147 research outputs found

    Secure Transmission Design for Cognitive Radio Networks With Poisson Distributed Eavesdroppers

    Get PDF
    In this paper, we study physical layer security in an underlay cognitive radio (CR) network. We consider the problem of secure communication between a secondary transmitter-receiver pair in the presence of randomly distributed eavesdroppers under an interference constraint set by the primary user. For different channel knowledge assumptions at the transmitter, we design four transmission protocols to achieve the secure transmission in the CR network. We give a comprehensive performance analysis for each protocol in terms of transmission delay, security, reliability, and the overall secrecy throughput. Furthermore, we determine the optimal design parameter for each transmission protocol by solving the optimization problem of maximizing the secrecy throughput subject to both security and reliability constraints. Numerical results illustrate the performance comparison between different transmission protocols.ARC Discovery Projects Grant DP15010390

    Protecting cognitive radio networks against poisson distributed eavesdroppers

    Get PDF
    In this paper, we study secure transmission designs for underlay cognitive radio networks in the present of randomly distributed eavesdroppers. We consider the scenario where a secondary transmitter sends confidential messages to a secondary receiver subject to an interference constraint set by the primary user. We design two transmission protocols under different channel knowledge assumptions at the transmitter. For each protocol, we first give a comprehensive performance analysis to investigate the transmission delay, secrecy, and reliability performance. We then optimize the transmission design for maximizing the secrecy throughput subject to both secrecy and reliability constraints. Finally, we numerically compare the performance of the two transmission protocols.ARC Discovery Projects Grant DP15010390

    Coexistence of RF-powered IoT and a Primary Wireless Network with Secrecy Guard Zones

    Get PDF
    This paper studies the secrecy performance of a wireless network (primary network) overlaid with an ambient RF energy harvesting IoT network (secondary network). The nodes in the secondary network are assumed to be solely powered by ambient RF energy harvested from the transmissions of the primary network. We assume that the secondary nodes can eavesdrop on the primary transmissions due to which the primary network uses secrecy guard zones. The primary transmitter goes silent if any secondary receiver is detected within its guard zone. Using tools from stochastic geometry, we derive the probability of successful connection of the primary network as well as the probability of secure communication. Two conditions must be jointly satisfied in order to ensure successful connection: (i) the SINR at the primary receiver is above a predefined threshold, and (ii) the primary transmitter is not silent. In order to ensure secure communication, the SINR value at each of the secondary nodes should be less than a predefined threshold. Clearly, when more secondary nodes are deployed, more primary transmitters will remain silent for a given guard zone radius, thus impacting the amount of energy harvested by the secondary network. Our results concretely show the existence of an optimal deployment density for the secondary network that maximizes the density of nodes that are able to harvest sufficient amount of energy. Furthermore, we show the dependence of this optimal deployment density on the guard zone radius of the primary network. In addition, we show that the optimal guard zone radius selected by the primary network is a function of the deployment density of the secondary network. This interesting coupling between the two networks is studied using tools from game theory. Overall, this work is one of the few concrete works that symbiotically merge tools from stochastic geometry and game theory

    Techniques for Enhanced Physical-Layer Security

    Full text link
    Information-theoretic security--widely accepted as the strictest notion of security--relies on channel coding techniques that exploit the inherent randomness of propagation channels to strengthen the security of communications systems. Within this paradigm, we explore strategies to improve secure connectivity in a wireless network. We first consider the intrinsically secure communications graph (iS-graph), a convenient representation of the links that can be established with information-theoretic security on a large-scale network. We then propose and characterize two techniques--sectorized transmission and eavesdropper neutralization--which are shown to dramatically enhance the connectivity of the iS-graph.Comment: Pre-print, IEEE Global Telecommunications Conference (GLOBECOM'10), Miami, FL, Dec. 201

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Enhancing Secrecy with Multi-Antenna Transmission in Wireless Ad Hoc Networks

    Full text link
    We study physical-layer security in wireless ad hoc networks and investigate two types of multi-antenna transmission schemes for providing secrecy enhancements. To establish secure transmission against malicious eavesdroppers, we consider the generation of artificial noise with either sectoring or beamforming. For both approaches, we provide a statistical characterization and tradeoff analysis of the outage performance of the legitimate communication and the eavesdropping links. We then investigate the networkwide secrecy throughput performance of both schemes in terms of the secrecy transmission capacity, and study the optimal power allocation between the information signal and the artificial noise. Our analysis indicates that, under transmit power optimization, the beamforming scheme outperforms the sectoring scheme, except for the case where the number of transmit antennas are sufficiently large. Our study also reveals some interesting differences between the optimal power allocation for the sectoring and beamforming schemes.Comment: to appear in IEEE Transactions on Information Forensics and Securit

    Wireless Secrecy in Large-Scale Networks

    Get PDF
    The ability to exchange secret information is critical to many commercial, governmental, and military networks. The intrinsically secure communications graph (iS-graph) is a random graph which describes the connections that can be securely established over a large-scale network, by exploiting the physical properties of the wireless medium. This paper provides an overview of the main properties of this new class of random graphs. We first analyze the local properties of the iS-graph, namely the degree distributions and their dependence on fading, target secrecy rate, and eavesdropper collusion. To mitigate the effect of the eavesdroppers, we propose two techniques that improve secure connectivity. Then, we analyze the global properties of the iS-graph, namely percolation on the infinite plane, and full connectivity on a finite region. These results help clarify how the presence of eavesdroppers can compromise secure communication in a large-scale network.Comment: To appear: Proc. IEEE Information Theory and Applications Workshop (ITA'11), San Diego, CA, Feb. 2011, pp. 1-10, Invited Pape

    Wireless Network Intrinsic Secrecy

    Get PDF
    Wireless secrecy is essential for communication confidentiality, health privacy, public safety, information superiority, and economic advantage in the modern information society. Contemporary security systems are based on cryptographic primitives and can be complemented by techniques that exploit the intrinsic properties of a wireless environment. This paper develops a foundation for design and analysis of wireless networks with secrecy provided by intrinsic properties such as node spatial distribution, wireless propagation medium, and aggregate network interference. We further propose strategies that mitigate eavesdropping capabilities, and we quantify their benefits in terms of network secrecy metrics. This research provides insights into the essence of wireless network intrinsic secrecy and offers a new perspective on the role of network interference in communication confidentiality.Marie Curie International Fellowship (Grant 2010-272923)Seventh Framework Programme (European Commission) (Project CONCERTO Grant 288502)Copernicus FellowshipNational Science Foundation (U.S.) (Grant CCF-1116501)United States. Office of Naval Research (Grant N00014-11-1-0397)Massachusetts Institute of Technology. Institute for Soldier Nanotechnologie

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication
    • …
    corecore