulate. As the 3 × 3 filter achieved the best

validation accuracy on the baseline architecture, this issue is not as critical when comparing

the overall performance of the baseline and secure architectures.

55

8 16 32 64 128

0.895

0.900

0.905

0.910

Number of Convolutional Filters

T
es

t
A

cc
u

ra
cy

MNIST Secure Number of Filters

Figure 5.12: The hyperparameters used in this test were: 0.005 learning rate, 3 × 3
convolutional filters, and 4 training epochs

The number of filters used in the convolutional layer was tested for the secure

architecture, with the results shown in Figure 5.12. The results were found to be similar

to those for the baseline architecture, where utilizing more filters in the network leads to a

general higher validation accuracy, albeit to a greater extent for the secure implementation.

A possible inclusion of these larger quantity of filters with a lower learning rate could further

prove to increase the validation accuracy for the secure architecture and reduce the accuracy

variation between the baseline and secure networks.

56

2/100 4/100 8/50 16/25

0.900

0.905

0.910

0.915

Number of Nodes / Batch Size

T
es

t
A

cc
u

ra
cy

MNIST Secure Federated Averaging

Figure 5.13: The hyperparameters used in this test were: 0.005 learning rate, eight 3 × 3
convolutional filters, and 8 training epochs

The same node counts and batch sizes were used to test the secure federated aver-

aging scheme as the baseline federated averaging scheme. A similar effect on the validation

accuracy was measured, with the accuracy decreasing as the number of nodes participating

in training increased as can be seen in Figure 5.13. This decrease was slightly more substan-

tial for the secure federated averaging scheme, likely due to the additional rounding errors

incurred by performing the averaging scheme in the secure domain as well as the training.

One result of note is that when performing this set of tests, the secure federated averaging

network was able to train for a full 8 epochs without failure, perhaps due to a variation in

the order of which each image is fed through the network as the initial weights of each layer

were identical to the baseline implementation.

57

8
F

il
te

rs

32
F

il
te

rs

64
F

il
te

rs

12
8

F
il

te
rs

F
ed

A
v
g

2/
10

0

F
ed

A
v
g

4/
10

F
ed

A
v
g

8/
50

F
ed

A
v
g

16
/2

5

0.890

0.900

0.910

0.920

Network Configuration

T
es

t
A

cc
u

ra
cy

MNIST Accuracy Comparisons Between Baseline and Secure Architectures

Baseline Secure

Figure 5.14: The hyperparameters used in this test were: 0.005 learning rate, 3 × 3
convolutional filters, and 8 training epochs

Figure 5.14 compares the accuracy between the baseline and secure architectures

for different hyperparameter configurations. The difference in validation accuracy between

these two architectures ranges from 1.1-2.8%, with the notable exception that the tests vary-

ing the convolutional layer filter sizes trained for only 4 epochs in the secure implementation

instead of the 8 epochs that the baseline model trained for. Further improvements to the

security model that could reduce this accuracy difference across all network configurations

are detailed in section 6.2.

58

C
on

v
F

C
on

v
B

A
v
gP

o
ol

F

A
v
gP

o
ol

B

S
of

tm
ax

F

S
of

tm
ax

B

E
p

o
ch

O
ve

rh
ea

d

101

102

103

Network Configuration

E
x
ec

u
ti

on
T

im
e

[s
]

MNIST Timing Comparisons Between Baseline and Secure Architectures

Baseline Secure

Figure 5.15: The hyperparameters used in this test were: 0.005 learning rate, eight 3 × 3
convolutional filters, and 8 training epochs

Figure 5.15 shows the differences in execution times for each layer function in the

baseline and secure networks for a single training epoch. The inclusion of the security

model in training did not impact the forward propagation functions of any layer, and as

a result, the execution time of these functions remains unchanged between the baseline

and secure implementations. The backpropagation functions, on the other hand, required

between 11-46× as long to complete in the secure domain. These timing results do not

take into account any communication time that would be required for a real-world imple-

mentation of the secure architecture and are only influenced by the added computational

complexity of performing arithmetic functions between two secure 4-tuple values. Simulated

communication overhead is detailed in Section 5.3.

59

5.2 CIFAR-10

The CIFAR-10 dataset was used for training the developed networks to test the

validity of the secure architecture on more complex data. As the images in this dataset are

RGB instead of greyscale like MNIST, the computational complexity of the convolutional

layer functions are three times greater, testing the ability of the secure architecture to

learn without weight inflation. The images in this dataset also contain noisy backgrounds

as opposed to the black backgrounds in the MNIST dataset, and as such the extraction

and learning of relevant features are much more challenging. Because of these challenges,

achieving a validation accuracy similar to the MNIST implementation with this dataset is

beyond the scope of this research as more complex CNNs are typically required to achieve

high validation accuracy.

5.2.1 Baseline Architecture

This section covers the various hyperparmeter and network configurations tested for

the baseline architecture training on the CIFAR-10 dataset. Table 5.2 shows the baseline

hyperparameters selected for the baseline network for this dataset. Similar to the develop-

ment in section 5.1.1, the reasoning behind these baseline values will be explained later in

this section.

Table 5.2: CIFAR-10 Baseline Hyperparameters

Training Epochs Learning Rate Filter Size Number of Filters

8 0.001 3 × 3 8

60

(a) (b)

Figure 5.16: Convolutional layer filters for the CIFAR-10 dataset colorized for (a) 3 × 3
filter size (b) 5 × 5 filter size

Figure 5.16 visualizes the convolutional layer filters after training for one epoch on

the CIFAR-10 dataset. As each filter has a red, green and blue channel, this visualization

was created by normalizing the filter weights to values between 0-255 by assigning the

maximum value among the three channels to 255 and the minimum to 0. Similar to the

visualizations of Figure 5.2, none of the filters necessarily corresponds to human-readable

values; however, they show that the network is indeed learning features from the dataset.

0 5 10 15 20 25 30 35

0.320

0.340

0.360

0.380

Training Epoch

T
es

t
A

cc
u

ra
cy

CIFAR-10 Training Epochs

Figure 5.17: The hyperparameters used in this test were: 0.005 learning rate, and eight 3
× 3 convolutional filters

61

Figure 5.17 shows the validation accuracy of the baseline CNN for the CIFAR-10

dataset after each training epoch utilizing a learning rate of 0.005. However, unlike Figure

5.3 which shows an increase in validation accuracy as the network performs more train-

ing epochs, the validation accuracy of CIFAR-10 with these network parameters decreases

for each subsequent epoch. This is an example of over-fitting the training data, an issue

that occurs as the network updates layer weights and biases to learn features present in

the training data, but not present in the entire dataset. This highlights the fact that net-

work parameters often have to be hand-tuned to a particular dataset for training to occur

effectively.

0 1 2 3 4 5 6 7 8

0.300

0.320

0.340

0.360

0.380

0.400

0.420

Training Epoch

T
es

t
A

cc
u

ra
cy

CIFAR-10 Learning Rate

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
0.010

Figure 5.18: The hyperparameters used in this test were: eight 3 × 3 convolutional filters,
and 8 training epochs

The learning rate used in training had a much greater effect on the overall accuracy

of the network for the CIFAR-10 dataset than for MNIST. Figure 5.18 shows an almost 12%

difference in validation accuracy between the range of tested learning rates after 8 training

epochs, with all other hyperparameters remaining constant among tests. This difference also

highlights that hyperparameter selection can have a large impact on network performance

62

as all but two of the learning rates tested over-fit the training data and did not exhibit

an increase in accuracy over time. For this reason, a learning rate of 0.001 was used as a

baseline for testing other hyperparameters as this value led to the best validation accuracy

for the dataset.

3x3 5x5 7x7

0.410

0.412

0.414

0.416

Convolutional Filter Size

T
es

t
A

cc
u

ra
cy

CIFAR-10 Filter Size

Figure 5.19: The hyperparameters used in this test were: 0.001 learning rate, eight
convolutional filters, and 8 training epochs

The same filter sizes used in the convolutional layer were tested on the CIFAR-10

dataset as with MNIST to determine whether an increase in validation accuracy resulted

from utilizing various filter sizes. Likewise, the number of convolutional filters was also

tested as it was hypothesized that more filters would be needed for this dataset due to the

larger variety of features present in the data. After testing both of these hyperparameters,

however, it was determined that modifying either the size or number of convolutional layer

filters had little impact on the validation accuracy of the baseline architecture as shown in

Figures 5.19 and 5.20.

63

8 16 24 32 64 128

0.415

0.415

0.416

0.416

0.417

Number of Convolutional Filters

T
es

t
A

cc
u

ra
cy

CIFAR-10 Number of Filters

Figure 5.20: The hyperparameters used in this test were: 0.001 learning rate, 3 × 3
convolutional filters, and 8 training epochs

2/100 4/100 8/50 16/25

0.380

0.390

0.400

0.410

0.420

Number of Nodes / Batch Size

T
es

t
A

cc
u

ra
cy

CIFAR-10 Federated Averaging

Figure 5.21: The hyperparameters used in this test were: 0.001 learning rate, eight 3 × 3
convolutional filters, and 8 training epochs

64

The federated averaging scheme described in section 4.4.2 was tested on the CIFAR-

10 dataset similar to the MNIST dataset, with the same number of training nodes and batch

sizes tested as seen in Figure 5.21. The discrepancy in validation accuracy for the various

number of training nodes used was slightly higher than for the MNIST implementation;

however, the decrease in accuracy follows the same trend.

3x3 5x5 7x7

0.385

0.390

0.395

0.400

Convolutional Filter Size

T
es

t
A

cc
u

ra
cy

CIFAR-10 5-Layer Network Filter Size

Figure 5.22: The hyperparameters used in this test were: 0.001 learning rate, eight
convolutional filters, and 8 training epochs

As stated previously, the 5-Layer baseline architecture was originally developed with

the goal of improving the validation accuracy achieved when training on the CIFAR-10

dataset. However, a decrease in validation accuracy of 1.1-2.6% was found when increasing

the complexity of the baseline architecture. This decrease in accuracy held for all hyperpa-

rameters tested as evident in Figures 5.22 and 5.23.

65

8 12 24 32

0.392

0.394

0.396

0.398

Number of Convolutional Filters

T
es

t
A

cc
u

ra
cy

CIFAR-10 5-Layer Network Number of Filters

Figure 5.23: The hyperparameters used in this test were: 0.001 learning rate, 3 × 3
convolutional filters, and 8 training epochs

5.2.2 Secure Architecture

The secure 3-layer architecture was implemented using the hyperparameters seen in

Table 5.2; although similar to the MNIST implementation, only 4 training epochs were used

instead of 8. This modification was again made because certain test cases failed to train for

more than 4 epochs due to inflating weights caused by performing numerous consecutive

arithmetic calculations in the secure domain. A larger discrepancy between the validation

accuracy achieved by the baseline and the secure architectures was observed while testing

on CIFAR-10 than on MNIST, with further details given at the end of this section.

66

0 5 10 15 20 25 30 35

0.200

0.220

0.240

0.260

0.280

Training Epoch

T
es

t
A

cc
u

ra
cy

CIFAR-10 Secure Training Epochs

Figure 5.24: The hyperparameters used in this test were: 0.001 learning rate, and eight 3
× 3 convolutional filters

The impact of performing multiple training epochs on validation accuracy was

recorded for the secure CIFAR-10 implementation using a learning rate of 0.001. This

learning rate was selected as it proved to increase the network’s ability to learn over multi-

ple epochs better than the other learning rates tested on the baseline architecture. Figure

5.24 shows how this validation accuracy is affected over time; notably the results for the

same learning rate are worse and much more sporadic than for the baseline tests shown in

Figure 5.18.

67

0 1 2 3 4

0.200

0.220

0.240

0.260

0.280

0.300

Training Epoch

T
es

t
A

cc
u

ra
cy

CIFAR-10 Secure Learning Rate

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
0.010

Figure 5.25: The hyperparameters used in this test were: eight 3 × 3 convolutional filters,
and 4 training epochs

Learning rates in the range of 0.001-0.01 were tested to measure their impact on the

ability of the secure architecture to learn over multiple epochs for the CIFAR-10 dataset.

The results from these tests, shown in Figure 5.25, differ substantially from the learning rate

tests performed on the baseline architecture. Most notably, higher learning rates proved

more effective for training in the secure domain, whereas lower learning rates achieved better

validation accuracy for the baseline architecture. The other notable difference between

the two architectures is how the accuracy of different learning rates varied in a non-linear

fashion. Although a learning rate of 0.001 performed quite poorly for the secure architecture,

it was selected as the baseline parameter to facilitate more fair comparisons between the

two implementations.

68

8 12 24 32 64

0.220

0.230

0.240

0.250

0.260

Number of Convolutional Filters

T
es

t
A

cc
u

ra
cy

CIFAR-10 Secure Number of Filters

Figure 5.26: The hyperparameters used in this test were: 0.001 learning rate, 3 × 3
convolutional filters, and 4 training epochs

The impact of the number of convolutional filters on the validation accuracy of

the secure architecture followed a trend similar to the baseline architecture; however, the

accuracy differences between different filter counts varied to a greater extent. Similar to

the MNIST implementation, varying the size of the convolutional filters led to a weight

inflation failure during the first training epoch, so those results are not included here.

69

2/100 4/100 8/50 16/25

0.260

0.270

0.280

0.290

Number of Nodes / Batch Size

T
es

t
A

cc
u

ra
cy

CIFAR-10 Secure Federated Averaging

Figure 5.27: The hyperparameters used in this test were: 0.001 learning rate, eight 3 × 3
convolutional filters, and 4 training epochs

The same node and batch parameters were used to test the secure federated aver-

aging scheme as the baseline federated averaging scheme. The most significant difference in

the results for the secure implementation is the reduction in accuracy found using 2 train-

ing nodes and a batch size of 100, a configuration which resulted in the highest validation

accuracy for the baseline federated averaging strategy. This decrease in accuracy may be

due to how the training data is distributed to the nodes as the images in the training set of

the CIFAR-10 dataset are randomly arranged. This could lead to a case where each of the

two training nodes are receiving a non-uniformly distributed subset of the training samples,

meaning certain classes are more heavily distributed to one node than the other.

70

8
F

il
te

rs

32
F

il
te

rs

64
F

il
te

rs

F
ed

A
v
g

2/
10

0

F
ed

A
v
g

4/
10

F
ed

A
v
g

8/
50

F
ed

A
v
g

16
/2

5

0.250

0.300

0.350

0.400

Network Configuration

T
es

t
A

cc
u

ra
cy

CIFAR Accuracy Comparisons Between Baseline and Secure Architectures

Baseline Secure

Figure 5.28: The hyperparameters used in this test were: 0.001 learning rate, eight 3 × 3
convolutional filters, and 8 training epochs

Figure 5.28 compares the validation accuracy achieved on the CIFAR-10 dataset

between the baseline and secure architectures for different hyperparameter and network

configurations. The large discrepancy in the accuracy of the baseline and secure architec-

tures in the range of 9.9-19.4% compared to the range of 1.1-2.8% for MNIST results can be

attributed to a couple of key factors. Perhaps the most important factor is the difference

between the two datasets, with the images in CIFAR-10 contain three channels of data as

opposed to only one. This causes the convolutional layer to perform three times as many

arithmetic computations in the secure domain, which, as explored earlier, causes a decrease

in the validation accuracy of a network. Another key factor for this large variation in accu-

racy is that the ideal learning rate for the baseline network performs poorly for the secure

network. Possible solutions to decrease the difference in validation accuracy between the

71

baseline and secure architectures are explored in Section 6.2.

C
on

v
F

C
on

v
B

A
v
gP

o
ol

F

A
v
gP

o
ol

B

S
of

tm
ax

F

S
of

tm
ax

B

E
p

o
ch

O
ve

rh
ea

d

101

102

103

Network Configuration

E
x
ec

u
ti

on
T

im
e

[s
]

CIFAR-10 Timing Comparisons Between Baseline and Secure Architectures

Baseline Secure

Figure 5.29: The hyperparameters used in this test were: 0.001 learning rate, eight 3 × 3
convolutional filters, and 8 training epochs

Figure 5.29 shows the differences in execution times for each layer function for the

baseline and secure networks measured for a single training epoch. The backpropagation

functions took between 12-47× as long to execute for the secure architecture as they did

for the baseline architecture. These functions as well as the added overhead incurred from

encrypting and decrypting 4-tuple values led to an overall increase in training time for a

single epoch by a factor of 6.88× when using eight 3 × 3 convolutional filters. As with the

MNIST results, these times do not include the additional communication overhead that is

incurred through using the secure model. Simulations of this communication overhead are

found in section 5.3.

72

5.3 Communication Simulation

The number of communication rounds needed by the security model to perform

training on a single image is calculated as the total number of arithmetic calculations

between two 4-tuple values, a result of the simplified version of the scheme proposed in [1]

requiring only a single 16-byte communication between two parties in order to perform a

given calculation. Although the more thorough 4-tuple scheme proposed by Aliasgari et.

al requires more rounds of communication to occur to perform any arithmetic operation, it

is much more robust at preventing data-leakage through these communications. Tables 5.3

and 5.4 detail the communication rounds required by the simplified scheme for training on a

single image from the MNIST and CIFAR-10 datasets, respectively. These communication

rounds do not take into account the communication required if the integer values that

make up a secure 4-tuple are further encrypted using an MPC encryption scheme such as

SPDZ. This further encryption would introduce additional overhead potentially magnitudes

of order greater than described here.

Table 5.3: MNIST Communication Rounds per Training Image

Convolution Average Pooling Softmax Federated Averaging Total

8 Filters 146232 10816 67660 224708

32 Filters 584928 43264 270460 898652

64 Filters 1169856 86528 540860 1797244

FedAvg 2/100 146232 10816 67660 81612 306320

FedAvg 4/100 146232 10816 67660 163224 387932

FedAvg 8/50 146232 10816 67660 326448 551156

FedAvg 16/25 146232 10816 67660 652896 877604

Assuming a 1Gb/s communication speed between each participating device in train-

ing, the communication overhead incurred from training on the MNIST dataset in the secure

domain ranges from 0.027 - 0.214 seconds per image for the different network configura-

tions tested, assuming ideal conditions. This would, therefore, require an additional 1,350

73

- 10,700 seconds of training time per epoch in addition to the 1,758 - 14,480 seconds re-

quired for the secure computations. This additional communication overhead consequently

increases training times to almost double of that if they were run on a single secure device.

Using the same calculations on the CIFAR-10 dataset provides similar results, with

communication overhead for a single image ranging from 0.082 - 0.656 seconds, dependant

on network configuration. This leads to a total communication overhead ranging from 4,100

- 32,800 seconds for a single training epoch compared to the 3,805 - 41,415 seconds required

for computations. These timing calculations again assume ideal communication conditions,

and real-world results may prove that the added communication overhead required by the

security model results in more time than performing all of the computations necessary for

training.

Table 5.4: CIFAR-10 Communication Rounds per Training Image

Convolution Average Pooling Softmax Federated Averaging Total

8 Filters 583848 14400 90060 688308

32 Filters 2335392 57600 360060 2753052

64 Filters 4670784 115200 720060 5506044

FedAvg 2/100 583848 14400 90060 109356 797664

FedAvg 4/100 583848 14400 90060 218712 907020

FedAvg 8/50 583848 14400 90060 437424 1125732

FedAvg 16/25 583848 14400 90060 874848 1563156

74

Chapter 6

Conclusions and Future Work

This chapter summarizes the contributions and accomplishments of this research as

well as details the observations made while working towards the goal of creating a privacy-

preserving image classification model. This chapter also includes several directions for future

work for achieving more optimal results.

6.1 Conclusions

The field of machine learning based classifiers continues to grow, and as a result,

many new domains are being introduced that require some level of privacy. While many

techniques for implementing privacy-preserving classifiers exist, several have yet to address

the problem of performing training in a secure domain without utilizing a plain-text model.

The goal of this research was to create such a privacy-preserving architecture that utilizes

secure data for all inputs and outputs to the classifier as well as every value used within

the classifier during training, ultimately exploring the impact of integrating the necessary

security models into a neural network-based classifier.

The results from this work demonstrate that an encrypted floating point scheme can

be incorporated into the backpropagation phase of training such that its impact on valida-

tion accuracy remains relatively low. The largest complication that this proposed method

75

introduces is the increase in training times due to the increased computational complex-

ity and communication overhead required to train in the secure domain. This additional

training time was found to range from between 8 - 21× longer for the privacy-preserving

network in comparison to a non-secure baseline architecture. This is within the range in

which federated averaging can be utilized to achieve similar if not faster training times in

the secure domain than on a single device at the cost of lower validation accuracy. Imple-

mentation of this research in a real-world setting would, thus, require some modifications to

the implemented security model to reduce this computational and communication overhead

in order to truly gain the benefits of training on non-secure devices as well as to address

the possible data-leakage concerns generated by the simplified security model.

The contributions of this research can be summarized as follows:

1. A secure floating point scheme was developed that allows for basic arithmetic functions

to be computed between two encrypted values without revealing the underlying data.

2. A secure CNN was developed using the proposed security model and was tested against

a baseline network using both the MNIST and CIFAR-10 datasets.

3. Distributed learning was integrated into the secure architecture through the use of

federated averaging and was employed to reduce the impact of the computational

overhead caused by the security model by performing training in parallel across mul-

tiple devices.

4. The secure architecture achieved a validation accuracy 1.1-2.8% lower than that of the

baseline architecture for the MNIST dataset and 9.9-19.4% lower for the CIFAR-10

dataset depending on the network configuration.

5. The computational and communication overhead associated with the proposed secu-

rity model was found to outweigh the potential benefits from performing training on a

distributed cloud-based computing platform instead of on a secure local device unless

a distributed learning scheme was also utilized.

76

6.2 Future Work

The scope of this research limited the inclusion of multiple machine learning tech-

niques that could improve the results found in this study. Thus, future work could extend

this research through the suggestions listed below:

1. The security model developed in this research can be integrated with pre-existing

machine learning frameworks to facilitate the creation of more complex CNNs with

closer to state-of-the-art performance.

2. Optimization techniques such as GPU parallelization may be explored for reducing

the training and testing time of the proposed secure architecture.

3. Increasing the validation of the secure architecture could be achieved by applying

standard machine learning techniques such as preprocessing of the dataset before

training and the inclusion of activation functions between intermediate layers in the

network.

4. Integration of the security model into the forward propagation phase of training could

decrease the overhead caused by encoding and decoding the the hidden values of the

network for each training image. This would also allow for federated averaging to

occur without the same encoding and decoding of all local weights.

5. Further encryption of the integer values that make up the secure floating point 4-

tuples through the use of an MPC encryption scheme such as SPDZ could address the

data leaking concerns present in the basic security model. Further SPDZ optimization

techniques such as pre-computing of triples could also be applied to reduce the added

communication overhead incurred with this second form of encryption.

6. More complex federated learning techniques could be applied to increase the validation

accuracy associated with the distributed learning networks proposed in this research.

77

7. Modification of the arithmetic functions used by the security model could allow for

larger convolutional filters to be used in the secure network, and could potentially

lessen the decreased validation accuracy reported in this research caused by weight

inflation and rounding errors. The weight inflation problem could also potentially be

solved with the inclusion of activation functions placed between intermediate layers

in the network.

78

Appendices

79

Appendix A Hyperparameter Effects on Computation Time

Timing results measured in seconds for different hyperparameters recorded for a single training epoch.

Table 1: MNIST Filter Size

Conv F Conv B AvgPool F AvgPool B Softmax F Softmax B

3 × 3 78.780 64.512 2.770 3.486 5.625 12.965

5 × 5 196.270 161.106 2.580 3.234 5.244 12.079

7 × 7 320.302 272.358 2.160 2.723 4.401 10.151

Table 2: MNIST Number of Filters

Conv F Conv B AvgPool F AvgPool B Softmax F Softmax B

8 78.780 64.512 2.770 3.486 5.625 12.965

16 158.592 129.370 5.500 6.934 11.250 25.906

24 234.274 193.593 8.196 10.371 16.828 38.885

32 313.625 257.910 10.965 13.908 22.631 52.164

48 474.320 387.251 16.454 20.861 34.230 78.180

64 643.398 524.008 25.095 30.121 47.399 107.379

128 1261.462 1030.691 45.153 55.583 90.766 207.897

80

Table 3: MNIST Federated Averaging

Conv F Conv B AvgPool F AvgPool B Softmax F Softmax B FedAvg

2/100 41.075 33.591 1.454 1.820 3.091 6.830 0.211

4/100 20.472 16.781 0.723 0.909 1.545 3.413 0.377

8/50 10.249 8.391 0.362 0.456 0.776 1.708 1.425

16/25 5.204 4.245 0.183 0.228 0.393 0.860 5.585

Table 4: MNIST 5-Layer Filter Size

Conv F Conv B AvgPool F AvgPool B Softmax F Softmax B

3 × 3 269.044 375.704 4.547 6.913 1.191 2.971

5 × 5 496.516 643.023 3.755 5.699 0.756 1.915

7 × 7 616.425 759.366 2.923 4.411 0.214 0.510

Table 5: MNIST 5-Layer Number of Filters

Conv F Conv B AvgPool F AvgPool B Softmax F Softmax B

8 269.044 375.704 4.547 6.913 1.191 2.971

12 528.841 763.050 6.697 10.200 1.689 4.455

24 1712.762 2721.586 13.318 20.292 3.355 8.904

32 2900.599 4718.094 17.877 27.216 4.501 11.869

81

Table 6: MNIST Secure Number of Filters

Conv F Conv B AvgPool F AvgPool B Softmax F Softmax B Overhead

8 79.843 702.978 2.815 88.424 5.731 597.283 280.918

16 157.231 1376.227 5.480 173.021 11.179 1172.283 541.437

32 327.468 2900.056 11.379 363.468 23.419 2441.245 1121.413

64 657.781 5877.508 22.832 738.453 47.179 4890.194 2245.269

128 1260.934 11209.354 44.282 1435.373 89.694 9386.402 4275.258

Table 7: MNIST Secure Federated Averaging

Conv F Conv B AvgPool F AvgPool B Softmax F Softmax B FedAvg Overhead

2/100 42.142 368.399 1.485 46.785 3.144 309.449 8.835 296.422

4/100 20.850 181.613 0.746 23.463 1.592 152.016 15.664 297.468

8/50 10.486 88.629 0.372 11.668 0.786 73.186 58.102 293.376

16/25 5.232 43.720 0.185 5.872 0.392 35.521 224.887 296.212

82

Table 8: CIFAR-10 Filter Size

Conv F Conv B AvgPool F AvgPool B Softmax F Softmax B

3 × 3 274.7475 224.8857 3.629186 4.542112 7.359882 16.95134

5 × 5 669.806 537.164 3.163 4.004 6.459 14.807

7 × 7 1186.617 953.281 2.949 3.626 5.986 13.541

Table 9: CIFAR-10 Number of Filters

Conv F Conv B AvgPool F AvgPool B Softmax F Softmax B

8 274.748 224.886 3.629 4.542 7.360 16.951

16 589.157 482.307 7.745 9.562 15.688 35.950

24 879.520 720.397 11.622 14.463 23.495 54.026

32 1191.369 976.695 15.688 19.362 34.703 72.313

64 2258.296 1846.959 31.890 37.745 61.590 139.918

128 4664.687 3816.148 67.628 80.908 126.881 290.140

83

Table 10: CIFAR-10 Federated Averaging

Conv F Conv B AvgPool F AvgPool B Softmax F Softmax B FedAvg

2/100 140.218 115.037 2.354 2.771 4.543 8.555 0.258

4/100 70.204 57.374 1.180 1.398 1.929 4.289 0.460

8/50 35.108 28.745 0.589 0.696 0.965 2.144 1.731

16/25 17.515 14.396 0.294 0.347 0.483 1.073 6.659

Table 11: CIFAR-10 5-Layer Filter Size

Conv F Conv B AvgPool F AvgPool B Softmax F Softmax B

3 × 3 438.885 524.416 4.525 5.601 1.324 2.944

5 × 5 917.096 1035.290 3.686 4.612 0.865 1.993

7 × 7 1398.457 1480.893 3.139 3.858 0.404 0.803

Table 12: CIFAR-10 5-Layer Number of Filters

Conv F Conv B AvgPool F AvgPool B Softmax F Softmax B

8 438.885 524.416 4.525 5.601 1.324 2.944

12 741.470 1058.686 6.436 8.111 1.909 4.210

24 2147.803 3195.818 13.136 16.500 3.725 8.568

32 4001.004 6134.509 22.771 35.178 5.853 14.935

84

Table 13: CIFAR-10 Secure Number of Filters

Conv F Conv B AvgPool F AvgPool B Softmax F Softmax B Overhead

8 280.979 2715.316 4.723 128.477 7.758 795.493 422.693

12 448.826 4293.894 7.361 204.867 12.279 1273.012 664.745

24 897.417 8579.298 14.750 422.178 24.554 2593.897 1312.983

32 1196.431 11971.068 19.647 554.824 35.184 3412.559 1749.679

64 2393.105 27417.859 39.439 1125.303 65.807 6882.540 3491.723

Table 14: CIFAR-10 Secure Federated Averaging

Conv F Conv B AvgPool F AvgPool B Softmax F Softmax B FedAvg Overhead

2/100 137.268 1153.477 1.812 56.968 3.683 339.021 10.744 367.172

4/100 69.185 573.969 0.907 28.463 1.844 166.672 18.832 367.141

8/50 34.561 284.747 0.453 14.225 0.925 82.067 70.886 367.377

16/25 17.242 141.554 0.227 7.114 0.464 40.557 276.464 364.305

85

Bibliography

[1] Mehrdad Aliasgari, Marina Blanton, Yihua Zhang, and Aaron Steele. Secure compu-
tation on floating point numbers. In NDSS, 2013.

[2] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure
protocols. In Proceedings of the twenty-second annual ACM symposium on Theory of
computing, pages 503–513, 1990.

[3] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Inger-
man, Vladimir Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi, H Brendan
McMahan, et al. Towards federated learning at scale: System design. arXiv preprint
arXiv:1902.01046, 2019.

[4] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan
McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure
aggregation for federated learning on user-held data. arXiv preprint arXiv:1611.04482,
2016.

[5] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan
McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure
aggregation for privacy-preserving machine learning. In proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, pages 1175–1191,
2017.

[6] Valerie Chen, Valerio Pastro, and Mariana Raykova. Secure computation for machine
learning with spdz. arXiv preprint arXiv:1901.00329, 2019.

[7] Dan Claudiu Ciresan, Ueli Meier, Luca Maria Gambardella, and Jurgen Schmidhuber.
Convolutional neural network committees for handwritten character classification. In
2011 International Conference on Document Analysis and Recognition, pages 1135–
1139. IEEE, 2011.

[8] Dan Claudiu Ciresan, Ueli Meier, Jonathan Masci, Luca Maria Gambardella, and
Jürgen Schmidhuber. Flexible, high performance convolutional neural networks for
image classification. In Twenty-second international joint conference on artificial in-
telligence, 2011.

[9] Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and
Nigel P Smart. Practical covertly secure mpc for dishonest majority–or: breaking

86

the spdz limits. In European Symposium on Research in Computer Security, pages
1–18. Springer, 2013.

[10] Ivan Damg̊ard, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Multiparty compu-
tation from somewhat homomorphic encryption. In Annual Cryptology Conference,
pages 643–662. Springer, 2012.

[11] Li Deng. The mnist database of handwritten digit images for machine learning research
[best of the web]. IEEE Signal Processing Magazine, 29(6):141–142, 2012.

[12] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig, and
John Wernsing. Cryptonets: Applying neural networks to encrypted data with high
throughput and accuracy. In International Conference on Machine Learning, pages
201–210. PMLR, 2016.

[13] Oded Goldreich. Secure multi-party computation. Manuscript. Preliminary version,
78, 1998.

[14] Jiuxiang Gu, Zhenhua Wang, Jason Kuen, Lianyang Ma, Amir Shahroudy, Bing Shuai,
Ting Liu, Xingxing Wang, Gang Wang, Jianfei Cai, et al. Recent advances in convo-
lutional neural networks. Pattern Recognition, 77:354–377, 2018.

[15] Ehsan Hesamifard, Hassan Takabi, and Mehdi Ghasemi. Cryptodl: Deep neural net-
works over encrypted data. arXiv preprint arXiv:1711.05189, 2017.

[16] Andrew G Howard. Some improvements on deep convolutional neural network based
image classification. arXiv preprint arXiv:1312.5402, 2013.

[17] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis,
Arjun Nitin Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel
Cummings, et al. Advances and open problems in federated learning. arXiv preprint
arXiv:1912.04977, 2019.

[18] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha
Suresh, and Dave Bacon. Federated learning: Strategies for improving communication
efficiency. arXiv preprint arXiv:1610.05492, 2016.

[19] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny
images. 2009.

[20] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. Advances in neural information processing sys-
tems, 25:1097–1105, 2012.

[21] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard,
Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip
code recognition. Neural computation, 1(4):541–551, 1989.

87

[22] Mariano Lemus, Mariana F. Ramos, Preeti Yadav, Nuno A. Silva, Nelson J. Muga,
André Souto, Nikola Paunković, Paulo Mateus, and Armando N. Pinto. Generation
and distribution of quantum oblivious keys for secure multiparty computation. Applied
Sciences, 10(12), 2020.

[23] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learn-
ing: Challenges, methods, and future directions. IEEE Signal Processing Magazine,
37(3):50–60, 2020.

[24] Viktor M Lidkea, Radu Muresan, and Arafat Al-Dweik. Convolutional neural network
framework for encrypted image classification in cloud-based its. IEEE Open Journal
of Intelligent Transportation Systems, 1:35–50, 2020.

[25] Qian Lou and Lei Jiang. She: A fast and accurate deep neural network for encrypted
data. arXiv preprint arXiv:1906.00148, 2019.

[26] Dengsheng Lu and Qihao Weng. A survey of image classification methods and tech-
niques for improving classification performance. International journal of Remote sens-
ing, 28(5):823–870, 2007.

[27] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera
y Arcas. Communication-efficient learning of deep networks from decentralized data.
In Artificial Intelligence and Statistics, pages 1273–1282. PMLR, 2017.

[28] Vaikkunth Mugunthan, Antigoni Polychroniadou, David Byrd, and Tucker Hybinette
Balch. Smpai: Secure multi-party computation for federated learning. In 33rd Confer-
ence on Neural Information Processing Systems, 2019.

[29] Siddhartha Sankar Nath, Girish Mishra, Jajnyaseni Kar, Sayan Chakraborty, and Ni-
lanjan Dey. A survey of image classification methods and techniques. In 2014 In-
ternational conference on control, instrumentation, communication and computational
technologies (ICCICCT), pages 554–557. IEEE, 2014.

[30] Seong Joon Oh, Max Augustin, Bernt Schiele, and Mario Fritz. Towards reverse-
engineering black-box neural networks, 2018.

[31] Soo Beom Park, Jae Won Lee, and Sang Kyoon Kim. Content-based image classification
using a neural network. Pattern Recognition Letters, 25(3):287–300, 2004.

[32] Ruben Seggers and Koen van der Veen. Privately training cnns using two-party spdz.
2018.

[33] Priyanshi Sharma. Everything about pooling layers and different types of pooling,
2018.

[34] Patrice Y Simard, David Steinkraus, John C Platt, et al. Best practices for con-
volutional neural networks applied to visual document analysis. In Icdar, volume 3.
Citeseer, 2003.

88

[35] Sameer Wagh, Divya Gupta, and Nishanth Chandran. Securenn: 3-party secure com-
putation for neural network training. Proceedings on Privacy Enhancing Technologies,
2019(3):26–49, 2019.

[36] Kang Wei, Jun Li, Ming Ding, Chuan Ma, Howard H Yang, Farhad Farokhi, Shi Jin,
Tony QS Quek, and H Vincent Poor. Federated learning with differential privacy:
Algorithms and performance analysis. IEEE Transactions on Information Forensics
and Security, 15:3454–3469, 2020.

[37] Runhua Xu, Nathalie Baracaldo, Yi Zhou, Ali Anwar, and Heiko Ludwig. Hybridalpha:
An efficient approach for privacy-preserving federated learning. In Proceedings of the
12th ACM Workshop on Artificial Intelligence and Security, pages 13–23, 2019.

[38] Runhua Xu, James BD Joshi, and Chao Li. Cryptonn: Training neural networks over
encrypted data. In 2019 IEEE 39th International Conference on Distributed Computing
Systems (ICDCS), pages 1199–1209. IEEE, 2019.

[39] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learning:
Concept and applications. ACM Transactions on Intelligent Systems and Technology
(TIST), 10(2):1–19, 2019.

[40] Andrew Chi-Chih Yao. How to generate and exchange secrets. In 27th Annual Sym-
posium on Foundations of Computer Science (sfcs 1986), pages 162–167. IEEE, 1986.

89

	Privacy-Preserving Image Classification Using Convolutional Neural Networks
	Recommended Citation

	Title Page
	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Motivation
	Contributions
	Thesis Outline

	Background
	Image Classification
	Convolutional Neural Networks
	Federated Learning
	Secure Multi-Party Computation
	Encryption Protocols

	Related Work
	Secure Machine Learning Techniques
	Federated Learning with Encrypted Data
	Secure Multi-Party Computation in Machine Learning
	Summary

	Experimental Design
	Hypothesis and Research Goals
	Datasets
	Security Model
	Baseline Architecture
	Secure Architecture
	Measurements

	Results
	MNIST
	CIFAR-10
	Communication Simulation

	Conclusions and Future Work
	Conclusions
	Future Work

	Appendices
	Hyperparameter Effects on Computation Time

	Bibliography

