14 research outputs found

    EXIT-chart aided code design for symbol-based entanglement-assisted classical communication over quantum channels

    No full text
    Quantum-based transmission is an attractive solution conceived for achieving absolute security. In this quest, we have conceived an EXtrinsic Information Transfer (EXIT) chart aided channel code design for symbol-based entanglement-assisted classical communication over quantum depolarizing channels. Our proposed concatenated code design incorporates a Convolutional Code (CC), a symbol-based Unity Rate Code (URC) and a soft-decision aided 2-qubit Superdense Code (2SD), which is hence referred to as a CC-URC-2SD arrangement. We have optimized our design with the aid of non-binary EXIT charts. Our proposed design operates within 1 dB of the achievable capacity, providing attractive performance gains over its bit-based counterpart. Quantitatively, the bit-based scheme requires 60% more iterations than our symbol-based scheme for the sake of achieving perfect decoding convergence. Furthermore, we demonstrate that the decoding complexity can be reduced by using memory-2 and memory-3 convolutional codes, while still outperforming the bit-based approach<br/

    How Can Optical Communications Shape the Future of Deep Space Communications? A Survey

    Full text link
    With a large number of deep space (DS) missions anticipated by the end of this decade, reliable and high capacity DS communications systems are needed more than ever. Nevertheless, existing DS communications technologies are far from meeting such a goal. Improving current DS communications systems does not only require system engineering leadership but also, very crucially, an investigation of potential emerging technologies that overcome the unique challenges of ultra-long DS communications links. To the best of our knowledge, there has not been any comprehensive surveys of DS communications technologies over the last decade. Free space optical (FSO) technology is an emerging DS technology, proven to acquire lower communications systems size, weight, and power (SWaP) and achieve a very high capacity compared to its counterpart radio frequency (RF) technology, the current used DS technology. In this survey, we discuss the pros and cons of deep space optical communications (DSOC). Furthermore, we review the modulation, coding, and detection, receiver, and protocols schemes and technologies for DSOC. We provide, for the very first time, thoughtful discussions about implementing orbital angular momentum (OAM) and quantum communications (QC) for DS. We elaborate on how these technologies among other field advances, including interplanetary network, and RF/FSO systems improve reliability, capacity, and security and address related implementation challenges and potential solutions. This paper provides a holistic survey in DSOC technologies gathering 200+ fragmented literature and including novel perspectives aiming to setting the stage for more developments in the field.Comment: 17 pages, 8 Figure

    The Road From Classical to Quantum Codes: A Hashing Bound Approaching Design Procedure

    Full text link
    Powerful Quantum Error Correction Codes (QECCs) are required for stabilizing and protecting fragile qubits against the undesirable effects of quantum decoherence. Similar to classical codes, hashing bound approaching QECCs may be designed by exploiting a concatenated code structure, which invokes iterative decoding. Therefore, in this paper we provide an extensive step-by-step tutorial for designing EXtrinsic Information Transfer (EXIT) chart aided concatenated quantum codes based on the underlying quantum-to-classical isomorphism. These design lessons are then exemplified in the context of our proposed Quantum Irregular Convolutional Code (QIRCC), which constitutes the outer component of a concatenated quantum code. The proposed QIRCC can be dynamically adapted to match any given inner code using EXIT charts, hence achieving a performance close to the hashing bound. It is demonstrated that our QIRCC-based optimized design is capable of operating within 0.4 dB of the noise limit

    A Survey on Quantum Channel Capacities

    Get PDF
    Quantum information processing exploits the quantum nature of information. It offers fundamentally new solutions in the field of computer science and extends the possibilities to a level that cannot be imagined in classical communication systems. For quantum communication channels, many new capacity definitions were developed in comparison to classical counterparts. A quantum channel can be used to realize classical information transmission or to deliver quantum information, such as quantum entanglement. Here we review the properties of the quantum communication channel, the various capacity measures and the fundamental differences between the classical and quantum channels.Comment: 58 pages, Journal-ref: IEEE Communications Surveys and Tutorials (2018) (updated & improved version of arXiv:1208.1270

    Fifteen years of quantum LDPC coding and improved decoding strategies

    No full text
    The near-capacity performance of classical low-density parity check (LDPC) codes and their efficient iterative decoding makes quantum LDPC (QLPDC) codes a promising candidate for quantum error correction. In this paper, we present a comprehensive survey of QLDPC codes from the perspective of code design as well as in terms of their decoding algorithms. We also conceive a modified non-binary decoding algorithm for homogeneous Calderbank-Shor-Steane-type QLDPC codes, which is capable of alleviating the problems imposed by the unavoidable length-four cycles. Our modified decoder outperforms the state-of-the-art decoders in terms of their word error rate performance, despite imposing a reduced decoding complexity. Finally, we intricately amalgamate our modified decoder with the classic uniformly reweighted belief propagation for the sake of achieving an improved performance

    Quantum Information transfer over Quantum Channels

    Get PDF
    corecore