359 research outputs found

    A Review of the Energy Efficient and Secure Multicast Routing Protocols for Mobile Ad hoc Networks

    Full text link
    This paper presents a thorough survey of recent work addressing energy efficient multicast routing protocols and secure multicast routing protocols in Mobile Ad hoc Networks (MANETs). There are so many issues and solutions which witness the need of energy management and security in ad hoc wireless networks. The objective of a multicast routing protocol for MANETs is to support the propagation of data from a sender to all the receivers of a multicast group while trying to use the available bandwidth efficiently in the presence of frequent topology changes. Multicasting can improve the efficiency of the wireless link when sending multiple copies of messages by exploiting the inherent broadcast property of wireless transmission. Secure multicast routing plays a significant role in MANETs. However, offering energy efficient and secure multicast routing is a difficult and challenging task. In recent years, various multicast routing protocols have been proposed for MANETs. These protocols have distinguishing features and use different mechanismsComment: 15 page

    Achieving MANETs Security by Exchanging Path Oriented Keys and Priority Based Secured Route Discovery

    Get PDF
    In this work, two scenarios are considered, scenario-1 is key based communication and scenario-2 is priority based routing and communication. In scenario-1, MANET works on generated keys called KEY1 and KEY2 to establish communication between nodes. Here source node will have to generate and store a key called KEY2 and destination node will have to generate and store a key called KEY1. When source node initiates communication with destination-node, source node will send a request-packet to destination via shortest/less- cost path (PATH1) without any key mentioning in the packet. Now destination node will send the requested packet and KEY1 to source node via different path other than PATH1 (path of received packet). Source will send KEY2 to destination again through the same path (PATH2). In scenario-2, communication of each node is based on the neighbour node's priority, here, priority-1 being the highest, hence it is highly recommended for communication and priority three is being the lowest and it is rarely recommended for the communication. Nodes in the network classified into 3 types, unknown node, neighbor's known node, non-neighbors known node. Priority of nodes can be evaluated based on the security measures, energy level and other parameters of the node. It can also consider Trust Value (TV) of each node based on the duration spent in active efficient communication. With help of this strategy, we can achieve highly secured route discovery, which will help network to have smooth communication among its node

    Investigating Open Issues in Swarm Intelligence for Mitigating Security Threats in MANET

    Get PDF
    The area of Mobile Adhoc Network (MANET) has being a demanded topic of research for more than a decade because of its attractive communication features associated with various issues. This paper primarily discusses on the security issues, which has been still unsolved after abundant research work. The paper basically stresses on the potential features of Swarm Intelligence (SI) and its associated techniques to mitigate the security issues. Majority of the previous researches based on SI has used Ant Colony Optimization (ACO) or Particle Swarm Optimization (PSO) extensively. Elaborated discussion on SI with respect to trust management, authentication, and attack models are made with support of some of the recent studies done in same area. The paper finally concludes by discussing the open issues and problem identification of the review

    Trust Based Certificate Revocation for Secure Routing in MANET

    Get PDF
    AbstractMany trust establishment solutions in mobile ad hoc networks (MANETs) rely on public key certificates. Therefore, they should be accompanied by an efficient mechanism for certificate revocation and validation. In order to reduce the hazards from nodes and to enhance the security of network we propose to develop a CA distribution and a Trust based threshold revocation method. Initially the trust value is computed from the direct and indirect trust values. And the certificate authorities distributes the secret key to al the nodes. Followed by this a trust based threshold revocation method is computed. Here the misbehaving nodes are eliminated

    A Novel Cryptography-Based Multipath Routing Protocol for Wireless Communications

    Get PDF
    Communication in a heterogeneous, dynamic, low-power, and lossy network is dependable and seamless thanks to Mobile Ad-hoc Networks (MANETs). Low power and Lossy Networks (LLN) Routing Protocol (RPL) has been designed to make MANET routing more efficient. For different types of traffic, RPL routing can experience problems with packet transmission rates and latency. RPL is an optimal routing protocol for low power lossy networks (LLN) having the capacity to establish a path between resource constraints nodes by using standard objective functions: OF0 and MRHOF. The standard objective functions lead to a decrease in the network lifetime due to increasing the computations for establishing routing between nodes in the heterogeneous network (LLN) due to poor decision problems. Currently, conventional Mobile Ad-hoc Network (MANET) is subjected to different security issues. Weathering those storms would help if you struck a good speed-memory-storage equilibrium. This article presents a security algorithm for MANET networks that employ the Rapid Packet Loss (RPL) routing protocol. The constructed network uses optimization-based deep learning reinforcement learning for MANET route creation. An improved network security algorithm is applied after a route has been set up using (ClonQlearn). The suggested method relies on a lightweight encryption scheme that can be used for both encryption and decryption. The suggested security method uses Elliptic-curve cryptography (ClonQlearn+ECC) for a random key generation based on reinforcement learning (ClonQlearn). The simulation study showed that the proposed ClonQlearn+ECC method improved network performance over the status quo. Secure data transmission is demonstrated by the proposed ClonQlearn + ECC, which also improves network speed. The proposed ClonQlearn + ECC increased network efficiency by 8-10% in terms of packet delivery ratio, 7-13% in terms of throughput, 5-10% in terms of end-to-end delay, and 3-7% in terms of power usage variation

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    Factors Impacting Key Management Effectiveness in Secured Wireless Networks

    Get PDF
    The use of a Public Key Infrastructure (PKI) offers a cryptographic solution that can overcome many, but not all, of the MANET security problems. One of the most critical aspects of a PKI system is how well it implements Key Management. Key Management deals with key generation, key storage, key distribution, key updating, key revocation, and certificate service in accordance with security policies over the lifecycle of the cryptography. The approach supported by traditional PKI works well in fixed wired networks, but it may not appropriate for MANET due to the lack of fixed infrastructure to support the PKI. This research seeks to identify best practices in securing networks which may be applied to new network architectures

    Location based services in wireless ad hoc networks

    Get PDF
    In this dissertation, we investigate location based services in wireless ad hoc networks from four different aspects - i) location privacy in wireless sensor networks (privacy), ii) end-to-end secure communication in randomly deployed wireless sensor networks (security), iii) quality versus latency trade-off in content retrieval under ad hoc node mobility (performance) and iv) location clustering based Sybil attack detection in vehicular ad hoc networks (trust). The first contribution of this dissertation is in addressing location privacy in wireless sensor networks. We propose a non-cooperative sensor localization algorithm showing how an external entity can stealthily invade into the location privacy of sensors in a network. We then design a location privacy preserving tracking algorithm for defending against such adversarial localization attacks. Next we investigate secure end-to-end communication in randomly deployed wireless sensor networks. Here, due to lack of control on sensors\u27 locations post deployment, pre-fixing pairwise keys between sensors is not feasible especially under larger scale random deployments. Towards this premise, we propose differentiated key pre-distribution for secure end-to-end secure communication, and show how it improves existing routing algorithms. Our next contribution is in addressing quality versus latency trade-off in content retrieval under ad hoc node mobility. We propose a two-tiered architecture for efficient content retrieval in such environment. Finally we investigate Sybil attack detection in vehicular ad hoc networks. A Sybil attacker can create and use multiple counterfeit identities risking trust of a vehicular ad hoc network, and then easily escape the location of the attack avoiding detection. We propose a location based clustering of nodes leveraging vehicle platoon dispersion for detection of Sybil attacks in vehicular ad hoc networks --Abstract, page iii
    • …
    corecore