2,171 research outputs found

    Routing and Security in Mobile Ad Hoc Networks

    Get PDF
    A Mobile Ad hoc Network (MANET) consists of a set of nodes which can form a network among themselves. MANETs have applications in areas such as military, disaster rescue operations, monitoring animal habitats, etc. where establishing fixed communication infrastructure is not feasible. Routing protocols designed for MANETs can be broadly classified as position-based (geographic), topology-based and hybrid. Geographic routing uses location information of nodes to route messages. Topology-based routing uses network state information for route discovery and maintenance. Hybrid routing protocols use features in both position-based and topology-based approaches. Position-based routing protocols route packets towards the destination using greedy forwarding (i.e., an intermediate node forwards packets to a neighbor that is closer to the destination than itself). If a node has no neighbor that is closer to the destination than itself, greedy forwarding fails. In this case, we say there is void. Different position-based routing protocols use different methods for dealing with voids. Topology-based routing protocols can be classified into on-demand (reactive) routing protocols and proactive routing protocols. Generally, on-demand routing protocols establish routes when needed by flooding route requests throughout the entire network, which is not a scalable approach. Reactive routing protocols try to maintain routes between every pair of nodes by periodically exchanging messages with each other which is not a scalable approach also. This thesis addresses some of these issues and makes the following contribution. First, we present a position-based routing protocol called Greedy Routing Protocol with Backtracking (GRB) which uses a simple backtracking technique to route around voids, unlike existing position-based routing protocols which construct planarized graph of the local network to route around voids. We compare the performance of our protocol with the well known Greedy Perimeter Stateless Routing (GPSR) protocol and the Ad-Hoc On-demand Distance Vector (AODV) routing protocol as well as the Dynamic Source Routing (DSR) protocol. Performance evaluation shows that our protocol has less control overhead than those of DSR, AODV, and GPSR. Performance evaluation also shows that our protocol has a higher packet-delivery ratio, lower end-to-end delay, and less hop count, on average, compared to AODV, DSR and GPSR. We then present an on-demand routing protocol called ``Hybrid On-demand Greedy Routing Protocol with Backtracking for Mobile Ad-Hoc Networks which uses greedy approach for route discovery. This prevents flooding route requests, unlike the existing on-demand routing protocols. This approach also helps in finding routes that have lower hop counts than AODV and DSR. Our performance evaluation confirms that our protocol performs better than AODV and DSR, on average, with respect to hop count, packet-delivery ratio and control overhead. In MANETs, all nodes need to cooperate to establish routes. Establishing secure and valid routes in the presence of adversaries is a challenge in MANETs. Some of the well-known source routing protocols presented in the literature (e.g., Ariadne and endairA) which claim to establish secure routes are susceptible to hidden channel attacks. We address this issue and present a secure routing protocol called SAriadne, based on sanitizable signatures. We show that our protocol detects and prevents hidden channel attacks

    Evaluation of on-demand routing in mobile ad hoc networks and proposal for a secure routing protocol

    Get PDF
    Secure routing Mobile Ad hoc Networks (MANETs) has emerged as an important MANET research area. Initial work in MANET focused mainly on the problem of providing efficient mechanisms for finding paths in very dynamic networks, without considering the security of the routing process. Because of this, a number of attacks exploit these routing vulnerabilities to manipulate MANETs. In this thesis, we performed an in-depth evaluation and performance analysis of existing MANET Routing protocols, identifying Dynamic Source Routing (DSR) as the most robust (based on throughput, latency and routing overhead) which can be secured with negligible routing efficiency trade-off. We describe security threats, specifically showing their effects on DSR. We proposed a new routing protocol, named Authenticated Source Routing for Ad hoc Networks (ASRAN) which is an out-of-band certification-based, authenticated source routing protocol with modifications to the route acquisition process of DSR to defeat all identified attacks. Simulation studies confirm that ASRAN has a good trade-off balance in reference to the addition of security and routing efficiency

    Enhanced dynamic source routing for verifying trust in mobile ad hoc network for secure routing

    Get PDF
    Secure data transfer in mobile ad hoc network (MANET) against malicious attacks is of immense importance. In this paper, we propose a new enhanced trust model for securing the MANET using trust-based scheme that uses both blind trust and referential trust. In order to do this, the trust relationship function has to be integrated with the dynamic source routing (DSR) protocol for making the protocol more secure. We thoroughly analyze the DSR protocol and generate the performance matrices for the data pertaining to packets sent, packets received, packets loss, and throughput. We also analyze the outcome attained from the improvised trust establishment scheme by using the three algorithm implementations in NS2 simulator for detecting and preventing various types of attacks

    An enhanced Multipath Strategy in Mobile Ad hoc Routing Protocols

    Full text link
    The various routing protocols in Mobile Ad hoc Networks follow different strategies to send the information from one node to another. The nodes in the network are non static and they move randomly and are prone to link failure which makes always to find new routes to the destination. This research mainly focused on the study of the characteristics of multipath routing protocols in MANETS. Two of the multipath routing protocols were investigated and a comparative study along with simulation using NS2 was done between DSR and AODV to propose an enhanced approach to reach the destination maintaining the QoS. A possible optimization to the DSR and AODV routing protocols was proposed to make no node to be overburdened by distributing the load after finding the alternate multipath routes which were discovered in the Route discovery process. The simulation shows that the differences in the protocol highlighted major differences with the protocol performance. These differences have been analyzed with various network size, mobility, and network load. A new search table named Search of Next Node Enquiry Table (SONNET) was proposed to find the best neighbor node. Using SONNET the node selects the neighbor which can be reached in less number of hops and with less time delay and maintaining the QoS

    A Review of the Energy Efficient and Secure Multicast Routing Protocols for Mobile Ad hoc Networks

    Full text link
    This paper presents a thorough survey of recent work addressing energy efficient multicast routing protocols and secure multicast routing protocols in Mobile Ad hoc Networks (MANETs). There are so many issues and solutions which witness the need of energy management and security in ad hoc wireless networks. The objective of a multicast routing protocol for MANETs is to support the propagation of data from a sender to all the receivers of a multicast group while trying to use the available bandwidth efficiently in the presence of frequent topology changes. Multicasting can improve the efficiency of the wireless link when sending multiple copies of messages by exploiting the inherent broadcast property of wireless transmission. Secure multicast routing plays a significant role in MANETs. However, offering energy efficient and secure multicast routing is a difficult and challenging task. In recent years, various multicast routing protocols have been proposed for MANETs. These protocols have distinguishing features and use different mechanismsComment: 15 page

    Resilient networking in wireless sensor networks

    Get PDF
    This report deals with security in wireless sensor networks (WSNs), especially in network layer. Multiple secure routing protocols have been proposed in the literature. However, they often use the cryptography to secure routing functionalities. The cryptography alone is not enough to defend against multiple attacks due to the node compromise. Therefore, we need more algorithmic solutions. In this report, we focus on the behavior of routing protocols to determine which properties make them more resilient to attacks. Our aim is to find some answers to the following questions. Are there any existing protocols, not designed initially for security, but which already contain some inherently resilient properties against attacks under which some portion of the network nodes is compromised? If yes, which specific behaviors are making these protocols more resilient? We propose in this report an overview of security strategies for WSNs in general, including existing attacks and defensive measures. In this report we focus at the network layer in particular, and an analysis of the behavior of four particular routing protocols is provided to determine their inherent resiliency to insider attacks. The protocols considered are: Dynamic Source Routing (DSR), Gradient-Based Routing (GBR), Greedy Forwarding (GF) and Random Walk Routing (RWR)
    • …
    corecore