76 research outputs found

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    A Scalable Framework to Choose Sellers in E-Marketplaces Using POMDPs

    Get PDF
    In multiagent e-marketplaces, buying agents need to select good sellers by querying other buyers (called advisors). Partially Observable Markov Decision Processes (POMDPs) have shown to be an effective framework for optimally selecting sellers by selectively querying advisors. However, current solution methods do not scale to hundreds or even tens of agents operating in the e-market. In this paper, we propose the Mixture of POMDP Experts (MOPE) technique, which exploits the inherent structure of trust-based domains, such as the seller selection problem in e-markets, by aggregating the solutions of smaller sub-POMDPs. We propose a number of variants of the MOPE approach that we analyze theoretically and empirically. Experiments show that MOPE can scale up to a hundred agents thereby leveraging the presence of more advisors to significantly improve buyer satisfaction

    Markov decision processes with applications in wireless sensor networks: A survey

    Get PDF
    Ministry of Education, Singapore under its Academic Research Funding Tier

    Communication and Control in Collaborative UAVs: Recent Advances and Future Trends

    Full text link
    The recent progress in unmanned aerial vehicles (UAV) technology has significantly advanced UAV-based applications for military, civil, and commercial domains. Nevertheless, the challenges of establishing high-speed communication links, flexible control strategies, and developing efficient collaborative decision-making algorithms for a swarm of UAVs limit their autonomy, robustness, and reliability. Thus, a growing focus has been witnessed on collaborative communication to allow a swarm of UAVs to coordinate and communicate autonomously for the cooperative completion of tasks in a short time with improved efficiency and reliability. This work presents a comprehensive review of collaborative communication in a multi-UAV system. We thoroughly discuss the characteristics of intelligent UAVs and their communication and control requirements for autonomous collaboration and coordination. Moreover, we review various UAV collaboration tasks, summarize the applications of UAV swarm networks for dense urban environments and present the use case scenarios to highlight the current developments of UAV-based applications in various domains. Finally, we identify several exciting future research direction that needs attention for advancing the research in collaborative UAVs

    Scaling POMDPs For Selecting Sellers in E-markets-Extended Version

    Get PDF
    In multiagent e-marketplaces, buying agents need to select good sellers by querying other buyers (called advisors). Partially Observable Markov Decision Processes (POMDPs) have shown to be an effective framework for optimally selecting sellers by selectively querying advisors. However, current solution methods do not scale to hundreds or even tens of agents operating in the e-market. In this paper, we propose the Mixture of POMDP Experts (MOPE) technique, which exploits the inherent structure of trust-based domains, such as the seller selection problem in e-markets, by aggregating the solutions of smaller sub-POMDPs. We propose a number of variants of the MOPE approach that we analyze theoretically and empirically. Experiments show that MOPE can scale up to a hundred agents thereby leveraging the presence of more advisors to significantly improve buyer satisfaction
    • …
    corecore