5 research outputs found

    Challenges in real-time virtualization and predictable cloud computing

    Get PDF
    Cloud computing and virtualization technology have revolutionized general-purpose computing applications in the past decade. The cloud paradigm offers advantages through reduction of operation costs, server consolidation, flexible system configuration and elastic resource provisioning. However, despite the success of cloud computing for general-purpose computing, existing cloud computing and virtualization technology face tremendous challenges in supporting emerging soft real-time applications such as online video streaming, cloud-based gaming, and telecommunication management. These applications demand real-time performance in open, shared and virtualized computing environments. This paper identifies the technical challenges in supporting real-time applications in the cloud, surveys recent advancement in real-time virtualization and cloud computing technology, and offers research directions to enable cloud-based real-time applications in the future

    Security Issues in Healthcare Applications Using Wireless Medical Sensor Networks: A Survey

    Get PDF
    Healthcare applications are considered as promising fields for wireless sensor networks, where patients can be monitored using wireless medical sensor networks (WMSNs). Current WMSN healthcare research trends focus on patient reliable communication, patient mobility, and energy-efficient routing, as a few examples. However, deploying new technologies in healthcare applications without considering security makes patient privacy vulnerable. Moreover, the physiological data of an individual are highly sensitive. Therefore, security is a paramount requirement of healthcare applications, especially in the case of patient privacy, if the patient has an embarrassing disease. This paper discusses the security and privacy issues in healthcare application using WMSNs. We highlight some popular healthcare projects using wireless medical sensor networks, and discuss their security. Our aim is to instigate discussion on these critical issues since the success of healthcare application depends directly on patient security and privacy, for ethic as well as legal reasons. In addition, we discuss the issues with existing security mechanisms, and sketch out the important security requirements for such applications. In addition, the paper reviews existing schemes that have been recently proposed to provide security solutions in wireless healthcare scenarios. Finally, the paper ends up with a summary of open security research issues that need to be explored for future healthcare applications using WMSNs

    Improving and distributing key management on mobile networks

    Get PDF
    We address the problem of mobile network key management and authentication that negatively affects the handoff performance, adds overhead to the system in terms of key exchange signaling, authentication, and key distribution. We aim to improve the efficiency of the key management subsystem and to reduce investment pressure on core network elements. We address all these problems successfully. Our novel SKC key management mechanism is the best key management mechanism among the ones we found in reducing signaling load from the KD and making the mobility system independent of the AP-KD link delay. It is a significant contribution to the mobile network key management with fast handoffs when separate keys for APs are required and has many useful applications. Our novel receiver and sender ID binding protocol with symmetric keys is new and shows analogy with Identity Based Cryptography. It is a generalization of the identity binding that SKC is using. Furthermore, our distributed AAA architecture with SKC, certificates, and hardware-based security is a disruptive proposal and show how the mobile network KD can be distributed to the edge nodes. Our quantitative analysis and comparison of SKC and LTE key management is new and not seen before. Our research affected the LTE Security standardization and contributes to the research and development of home base stations, community and municipal Wi-Fi access points

    Lightweight wireless network authentication scheme for constrained oracle sensors

    Get PDF
    x, 212 leaves : ill. (some col.) ; 29 cmIncludes abstract and appendices.Includes bibliographical references (leaves 136-147).With the significant increase in the dependence of contextual data from constrained IoT, the blockchain has been proposed as a possible solution to address growing concerns from organizations. To address this, the Lightweight Blockchain Authentication for Constrained Sensors (LBACS) scheme was proposed and evaluated using quantitative and qualitative methods. LBACS was designed with constrained Wireless Sensor Networks (WSN) in mind and independent of a blockchain implementation. It asserts the authentication and provenance of constrained IoT on the blockchain utilizing a multi-signature approach facilitated by symmetric and asymmetric methods and sufficient considerations for key and certificate registry management. The metrics, threat assessment and comparison to existing WSN authentication schemes conducted asserted the pragmatic use of LBACS to provide authentication, blockchain provenance, integrity, auditable, revocation, weak backward and forward secrecy and universal forgeability. The research has several implications for the ubiquitous use of IoT and growing interest in the blockchain

    Secure base stations

    Get PDF
    With the introduction of the third generation (3G) Universal Mobile Telecommunications System (UMTS) base station router (BSR) and fourth generation (4G) base stations, such as the 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) Evolved Node B (eNB), it has become important to secure base stations from break-in attempts by adversaries. While previous generation base stations could be considered simple voice and Internet Protocol (IP) packet transceivers, newer generation cellular base stations need to perform more of the user- and signaling functions for the cellular radio access network. If adversaries can physically break into newer base stations, they can perform a range of undesirable operations such as snooping on conversations, carrying out denial-of-service attacks on the serving area, changing the software base of the base stations, stealing authentication and encryption keys, and disrupting legitimate cellular operations. The cell-site vault is a secure processing environment designed to resist such tampering and to protect the sensitive functions associated with cellular processing. It provides an execution environment where ciphering functions, key management, and associated functions can execute without leaking sensitive information. In this paper, we present the basic principles of the cell-site vault and present an overview of the types of functions that need to be protected in future base stations for cellular networks. We address the importance of providing a trust hierarchy within the cell-site vault, we present why the vault needs to be used to establish secure and authenticated communication channels—in fact, why the vault needs to be used for most external communications—and we present why it is important to execute functions such as data re-encryption inside the vault. A femtocell or home base station is particularly vulnerable to attacks since these base stations are physically accessible by adversaries. In this paper, we focus in particular on a cell-site vault design for a femto-class base station, including its standardization efforts, as it is challenging to include both secure and nonsecure processing inside a single “system-on-a-chip.
    corecore