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Introduction

The modern theory of quantum mechanics, developed since the early 1920s,
is a cornerstone of theoretical physics and, in general, of science, and has
been applied with enormous success everywhere, from the atomic structure
to the structure of DNA. It has also enormously influenced the technological
development of the 20th century. Indeed, the majority of the most important
technological innovations, used nowadays, is substantially based on quantum
effects, like laser devices, transistors, superconductors, digital clocks, barcode
readers, computers, all digital electronics and many tools that we all use
in everyday life. Recently, it has been understood that quantum physics
can deliver very interesting advances also in information theory. It is now
widely accepted that quantum mechanics allows for fundamentally new forms
of communication and computation, more powerful and efficient than the
traditional ones. In the last two decades, this has led to the development of
a new exciting branch of physics in the overlap of quantum mechanics and
classical information theory, i.e., quantum information theory [1, 2, 3, 4, 5,
6, 7, 8, 9].

Classical information theory is the mathematical theory that studies the
transmission, the storage, and the processing of information [10]. The discov-
eries of Claude Shannon and Mathison Turing represent the starting point
of the modern informatics. The fundamental problem of communication is
that of reproducing at one point either exactly or approximately a message
selected at another point (C. Shannon 1948) [11]. The latter statement per-
fectly summarizes one of the main concerns of information theory.

In 1959, Richard Feynman gave an after-dinner talk at the APS meeting
in Pasadena, entitled There’s Plenty of Room at the Bottom, in which he
challenged, quite in advance, the realization of a quantum computer: there
is plenty of room to make them [computers] smaller. There is nothing that
I can see in the physical laws that says the computer elements cannot be
made enormously smaller than they are now. In fact, there may be certain
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advantages... but when we get to the very, very small world—say circuits of
seven atoms—we have a lot of new things that would happen that represent
completely new opportunities for design. Atoms on a small scale behave like
nothing on a large scale, for they satisfy the laws of quantum mechanics.
So, as we go down and fiddle around with the atoms down there, we are
working with different laws, and we can expect to do different things. We
can manufacture [them] in different ways. We can use, not just circuits,
but some system involving the quantized energy levels, or the interactions of
quantized spins, etc.

Indeed, as predicted by Moore’s Law, every 18 months the size of circuitry
packed onto silicon chips is halved. Therefore, this continuous shrinking will
eventually reach a point where individual elements will be no larger than a
few atoms. At this scale, classical physics does not work and quantum theory
comes into play. On one hand, this will be an obstacle to the further devel-
opment of the information technology. On the other hand, recently another
point of view has been adopted and the new idea is to exploit the strange
behavior of the microscopic world in order to improve the traditional forms
of computation and communication. In other words, the fact that informa-
tion is physical (R. Landauer, 1991 [12]) means that the laws of quantum
mechanics can be used to process and transmit it in ways that are not pos-
sible with existing traditional systems. In this context, the fundamental
information unit is the quantum bit (or qubit), i.e. the physical state of a
two-level quantum system, such as photon’s polarization or electron spin. In
the last twenty years, this new research area, known as quantum information
science, has stimulated a lively interest both from the theoretical and the
experimental point of view [1, 3].

From the theoretical point of view, this new rapidly developing field allows
for a reconsideration of the foundations of quantum mechanics in an infor-
mation theoretical context. Indeed, in many cases these studies have led to a
deeper and more quantitative understanding of quantum theory, as it is the
case for the entanglement, i.e., non-classical correlations between quantum
systems violating Bell inequalities. This represents not one but rather the
characteristic trait of quantum mechanics (E. Schrödinger, 1935) and dras-
tically evidences the differences between quantum and classical physics [13].
Entanglement, which for a long time has been thought of only as an exotic
property of quantum mechanics, has been discovered as a very important new
resource in the quantum information theory context [14, 15, 16]. Nowadays,
how to quantify entanglement is still an open problem and its solution could
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help to better understand the “strange” behavior of the quantum world.
Historically, the idea of a ‘quantum computer’ was devised by Feynman

in 1982 in order to simulate quantum mechanical systems [17]. He showed
that a classical Turing machine would experience an exponential slowdown
when simulating quantum phenomena, because the size of the Hilbert space
increases exponentially with the number of the constituents of the system.
His hypothetical universal quantum simulator or quantum computer, instead,
would allow to describe them efficiently since it is itself a quantum many-
body system and the growth in memory resources would be only linear. This
also explains why a quantum computer, operating with only a few thousands
of qubits, could outperform classical computers. For example, a system of
500 qubits (i.e., 500 two-level quantum systems), which is impossible to sim-
ulate classically, can be in a quantum superposition of as many as 2500 states.
Hence, for one tick of the computer clock, a quantum operation could operate
not just on one machine state, as serial computers do, but on 2500 machine
states at once. A similar operation could be performed on a classical su-
percomputer with about 10150 separate processors, that is impossible to be
realized, of course. David Deutsch later, in 1985, took the ideas further and
described the first true Universal quantum computer [18].

Today, from the technological point of view, these new forms of com-
putation and communication are based on the ability to control quantum
states of microsystems individually and to use them for information trans-
mission and processing. In typical quantum information transfer protocols,
information is encoded in delicate quantum states, like, for instance, the po-
larization states of single-photons, and subsequently it is manipulated and/or
transported possibly without being destroyed. The promise of a new super
quantum computer, capable of handing otherwise untractable problems, has
so attracted the interest of researchers from many different fields like physics,
mathematics and computer science. The basic idea is that, roughly speaking,
a quantum computer can operate not only on one number per register but on
superpositions of numbers and, besides, it can exploit the powerful resource
of entanglement. This quantum parallelism leads to an exponential speedup
for some computations making feasible problems that are intractable by any
classical algorithm, like, for example, the number factoring problem. This
last is one of the most important issues in the number theory and so far it
seems to belong to the class of the hard problems, i.e. exponentially memory
and time consuming. Besides, the factorization is not only a purely math-
ematical question but its computational complexity is fully used in modern
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cryptography (like RSA, after Rivest, Shamir, and Adleman) [19]. In order to
transmit secret messages between two communicating parties, these crypto
systems are essentially based on the computational complexity to factorize
very large numbers. This means that it is computationally hard, but not im-
possible, for an adversary to get information on a secret message. Typically,
for the most important private communications (e.g., bank transactions),
numbers with more than 300 digits are used: actual computers, by using the
algorithms known so far, would need thousands of years to factorize them and
so to decipher the relative secret messages encoded with these key-numbers.
Indeed, up to know, no classical algorithm is known that can factor these
large numbers in a polynomial time.

In 1994, P. Shor discovered the first quantum algorithm (today well known
as Shor algorithm) to solve the factoring problem in an efficient way, i.e. in
polynomial time and memory resources [20]. Historically, it represents a
crucial point in the development of quantum information science. Shor’s al-
gorithm could allow one to factorize a large number in a reasonable time and
to attack modern cryptography, this violating our privacy and deciphering
all private information, like credit card codes, bank and commercial trans-
actions, etc. Even though quantum computers are far from being realized
yet, the existence of such efficient factoring algorithm represents a huge chal-
lenge. In 2001, the principles of the Shor’s algorithm were demonstrated by a
group at IBM, using a small prototypical quantum computer with 7 qubits to
factorize the number 15. The candidates for the realization of quantum bits
for a future quantum computer basically are: photons and nonlinear optical
media in quantum optics, cavity quantum electrodynamics devices, ion traps,
nuclear and electron magnetic resonances (NMR) spectroscopy, atomic and
quantum dot physics, Josephson junctions and superconducting electronics,
and spin in semiconductors [1].

However, quantum information theory, does, on one hand, break cur-
rent cryptography by using a quantum computer, on the other hand, it pro-
poses also a new perfectly secure technology, i.e. quantum cryptography
[21, 22, 23]. This is a new fully quantum technique of sending messages en-
coded in individual quantum states through a so-called quantum channel,
such as the phase of photons transmitted through an optical fibre. The main
concepts over which quantum cryptography, more correctly known as quan-
tum key distribution, relies are two: 1) the Heisenberg uncertainty principle,
i.e. any measurement on a quantum state will, in general, alter it; 2) the
no-cloning theorem, i.e. the impossibility to clone generic unknown quantum
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states [24]. In other words, firstly a potential eavesdropper trying to intercept
the message cannot avoid changing it and leaving own mark, enabling two
communicating parties to detect his/her presence. Secondly, the eavesdrop-
per is unable to acquire complete information about the private message. It
is important to stress that the security of these protocols is not based on tech-
nological limits but it depends only on the postulates of quantum mechanics,
that is the best experimentally tested of all physical theories. In this field,
experiments are much further advanced than in other fields of quantum in-
formation processing, because they do not require many operations on many
qubits (like in a quantum computer), but only preparation and manipula-
tion of simple quantum states, and also because they are essentially based
on well developed quantum optics technologies. This allows to overcome
more easily the big problem of decoherence. For example, some quantum-
cryptographic protocols are successfully implemented over tens of kilometers
at rates of the order of thousand bits per second, by using single photons in
optical fibers [25]. In the last years, many interesting new concepts in the
field of quantum information [4, 5, 6, 7, 8, 9, 21, 22, 26, 27, 28, 29, 30], such
as teleportation and superdense coding, have left the theoretical domain to
be experimentally implemented and even to become commercial prototypes
like quantum key distribution systems [31]. Indeed, quantum cryptography
devices are realizable with today’s technology and have attracted private in-
vestment in several start-up companies and major corporate players in the
world. With several quantum-cryptography products already on the market,
the quantum information industry has already arrived. Free-space quantum
key distribution has been also proposed, sending single photons through open
air even in daylight [32, 33]. In this project, a long-distance transmission sys-
tem could be realized combining optical fibres and satellites. For example, in
a near future the free-space quantum cryptography might help to protect the
security of satellite television broadcasts. Recently, a quantum communica-
tion channel between space and Earth has been realized by sending single
photons from a low-Earth orbit geodetic satellite to a ground-based receiver
located in Matera (Italy) [34].

Another important and fascinating application of quantum information
science is quantum teleportation. Charles H. Bennett and his co-workers
have suggested that it is possible to transfer quantum states from one place
to another, only by using classical communication and by exploiting an en-
tanglement resource. Initially, teleportation of individual qubits has been
limited only to laboratory distances. Later, after the first experiments of F.
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De Martini and A. Zeilinger [28, 27], other techniques have allowed to reach
larger distances by exploiting the possibility of using glass fiber optics in a
channel underneath the river Danube in Vienna [35]. Efficient long-distance
quantum teleportation is crucial for quantum communication and quantum
networking schemes.

In this context, the term ‘quantum communication’ globally refers to this
important research area of quantum information theory, including quantum
cryptography, teleportation and other communication protocols, and has al-
ready found technological applications, as noted above. Loosely speaking,
quantum communication studies the transfer of a quantum state from one
place to another in the space [1, 3]. The main obstacle to the development of
quantum information technology is the difficulty of transmitting quantum in-
formation (e.g., photons) over noisy quantum communication channels (such
as an optical fiber), recovering and refreshing it at the receiver side, and then
storing it in a reliable quantum memory. Indeed, the decoherence is one of the
major obstacles to the realization of quantum information technologies. For
these reasons, the theory of open quantum systems (i.e., systems interacting
with a noisy environment), the study of quantum channels and the quantita-
tive analysis of their capacity of transmitting quantum information are some
of the main topics of quantum communication. In fact, the transition from
the initial state to the final state of a quantum system can be described in
terms of quantum channels [1]. At a mathematical level these are linear maps
which operate on the set of bounded operators of the system, preserving the
trace and (if any) the positivity of the operators on which they act. In order
to represent a “physical” transformation, i.e. a transformation that could be
implemented in an experimental laboratory, a quantum channel must also
possess the property of complete positivity (i.e. the positivity of any initial
joint operator acting on the system plus an external ancilla need to be pre-
served by the action of the map). An impressive effort has been devoted in
the last decades to study the properties of quantum channels. They play a
fundamental role in many different branch of physics, specifically in all those
sectors where one is interested in studying the decoherence and noise effects.

Therefore, it is interesting to study the fundamental limits on quantum
information transmission, that are due to the presence of noise in quantum
channels. In other words, a goal of quantum information theory is to evaluate
the information capacities of some important communication channels, i.e.
optical fiber (Bosonic channels) or transmission of qubits in quantum sys-
tems (qubit channels). In general, the capacity of a communication channel
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(Shannon, 1948) is the maximum rate, usually measured in bits per second,
at which information can be transmitted reliably from the sender’s side to
the receiver’s one with an asymptotically low probability of error.

The majority of the results obtained so far relate to two specific classes
of channels, namely the qubit channels and the Bosonic Gaussian channels.
The former are completely positive trace-preserving transformations which
act on the state of a single two-level quantum system (qubit). Due to the
small size of the Hilbert space a simple parametrization of these channels has
been obtained [36, 37] while some additivity issues [38, 39, 40] and several
classical and quantum capacities [38, 39, 41, 42, 43, 44] have been successfully
solved (see also Ref. [3] for a review). Bosonic Gaussian channels [45, 46], on
the contrary, are a specific subclass of maps acting on a continuous variable
system that preserve certain symmetries. These channels include a variety of
physical transformations that are of fundamental interest in optics, including
thermalization, loss and squeezing. As in the qubit channel case, additivity
issues [47, 48] and capacities [49, 50, 51, 52, 53, 54, 55] have been successfully
solved for Bosonic Gaussian channels. Furthermore, they allow for a com-
pact parametrization [48, 53, 56, 57] in terms of the characteristic function
formalism [58, 59, 60, 61].

In this thesis we investigate the properties of both qubit and Bosonic
Gaussian channels, using a phase space representation of a quantum state
by means of the formalism of the characteristic function, extensively used
in quantum optics. Particularly, we introduce a new property, called weak-
degradability, that allows to characterize these noisy quantum communica-
tion channels, i.e. to evaluate their capacity of transmitting quantum in-
formation, encoded in quantum systems. Using this phase-space approach,
we find that some quantum channels are not able at all to transmit quan-
tum information (anti-degradable), while for the other ones (degradable) the
quantum capacity can be greater than zero and can be calculated explicitly.
In this last case, quantum information can be successfully transferred over
noisy quantum channels. Therefore, this property represents a powerful tool
to quantify the performance of noisy quantum channels and may be very
useful for real quantum communication applications, in which the noise is
the main obstacle to practical realizations.
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This thesis is organized as follows.

In Chapter 1 we review some tools of quantum information science, use-
ful in quantum communication theory. Particularly, we describe the idea of
qubit with respect to the classical bit, the connection between entropy and
information in both classical and quantum information theory, the quantum
measurement problem and the concept of classical and quantum fidelity.

In Chapter 2, we focus on communication theory. We start describing the
background of classical communication: the idea of communication channel,
the encoding-decoding and error-correction procedures, and the notion of
channel capacity. Moreover, we recall the definitions of Gaussian channel
and degraded broadcast channel. Then we introduce quantum communica-
tion, based on the crucial idea to use quantum systems to transfer classical
and quantum information between two communicating parties. The noisy
quantum communication channels can be described as open quantum sys-
tem by using the formalism of quantum operations. Therefore, we recall the
notion of quantum capacity, Q, and we introduce a new property of quantum
channels, that we call weak-degradability, simplifying the big issue of the cal-
culation of Q [52, 53, 54, 44]. This property implies that, on one hand, for
one subclass of quantum channels (degradable) the coherent information is
additive; this fact allows one to express their quantum capacity, Q, in terms
of a single-letter formula. On the other hand, for another subclass of quan-
tum channels (anti-degradable) their quantum capacity Q is null (i.e., they
cannot be used to transfer quantum information).

In Chapter 3, we examine Bosonic Gaussian channels, that describe most
of the noise sources which are routinely encountered in optics, including those
responsible for the attenuation (beam-splitter) and/or the amplification (am-
plifier) of signals along optical fibers. In the first part, we focus on beam-
splitter/amplifier maps, their composition rules, weak-degradability proper-
ties and quantum capacity. We find that (almost) all one-mode Bosonic
Gaussian channels are unitarily equivalent to beam-splitter/amplifier chan-
nels, up to squeezing transformations [52]. Therefore, we introduce a full
classification of one-mode Bosonic Gaussian channels and, using a single-
mode canonical representation, we study the weak-degradability properties
[53]. Furthermore a new set of channels which have null quantum capacity
is identified. This is done by exploiting the composition rules of one-mode
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Gaussian maps and the fact that anti-degradable channels are not able to
transfer quantum information. In the second part of this chapter, a complete
analysis of multi-mode Bosonic Gaussian channels is proposed [54]. We clar-
ify the structure of unitary dilations of general Gaussian channels involving
any number of Bosonic modes and present a normal form, by proving the
unitary dilation theorem. The minimal number of auxiliary modes that is
needed is identified [62], including all rank deficient cases, and the specific
role of additive classical noise is highlighted. It allows us to simplify, for
instance, the weak-degradability classification. As an application of our the-
orem, we derive a canonical form of the noisy evolution of n system modes
interacting unitarily with a Gaussian environment of n modes, based on a
recent generalization of the normal mode decomposition for non-symmetric
or locality constrained situations. Moreover, we investigate the structure of
some singular multi-mode channels, like the additive classical noise channel.
The latter can be used to decompose a noisy channel in terms of a less noisy
one in order to find new sets of maps with zero quantum capacity. Particu-
larly, for the two-mode case it is possible to follow out this analysis. In this
case, apart from the simple situation of a noisy system-environment interac-
tion not coupling the two Bosonic modes, we have found a (to some extent)
counter-intuitive fact: increasing the level of the environmental noise, even
if the coherence is progressively destroyed, nevertheless the recovering of the
environment (system) output from the system (environment) output after
the system-environment noisy evolution is an easier event. The latter prop-
erty is called weak-degradability (anti-degradability) of the map. Finally, by
exploiting the composition rules of two-mode maps and the fact that anti-
degradable channels cannot be used to transfer quantum information, we
identify sets of two-mode Bosonic channels with zero capacity.

In Chapter 4 we analyze the qubit channels along the same lines followed
for Bosonic Gaussian channels [44]. Particularly, we introduce a character-
istic function formalism for qubit maps in terms of generalized displacement
operators and Grassmann variables. This new approach allows us to present
a Green function representation of the quantum evolution and then to define
the set of qubit Gaussian channels. It is shown clearly that the qubit Gaus-
sian maps share analogous properties with their continuous variable counter-
part, i.e. the Bosonic Gaussian channels. The weak-degradability properties
are also analyzed. This approach could be generalized to d-level quantum
systems (called qudit) in terms of generalized Grassmann variables [63, 64].
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Finally, we introduce a class of the so-called memory quantum channels (in
which the noise is correlated over different uses of the channel) with correla-
tions acting on pairs of qubits, where the correlation takes the form of a shift
operator onto a maximally entangled state [65]. In order to characterize the
noise introduced by these maps, we optimize analytically and numerically
all purities (measured using the p-norm, for any p) of the output states and
show that, above a certain threshold of the “memory” parameter (i.e., a
‘phase transition’ behavior), the optimal value is achieved by the maximally
entangled input state characterizing the shift, while below this threshold by
partially entangled input states whose degree of entanglement depends on
the characteristics of the quantum channel and increases monotonically with
the correlation parameter.

The thesis, after the final remarks and outlook, includes also some appen-
dices: in Appendix A we review a simple proof of Williamson theorem and
a generalized normal mode decomposition (cited in Chapter 3), in Appendix
B we present a brief excursus on Grassmann calculus, necessary to better
understand the Chapter 4, and, finally, in Appendix C a quick look at some
Fermionic channels is presented illustrating the physical difference between
these maps and the qubit channels.







Chapter 1

Quantum Information Science

Quantum information theory is a rapidly developing branch of science, that
joins quantum physics, mathematics and computer science. The basic idea is
to exploit quantum mechanics in order to introduce new powerful techniques
of communication and information processing, much more efficient than the
traditional ones, working on the physical information that is held in the state
of a quantum system.

The most popular unit of quantum information is the quantum bit or
qubit, i.e. the state of a two-level quantum system. Indeed, unlike classi-
cal digital bit (which are discrete, i.e. 0 and 1), a qubit can actually be
in a superposition of two states at any given time and can share the pe-
culiar property of entanglement with another qubit. This essentially allows
to realize quantum parallelism, that gives the possibility of an exponential
speedup for some computations and the ability to manipulate quantum in-
formation performing tasks that would be unachievable in a classical context,
such as unconditionally secure transmission of information. However, there
is the problem of how to read the information, since quantum measurements
destroy this parallelism for the Heisenberg uncertainty principle.

The research field of quantum information theory can be shared out in two
main areas: quantum computation and quantum communication. The first
one includes topics like the idea of a quantum computer/quantum simulator,
quantum algorithms, quantum circuits, quantum gates and, more generally,
quantum information processing. The quantum communication, instead, is
based on the idea to transfer quantum states in space and, according to
particular purposes, consists in quantum cryptography, teleportation, entan-
glement sharing and, more generally, the idea of quantum channel.
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In this chapter we briefly introduce the basics of quantum information
theory, starting from the description of a qubit. Then we recall the relation
between entropy and information in both classical and quantum information
theory and consider briefly the problem of quantum measurement in order
to describe how to recover the message transmitted during a quantum com-
munication. Finally, we recall another definition, useful in both classical and
quantum communication, i.e. the fidelity.

1.1 Bit vs. Qubit

The classical information is stored in a logical state 0 and 1, called bit. All
present information technology is based on the storing, the transmission and
the processing of classical bits [10].

In quantum information theory, the information is, instead, typically
stored in a two-level quantum state |ψ〉, e.g. a superposition of the states 0
and 1,

|ψ〉 = α|0〉+ β|1〉 , (1.1)

where α and β are complex numbers, and |ψ〉 is a generic quantum state
(using Dirac’s bra-ket notation). The qubit1 is then the state of a two-level
quantum system. It can be also represented as a vector in a bi-dimensional
complex vectorial space, where the states |0〉 and |1〉 form an orthonormal
basis in this space, known as computational basis.

In the von Neumann-Landau formalism2, a quantum state can be de-
scribed as a density matrix ρ [66]. For a pure state (as |ψ〉 above) the
density matrix is defined as ρpure = |ψ〉〈ψ|. In most realistic situations we
have not a complete information about a quantum system and it can be
defined only probabilistically. In other words, we are able only to assign
given probabilities pi with which the system is in a particular state |ψi〉.
In these cases, the system is said to be in a mixture of quantum states or,

1The name qubit was born in conversations between Wootters and Schumacher, and
first used in print by the latter in 1995 [69, 14].

2The density matrix was introduced, with different motivations, by von Neumann and
by Landau. On one hand, Landau was inspired by the impossibility of describing a subsys-
tem of a composite quantum system by a state vector. On the other hand, von Neumann
introduced the density matrix in order to develop both quantum statistical mechanics and
a theory of quantum measurements.
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briefly, in a mixed state. They are described by density operators of the form
ρmixed =

∑
i pi|ψi〉〈ψi|.

In general, the density operator has to satisfy some mathematical prop-
erties in order to represent a physical state. First of all, it is a self-adjoint
operator because the physical measured quantities are real numbers. Sec-
ondly, it is a trace-one operator (Tr[ρ] = 1) because of the normalization
of the quantum state, i.e., roughly speaking, all the probability distributions
are normalized to unity. Thirdly, it is a positive operator, i.e. ρ > 0, because,
ultimately, the probabilities calculated by ρ are always positive numbers. Fi-
nally, one can show that for pure state Tr[ρ2] = 1, while for mixed states
Tr[ρ2] < 1. In particular, the density operators of a qubit can be represented
by the following 2× 2 matrix:

ρ ≡
(

p γ
γ∗ 1− p

)
, (1.2)

with p being real number in the range [0, 1], γ complex and |γ|2 ≤ p(1− p);
for pure qubit states one has |γ|2 = p(1 − p). We recall that the identity
and Pauli matrices form a basis for C2×2 so that any 2× 2 matrix ρ can be
written as r′011 + ~r

′ · ~σ where ~σ denotes the vector of Pauli matrices, r′0 ∈ C
and ~r

′ ∈ C3. Then, for ρ = r′011 + ~r
′ · ~σ one has

a) ρ is self-adjoint ⇐⇒ (r′0, ~r
′
) is real, i.e., r′0 ∈ R and ~r

′ ∈ R3;

b) Tr[ρ] = 1 ⇐⇒ r′0 = 1
2
;

c) ρ > 0 ⇐⇒ |~r ′| ≤ r′0.

Thus, {11, ~σ} also form a basis for the real vector space of self-adjoint matrices
in C2×2 and every density matrix can be written in this basis as ρ = 1

2
[11+~r·~σ]

with ~r ∈ R3 and |~r| ≤ 1. Furthermore,

d) ρ is a one-dimensional projection (or pure state) ⇐⇒ |~r| = 1.

This elegant geometric method (see Fig. 1.1) for describing qubits is
known as Bloch representation and ~r is called the Bloch vector of a three-
dimensional sphere of radius 1, named Bloch sphere [1, 14, 67]3. Note that
the states |0〉 and |1〉 lie on the two poles of the Bloch sphere. This implies

3Actually, E. Majorana introduces for the first time the so-called Majorana sphere to
represent spinors by a set of points on the surface of a sphere in 1932 [67]. These results
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that a classical bit could only lie on one of the poles and, then, it is intuitive
that one can, in principle, encode much more (quantum) information in a
qubit by using the entire Bloch sphere.

Figure 1.1: Every density matrix can be written in the basis {11, ~σ} as ρ =
1
2
[11 + ~r · ~σ] with ~r ∈ R3 and |~r| ≤ 1: ~r is a real vector, called Bloch vector,

of a three-dimensional sphere of radius 1, named Bloch sphere.

Usually, one is interested in a composite quantum system made up of
two or more distinct physical subsystems (e.g., a system composed by many
qubits). Its state space is built up from the tensorial product of the state
spaces of each physical subsystem. This opens up the possibility to have one
of the most peculiar features associated with composite quantum systems, i.e.
entanglement4 [13, 14] (see also Refs. [15, 16] for a review). An entangled
state is defined as a state of a composite system which cannot be written
as a tensorial product of states of individual subsystems. For example, the
two-qubit state (known as Bell state),

|ψ〉 =
|00〉+ |11〉√

2
, (1.3)

have been extended later by Bloch and Rabi in 1945, who contributed to spread Majorana’s
results. Nowadays, this representation of a two-level quantum system is known mainly as
Bloch sphere [1, 14]. The historical acknowledgement to E. Majorana for the introduction
of this spinorial geometrical representation has been discussed extensively by R. Penrose
and others (Penrose, 1987, 1993, and 1996) [67].

4In 1935, E. Schrödinger introduced the word Verschränkung to describe this phe-
nomenon and, personally, translated it into English as entanglement [13, 14].
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is an entangled state since there are no single qubit states |a〉 and |b〉 such that
|ψ〉 = |a〉 ⊗ |b〉. When, instead, such factorization is possible, the quantum
state is called separable. Similarly, a mixed state ρ of a composite system
AB is called separable if it can be written as a probability distribution over
uncorrelated states, product states, i.e.

ρ =
∑

i

pi ρAi ⊗ ρBi , (1.4)

where pi is a probability distribution, and ρAi and ρBi are density operators
related to the subsystems A and B, respectively. Otherwise, the mixed state
is called entangled. The entangled states play a crucial role in quantum
computation and in quantum communication. They have not analogue in
classical mechanics.

In the context of composite quantum systems, the density operator can
be used also to describe each subsystem. Such a description is provided by
the so-called reduced density operator. Indeed, suppose to have a composite
system AB in the state ρAB, the reduced density operator, for instance, for
the system A is defined as

ρA ≡ TrB[ρAB] , (1.5)

where TrB is the partial trace over system B. One can easily verify that ρA

satisfies all the properties (see above) that a density operator has to satisfy.
Moreover, it provides the correct statistics for the measurements made on
system A. Rigorously, the partial trace respect to the subsystem B is defined
in the following way

TrB [|a1〉〈a2| ⊗ |b1〉〈b2|] ≡ c |a1〉〈a2| , (1.6)

where |a1〉 and |a2〉 are any two vectors in the Hilbert space of A and |b1〉
and |b2〉 are any two vectors in the Hilbert space of B and c is the scalar
product c = 〈b2|b1〉. A similar definition is given for the partial trace over the
system A and, more generally, the concept of reduced density operator does
apply also for composite systems made up of more than two subsystems. We
observe that, if a composite system AB is in a pure entangled state ρAB, then
the subsystems A and B are always in a mixture of states, i.e. Tr[ρ2

A] < 1
and Tr[ρ2

B] < 1.
The inverse operation of the partial trace is the purification of a quantum

state [1, 14]. Indeed, every mixed state ρ can be thought of as arising from
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a pure state |ψ〉 on a larger Hilbert space (system plus ancilla). In other
words, given a generic (mixed) quantum state ρ ∈ H of a system A, one can
always find a pure state |ψ〉 such that

ρ = TrB[|ψ〉〈ψ|] , (1.7)

where |ψ〉 is the state of a composite system AB, with B being another system
(ancilla). In particular, for a given mixed state with spectral decomposition
ρA =

∑
k pk |k〉A〈k| ∈ H, such a purification is given by one of the following

state in HA ⊗HB,

|ψ〉AB =
∑

k

√
pk |k〉A ⊗ |k〉B , (1.8)

where |k〉B is an arbitrary orthonormal basis of HB.

1.2 Entropy and information

In this section we start describing briefly the connection between entropy
and information in classical information theory [10]. Then, we extend these
ideas to the quantum case by using the notion of von Neumann entropy, that
is the quantum version of the classical Shannon entropy.

Historically the notion of entropy appeared for the first time in the context
of thermodynamics and statistical mechanics, but later its meaning assumed
an information theory perspective because of the work of Shannon. Indeed,
information can be associated to the ignorance level about some random
variable. For instance, one can encode n letters of a message in the values
x1, x2, . . . xn assumed by a discrete random variable X (classical information
source) with probabilities p1, p2, . . . pn. In this context, the Shannon (infor-
mation) entropy is a measure of the uncertainty associated with the random
variable X. Therefore, the entropy can be used to quantify the resources
necessary for storing information or, also, to define the irreversibility of the
computation because of information loss, according to the Landauer princi-
ple [68]. This principle states that, given a computer in an environment at
temperature T , when an information bit is erased, the entropy of the envi-
ronment increases at least by kB ln 2, where kB is the Boltzmann constant.

At a mathematical level, the Shannon entropy of a discrete random vari-
able X, assuming the values x1, x2, . . . xn with probabilities p1, p2, . . . pn (in
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the range [0, 1]), respectively, is given by

H(X) ≡ H(p1, p2, . . . pn) ≡ −
∑

x

px log2 px . (1.9)

Note that in this definition the logarithms are taken in base 2, as usual, in
such a way that the information is measured in bits. Moreover, one makes the
convention that 0 log2 0 ≡ 0, because a never occurring event does not con-
tribuite to the entropy; mathematically, it is justified by limx→0 x log2 x = 0.
The Shannon entropy is also used to measure the complexity of an informa-
tion source, i.e. to quantify the extent to which one can compress the informa-
tion being produced by a classical information source [10, 1, 14] (Shannon’s
noiseless channel coding theorem, see Sec. 2.1.2). In this context, the data
compression problem corresponds to the idea of determining which are the
minimal physical requirements necessary to store an information source.

Now let us suppose to have two random variables, X and Y , with proba-
bility distribution p(x) and p(y), respectively. It is then interesting to relate
the information content of X with the one of Y , by defining the conditional
entropy and the mutual information. First of all, one has to introduce the
joint entropy of X and Y as

H(X, Y ) ≡ −
∑
xy

p(x, y) log2 p(x, y) , (1.10)

which measures the global uncertainty on both the random variables. Here
p(x, y) is the joint probability distribution, i.e. the probability of two simul-
taneously occurring events x and y. Now, assuming to know the value of Y ,
i.e. to have H(Y ) bit of information, the remain uncertainty about (X, Y )
is due to our remaining ignorance of X. The conditional entropy is then
defined as follows

H(X|Y ) ≡ H(X,Y )−H(Y ) , (1.11)

and it measures the information content about X conditioned to the ‘a priori’
knowledge of Y . Finally, one is usually interested to measure the common
information shared between X and Y , i.e. the so-called classical mutual
information. It is given by

H(X : Y ) ≡ H(X) + H(Y )−H(X,Y ) ≡ H(X)−H(X|Y ) . (1.12)
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This quantity plays an important role in quantifying the capability of trans-
ferring information over classical communication channels (see Sec. 2.1).
Another way to write down the mutual information in terms of the proba-
bility distributions is the following [10]:

H(X : Y ) ≡
∑
xy

p(x, y) log2

p(x, y)

p(x)p(y)
. (1.13)

This quantity measures the dependence between the two random variables; it
is symmetric in X and Y , always nonnegative, and equal to zero if and only
if X and Y are independent. The entropy is sometimes referred to as the
self-information of a random variable, because it corresponds to the mutual
information of a random variable with itself, i.e. H(X) ≡ H(X : X).

Von Neumann entropy

As the entropy plays a key role in classical information theory [10], it does
the same in quantum information theory, since it measures how much un-
certainty there is in a quantum state [1, 14]. As we have seen in Sec. 1.1,
the quantum states are represented, in the von Neumann approach [66], by
density operators. In quantum mechanics, they play a role which is similar to
the probability distributions in classical mechanics. By using this analogy,
the entropy of a quantum state ρ (quantum information source) is a sim-
ple generalization of the Shannon entropy. Particularly, the von Neumann
entropy [66] is

S(ρ) ≡ −Tr [ρ log2 ρ] , (1.14)

that can be written in terms of the eigenvalues, λx, of ρ, i.e.,

S(ρ) ≡ −
∑

x

λx log2 λx , (1.15)

where 0 log2 0 ≡ 0, like in the Shannon definition. This quantity satisfies the
following properties:

a) It is non-negative and zero if and only if the state is pure;

b) It is at most log2 d if ρ ‘lives’ in a d-dimensional Hilbert space. This
upper bound is obtained if and only if the system is in the completely
mixed state ρ = 11d/d;
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c) In a pure bipartite (composite system AB) state, one has S(A) = S(B).
The subsystem entropy, e.g. S(A), is positive (mixed state) if the pure
bipartite state is entangled;

d) The von Neumann entropy is a concave function of its arguments. In-
deed, given the probabilities pi (real non-negative numbers such that∑

i pi = 1) and the corresponding density operators ρi, the following
inequality is satisfied:

S
( ∑

i

piρi

)
≥

∑
i

piS(ρi) . (1.16)

As for the Shannon entropy, the von Neumann entropy is also used to de-
scribe the complexity of a quantum information source, i.e. to quantify how
much quantum information (quantum state), contained in a quantum infor-
mation source, can be compressed. The quantum equivalent of the Shannon
result is Schumacher’s quantum noiseless channel coding theorem [69, 1, 14].

Besides, in analogy to the Shannon entropy, for quantum states it is possi-
ble to define the quantum joint entropy, the quantum conditional entropy and
the quantum mutual information [1, 14]. For a quantum system, composed
by the subsystems A and B, the quantum joint entropy is

S(A,B) ≡ −Tr[ρAB log2(ρAB)] , (1.17)

where ρAB is the density operator for the composite system. Note that one
can have S(A,B) ≤ S(A). Indeed, if the composite system AB is in a pure
entangled state, then S(A,B) = 0 while S(A) > 0 because each subsystem
is in a mixed state. This is a peculiar property of the von Neumann entropy,
because of entanglement, and it is not true for classical composite systems.

In the same way, the quantum conditional entropy and mutual informa-
tion are, respectively, given by

S(A|B) ≡ S(A,B)− S(B) , (1.18)

S(A : B) ≡ S(A) + S(B)− S(A,B) = S(A)− S(A|B) = S(B)− S(B|A) .

1.3 Quantum measurements

In classical communication the transmitted messages are recovered by per-
forming measurements on the received signals. Analogously, in a quantum
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communication scenario, at the end of the communication process, in order to
recover the original message, the user has to perform quantum measurements
on the physical systems (decoding).

The quantum measurement is still today a not yet well understood prob-
lem that has the historical roots in the Einstein-Bohr debates and in some
paradoxes, i.e. the Einstein-Podolsky-Rosen (EPR) thought experiment [70]
and the Schrödinger’s cat state [71]. Briefly, the difficulties stemmed from
an apparent conflict between the linear, reversible and deterministic dynam-
ics of quantum mechanics and the nonlinear, irreversible and probabilistic
process of quantum measurement. One of the postulates of the quantum
mechanics states that during measurement a non-linear collapse of the wave
packet occurs. Now we will describe briefly, first, the simple case of stan-
dard projective (von Neumann) measurements and then the most general
formulation of a measurement in terms of positive operator-valued measure
(POVM). The POVM formalism arises essentially from the fact that projec-
tive measurements on a larger system will act on a subsystem in such a way
that they cannot be described by projective measurement on the subsystem
alone [1, 14].

1.3.1 Von Neumann measurements

Let us consider a physical system in the state ρ of a finite-dimensional
Hilbert space and an observable O we want to measure by a projective (von
Neumann) measurement [66]. Particularly, the spectral decomposition of a
non-degenerate5 observable O is

O =
∑

n

on|n〉〈n| ≡
∑

n

onPn , (1.19)

with {Pn} being a complete set of orthogonal projectors operators (i.e.,
PnPm = Pnδnm and

∑
n Pn = 11). According to the standard (von Neumann)

measurement postulate [66], the possible outcomes of the measurement pro-
cess correspond to the eigenvalues on of the observable O with probability

pn = 〈n|ρ|n〉 = Tr[ρPn] , (1.20)

and, immediately after the measurement, the state of the quantum system is
‘projected’ to PnρP †

n/pn.

5The projective measurement was originally formulated by von Neumann for non-
degenerate observables [66] and, later, generalized by Lüders to the degeneracy case [72].
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1.3.2 Positive operator-valued measurements

The von Neumann measurements, described above, give us two rules, de-
scribing the measurement statistics and the post-measurement state of the
system, respectively. However, in a realistic scenario (i.e., in a experimental
laboratory) one is interested only on the probabilities of the respective mea-
surement outcomes, irrespective of the post-measurement state. This is the
case, for instance, of a real experiment in which the system is measurement
only once. In this context, the positive operator-valued measure (POVM)
formalism is a mathematical tool well adapted to the analysis of more general
measurements [1, 14, 2]. Suppose to have a system in the state |Ψ〉 and a
measurement performed on the system described by measurement operators
On. The probability of the outcome n is, then, given by

pn = 〈Ψ|O†
nOn|Ψ〉 . (1.21)

Now, we define

En ≡ O†
nOn , (1.22)

where En is a positive operator such that
∑

n En = 11 and pn = 〈Ψ|En|Ψ〉.
These operators En are called POVM elements of the measurement and the
complete set {En} is known as a POVM. For example, in a projective mea-
surement (and only in this case) the POVM elements are the same as the
measurement operators (projectors) Pn, i.e. En ≡ P †

nPn = Pn.
Just to give a concrete example, an ideal photodetector implements the

POVM {|n〉〈n|}∞n=0 on the electromagnetic field, with |n〉 being the number
states. However, in real quantum optics experiments, the photodetector has
the sensibility of a single photon but does not measure the photon number.
In other words, it is described by the element POVM, corresponding to one
‘click’, and by the other one, corresponding to the result of ‘no-click’.

According to the Naimark theorem (1940), any generalized measurement
can be implemented by unitary dynamics and projective (von Neumann)
measurements [73]. In other words, let us consider a system and environment
interacting through an unitary operator, which simultaneously applies the
operators On to the system and takes the environment from the initial state
|0〉 to some state |n〉, i.e.

U |Ψ〉|0〉 =
∑

n

On|Ψ〉|n〉 . (1.23)
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The normalization of the final state for any |Ψ〉,
〈0|〈Ψ|U †U |Ψ〉|0〉 =

∑
n

〈Ψ|O†
nOn|Ψ〉 = 1 , (1.24)

is a consequence of the fact that
∑

n O†
nOn = 11.

Now we perform a projective measurement on the environmental state
(rather than the system one) using the operator O =

∑
n onPn, as in Eq.

(1.19), and the probability of outcome n becomes pn = 〈Ψ|O†
nOn|Ψ〉, as in

Eq. (1.21). The final state of the whole system is

PnU |Ψ〉|0〉√
p

n

≡ On|Ψ〉|n〉√
p

n

. (1.25)

1.4 Classical and Quantum Fidelity

During a communication protocol the message is always unavoidably per-
turbed by the presence of physical noise. It is so interesting to evaluate how
this noise modifies the state encoding information, i.e. how the received mes-
sage differs from the original one. The difference between the final state and
the initial state of the communication protocol can be measured by using the
concept of fidelity.

In classical information theory, for any two classical probability distribu-
tions, {pi} and {qi}, the fidelity is defined as

F (pi, qi) ≡
( ∑

x

√
piqi

)2

. (1.26)

In other terms, the classical fidelity is the inner product of (
√

p1, . . .
√

pn) and
(
√

q1, . . .
√

qn) viewed as vectors in Euclidean space. Note that F (pi, qi) = 1
when {pi} = {qi} and, in general, 0 ≤ F (pi, qi) ≤ 1.

The quantum extension of this notion from probability theory is the so-
called quantum fidelity. It measures the “closeness”6 of two quantum states,
ρ and σ, i.e. it is measures how close two quantum states are in the Hilbert
space [1, 14, 74, 75]. Uhlmann [74] defines it as follows

F (ρ, σ) ≡
(
Tr

[√
ρ1/2σρ1/2

] )2

. (1.27)

6Note that, however, it does not define a metric on the space of density operators; for
instance, when two quantum states are equal (i.e., ρ = σ), F (ρ, ρ) = Tr[ρ] = 1. The same
fact holds for the classical fidelity.
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It assumes values in the range [0, 1] and it decreases as two states become
more distinguishable while it increases as they become less distinguishable.
Indeed, when the two quantum states are equal (i.e., ρ = σ), the fidelity
is one, while, for example, the fidelity of two orthogonal pure states is
exactly zero. Moreover, this quantity is symmetric in its arguments, i.e.
F (ρ, σ) = F (σ, ρ), and it is invariant under unitary transformations U , i.e.
F (UρU †, UσU †) = F (ρ, σ).

Let us restrict to two special cases in which it is possible to give the
fidelity a more explicit form. The first one is when ρ and σ commute, i.e.
diagonal in the same basis,

ρ =
∑

i

ri |i〉 〈i| σ =
∑

i

si |i〉 〈i| , (1.28)

where {|i〉} is an orthonormal basis in the Hilbert space associated to a
particular quantum system. In this case, the fidelity is

F (ρ, σ) =

(
Tr

[∑
i

√
risi |i〉 〈i|

])2

=
( ∑

i

√
risi

)2

= F (ri, si) . (1.29)

It is easy to realize that this quantity is the classical fidelity, F (ri, si), between
the distributions of eigenvalues, ri and si, respectively, of ρ and σ. The reason
is that, when ρ and σ commute, the quantum states behave classically.

The second example, in which a more explicit form for the fidelity does
exist, is represented by the fidelity between a pure state, |ψ〉, and a generic
quantum state, ρ. In this circumstance we have

F ( |ψ〉 , ρ) =
(
Tr

[√
〈ψ| ρ |ψ〉 |ψ〉 〈ψ|

] )2

= 〈ψ| ρ |ψ〉 , (1.30)

that is the mean value of ρ in the state |ψ〉.
These concepts will be useful in the next chapter, in which the idea of

communication channel is explained. For instance, perfect (classical or quan-
tum) fidelity (i.e., equal to one) in transmitting messages from the input to
the output side means that the initial (classical or quantum) state can be
reconstructed unambiguously from the output. This ideal situation refers to
a noise-free channel with the (classical or quantum) capacity of transmit-
ting (classical or quantum) information equal to one. In the real situations,
there are unavoidable noise effects and errors during the communication and
the main goal is essentially to maximize the fidelity between the output and
input states. These considerations will be clearer in the following chapter.





Chapter 2

Communication Theory

The communication theory is the branch of information science which stud-
ies the transmission of information encoded in physical systems between two
communicating parties. In this chapter, first of all we describe the back-
ground of classical communication and classical capacity in Sec. 2.1. Then,
in Sec. 2.2, we consider the idea to use quantum systems (e.g., photons)
to transfer classical and quantum information between two communicating
parties (e.g., through an optical fiber): it leads to the so-called quantum
communication theory. The main obstacle to the development of quantum
communication technology is represented by the difficulty of transmitting
quantum information over noisy quantum communication channels. Real
quantum systems suffer from unwanted noisy interactions with the external
environment (decoherence). At a mathematical level, they can be described
by the formalism of open quantum systems, that we shall review in Sec. 2.2.1.
The quantitative analysis of the capability of transmitting quantum states
(quantum information) through a quantum channel leads to the notion of
quantum capacity (Sec. 2.2.6). Finally, we characterize quantum channels
with a new property, i.e. weak-degradability, that enables to considerably
simplify the challenging open problem of the evaluation of the quantum ca-
pacity and to easily identify those channels that cannot be used to transfer
quantum information (Sec. 2.3).
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2.1 Classical communication

In the early 1940s the transmission of information at a positive rate with neg-
ligible error probability was considered impossible. Later, Shannon proved
that this error probability can be made nearly zero for all communication
rates below a certain threshold, called channel capacity [10]. The latter
quantity can be computed by simply analyzing the noise characteristic of the
channel. In particular, Shannon argued that the signal cannot be compressed
below some irreducible complexity of the information source. In order to ex-
plain these results, we start by describing a generic communication channel
(in Fig. 2.1) as composed by the following 4 parts:

1. An information source, which produces a message to be communicated
from the sender to the receiver, e.g. symbols out of some finite alphabet.

2. A transmitter, which transforms the message into a physical signal
suitable for the transmission over the channel (encoding).

3. A physical channel: this is the physical (noisy) medium used to trans-
mit the signal between the two sides of the communication.

4. A receiver of the message. Her/his goal is to perform an inverse op-
eration (from the signal to the message) with respect to the encoding
(decoding). The resulting output signal sequence is usually random
but has a probability distribution that depends on the input sequence.
Therefore, he/she tries to recover the original message, despite the
presence of noise in the channel.

The transfer of information is a physical process and therefore is unavoid-
ably subjected to the uncontrollable environment noise and imperfections in
the physical mechanism of signaling itself. The communication is success-
ful when the two users agree on the message that was sent. A communi-
cation channel can be described as a system in which the output sequence
depends probabilistically on the input sequence. Since two different input se-
quences may give rise to the same output sequence, the inputs are confusable.
However, we can choose some particular sequences of input symbols, called
codewords, that are distinguishable at the output side in a such way that
the particular input can be reconstructed with a negligible error probability.
Therefore, using this efficient encoding, we can transmit and reconstruct a
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Sender Receiversignal

Noise

Figure 2.1: Scheme of a generic communication channel.

message at the receiver side with very low probability of error. The maximum
rate at which this scheme can be implemented is essentially the capacity of
the channel (see Sec. 2.1.2).

Mathematically, let us consider a classical communication channel Φ,
in which a letter x ∈ X is sent and y ∈ Y is received, with probabil-
ity p(x) and p(y), respectively [3, 10]. The channel is completely charac-
terized by the probability transition matrix p(y|x), i.e. the probability to
get the information y ∈ Y at the output side of the channel if x ∈ X
was sent at the input side. If X = Y an ideal channel corresponds to
have p(y|x) = δxy, in which case the information is transmitted without
errors. Actually, p(y) =

∑
xy p(y|x)p(x) is the probability of getting y and

p(x, y) = p(y|x)p(x) is the probability that x is sent and y is received.
A channel is called memoryless if the probability distribution of the out-

put, p, depends only on the input at that time and is conditionally indepen-
dent of previous channel inputs and outputs. In the following we will often
utilize the expression “use of the channel” referring specifically to a single
transmission through the channel and many successive uses correspond to
the situation in which, after receiving the output (relative to the first in-
put) another input is sent and so on. Note that, some channels can exhibit
memory effects, i.e. correlated noise affecting subsequent uses of the channel.
In our communication scenario, sequences of input signals are sent through
memoryless channels and, at the end side, because of the presence of noise,
one receives corrupted output sequences, that, however, depend only on the
input sequences at that time. In the next section we will show how to reduce
the effect of noise during the transmission and how to decode the corrupted
output sequence in order to recover the original message.
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2.1.1 Encoding, decoding, and error-correction

As described above, the design of a communication system can be essentially
reduced to two separate parts: (1) source coding, and (2) channel coding.
This is a consequence of the source-channel separation theorem [10]. On one
hand, the first part is a problem of data compression and consists in remov-
ing all redundancy in the data to form the most compressed and efficient
representation of them. For example, most modern communication systems
are digital and data are reduced to a binary representation; in this way dif-
ferent kinds of information (e.g., audio, video, etc.) are transmitted over
the same classical channel. On the other hand, the channel coding, instead,
is essentially a problem of data transmission, in which one tries to reduce
the errors which unavoidably appear during the transmission through the
classical channel, e.g. adding redundancy in a controlled way. The channel
encoding can thus be designed independently of the source coding in order
to achieve optimal performance. Sometimes, however, it may be better to
send the uncompressed information over the noisy channel rather than the
compressed version. Quantitatively, one requires that the classical fidelity
between the input and the output is as close to one as possible (see Sec. 1.4).

In classical information theory the most obvious encoding procedure is
to repeat information, in order to recover the original message even if some
information is lost or corrupted (redundancy technique). In particular, it
essentially consists in protecting a bit with many copies of itself; if one wants
to send 0, he sends 000, and, to send 1, he sends 111. Note that, since
this scheme, for instance, uses three symbols for each bit, it has a rate of
1/3 bit per symbol. On the other side, the optimal decoding procedure is
realized taking the majority vote of each (output) block of three received
bits. For example, if the noise has corrupted the string in such a way that
000 becomes 010, the decoding process is represented by measurement of
the final state of the string and then by decoding the block as 0. This type
of code is called repetition code. However, if (and only if) more than one
bit is changed in one block, then that block is irremediably corrupted and
an error occurs, despite the encoding-decoding scheme. For instance, if 000
becomes 011, one decodes the block as 1 and does a mistake. Using longer
repetition codes, one can achieve an arbitrarily low error probability, but it
is not convenient from a practical point of view because the rate of the code
also goes to zero with the block length. In practice, more sophisticated error-
correction techniques are implemented and, in effect, the presence of the noise
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can be efficiently controlled and overcome. A good example of application of
these ideas of classical information theory is represented by the use of error-
correcting codes on compact discs and DVDs. Nowadays, other more complex
schemes, like turbo codes and low-density parity-check (LDPC) codes, are
successfully applied to wireless and satellite communication channels.

2.1.2 Classical capacity

The maximum number of distinguishable output signals for n uses of a com-
munication channel grows exponentially with n and the exponent is properly
defined as the channel capacity. Of course, one can obtain perfect com-
munication using the channel an infinite number of times but it is not an
efficient way of communicating. For this reason, one is interested in the rate
of reliably transmitted bits per channel use.

The most famous success of classical information theory is the charac-
terization of the channel capacity as the maximum of the classical mutual
information of the channel [11, 10]. In particular, if p(x) and p(y) are the
probability distributions of the input and the output states, one can consider
the mutual information of the channel, i.e. H(X : Y ) as in Eq. (1.13), with
p(x, y) = p(y|x)p(x) and p(y|x) being the probability transition matrix (see
Sec. 2.1). The mutual information describes, roughly speaking, the informa-
tion shared by p(x) and p(y). For instance, if p(x) and p(y) are completely
uncorrelated [i.e., p(y|x) = p(y) and p(x, y) = p(y)p(x)] we get a null mutual
information, that is H(X : Y ) = 0 (see Sec. 1.2).

Thus, at a mathematical level, one can define the information channel
capacity as follows.

Definition 1 (Shannon) The information channel capacity, C(Φ), of a
memoryless communication channel Φ is defined as

C(Φ) = max
p

H(X : Y ) (2.1)

where the maximum is taken over all the possible probability distributions of
the input state.

Since H(X : Y ) ≥ 0, the channel capacity is always nonnegative. The
presence of the maximum is justified by the fact that the mutual information
H(X : Y ) is a concave function of p over a closed convex set and, therefore, a
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local maximum is also a global maximum. Usually, this maximum is obtained
by using standard nonlinear optimization techniques, as the gradient search.
However, in general, there is no closed-form solution for the classical capacity.

An operational definition of the channel capacity is the highest rate of
transmitted bits per channel use at which information can be sent with a
vanishingly low error probability. Shannon established that the information
channel capacity in Eq. (2.1) is equal to the operational version in his second
theorem (channel coding theorem, 1948) [11, 10]. It is a fundamental theo-
rem of classical information theory and is rather counter-intuitive because,
in order to correct the channel errors, one has to use correction processes
that also contain errors and so on, at infinitum. An important idea is that
using the same channel many times in succession, the law of large numbers
comes into play. In fact, it states that it is always possible to transmit clas-
sical information in a classical communication channel in an error-free way
up to a given maximum rate (capacity) through the channel. The Shannon
coding theorem showed that this limit can be achieved by using codes with a
long (enough) block length (i.e., particular typical input sequences, known as
codewords, corresponding to distinguishable output states in such a way that
the input can be recovered efficiently with an arbitrarily low error probabil-
ity). In this theorem it is shown that, at least, one good code is represented
by the randomly generated code. However, in practical communication sys-
tems, there are limitations on the code complexity that we can use and the
real rate of communication of information over the channel is, usually, below
this ultimate limit.

Now, let us show some examples of classical channels, trying to calcu-
late their information capacities [10]. The simplest classical communication
channel is the noiseless binary channel. It is a channel in which the binary
input is reproduced exactly at the output, i.e. any bit is transmitted and re-
ceived without error (ideal channel). Therefore, in each transmission we can
send one bit reliably to the receiver and the capacity assumes the maximum
possible value, i.e. C = 1. It can be obtained by using {p(x)} = {1

2
, 1

2
}.

The basic example of a noisy communication system is the binary sym-
metric channel. The channel has again a binary input, while the output is
equal to the input with probability 1 − p. For example, if a user sends the
input 0, at the output side one receives 0 with probability 1− p and 1 with
probability p. In this simple case, the channel capacity can be calculated
explicitly and is given by C = 1 + p log p + (1 − p) log(1 − p) = 1 − H(p)
(with H(p) being the so-called binary entropy function) and it is measured,
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of course, in bit per transmission. It is obtained with a uniform input distri-
bution.

Another important classical channel is the binary erasure channel, in
which some bits are lost rather than corrupted as in the binary symmetric
one. In other words, the input bits are erased with probability α but, now,
the receiver knows which bits are lost. Here, the input states are two, 0
and 1, while the output states are three, 0, 1, and e, where e is the event
associated to the lost bit. The capacity of this channel is C = 1 − α and,
intuitively, it corresponds to the fact that one can recover at most a fraction
1− α of bits.

2.1.3 Gaussian channels

Up to now, we have analyzed discrete channels, i.e. systems consisting of
finite input and output alphabets. The most important continuous alphabet
channel is the so-called Gaussian channel [10, 76]. It is characterized by an
output yi ∈ Y at the time i, that is the sum of the input xi ∈ X and a
Gaussian noise zi ∈ Z, i.e.

yi = xi + zi (2.2)

where zi is an independent and identically distributed (i.i.d.) variable from
a Gaussian distribution Z with variance σ and independent from the input
signal X. A characteristic property of Gaussian channels is that they map
input Gaussian distributions into output Gaussian distributions.

If the noise variance is null, the transmission goes without errors. Further-
more, in this case X can assume any real value, so the channel can transmit
an arbitrary real number with no error and the channel capacity is infinite.
On the other hand, if σ 6= 0 and there are no further conditions on the input,
one can choose an infinite subset of inputs such that the relative outputs are
distinguishable with an arbitrary vanishingly low error probability, and the
capacity becomes again infinite. In brief, the channel capacity is infinite if
at least one of the two following conditions is verified: 1) the noise variance
is zero, 2) no constraints are assumed on input1. Usually, the most common
limitation on the input signal is represented by an energy or power constraint.

1A similar problem will be present for Gaussian channels of quantum Bosonic systems,
analyzed in Chapter 3.
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Suppose to transmit a codeword (x1, x2, . . . xn) over the Gaussian channel,
the following average power restriction can be required, i.e.

1

n

n∑
i=1

x2
i ≤ P , (2.3)

where P is a fixed real number.
Some widespread communication channels, like wired and wireless tele-

phone channels, radio and satellite links, are well described by Gaussian
channels. Indeed, in practical channels, since the cumulative effect of a large
number of small random effects is approximately normal (central limit theo-
rem), in a large number of situations the Gaussian assumption is valid and
the noise can be considered additive, as in Eq. (2.2). In this context, the
channel capacity is obtained as in Eq. (2.1) but maximizing the mutual in-
formation of the channel only over Gaussian distributions p(x) with a power
constraint P on the average of X2, i.e. 〈X2〉 [10]. In this way, one can also
find out that the capacity of a Gaussian channel Φ with power constraint P
and noise variance σ is

C(Φ) =
1

2
log

(
1 +

P

σ

)
(2.4)

and it is measured in bit per transmission.

2.1.4 Degraded Broadcast channels

Suppose to have a channel with one input alphabet X and two output
alphabets Y1 and Y2 and a probability transition function p(y1, y2|x), i.e. the
probability of getting the output symbols y1 and y2, if x is sent. This channel
is called a broadcast channel and corresponds to the real situation in which
there are one sender and two receivers [10]. Such a channel is said to be
physically degraded if

p(y1, y2|x) = p(y2|y1)p(y1|x) . (2.5)

A broadcast channel is called stochastically degraded if its conditional
marginal distributions are the same as that of a physically degraded broad-
cast channel, i.e. there exists a distribution p′(y2|y1) such that

p(y2|x) =
∑
y1

p′(y2|y1)p(y1|x) . (2.6)
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In other terms, the receiver 1 can recover the output of the receiver 2 just
applying another channel, i.e. p′(y2|y1), to his/her output state y1. Such
property of classical broadcast channels will be extended to quantum com-
munication in Sec. 2.3 and will be analyzed in detail for some important
classes of quantum channels throughout this thesis.

2.2 Quantum communication

Quantum communication follows along the same principles of classical com-
munication with the crucial difference that here the information is encoded
not in a classical system, e.g. the state on or off of a capacitor, but in a quan-
tum system, e.g. the polarization of a photon transmitted through an optical
fiber. In this context, the quantum analog of a discrete information source is
an ensemble of pure or mixed states ρ1, ρ2, . . . ρn emitted with probabilities
p1, p2, . . . pn. Similarly, the quantum version of a classical noisy channel is a
transformation that maps the input quantum states, on which the messages
have been encoded, into the corresponding output quantum states which have
been degraded by the interaction with an external (quantum) environment.

If the states ρi of a quantum source are all orthogonal and the channel
preserves such orthogonality, the source can be treated as purely classical and
quantum communication can be described as a classical communication line.
Indeed, the sender measures the source, transmits the measurement results
to the receiver, who can make arbitrarily many faithful copies of the source
state. However, non-classical behaviors emerge when the source emits “non-
orthogonal” or “entangled” states ρi: this leads to the notion of classical
capacity of a quantum channel.

More generally, quantum communication gives us also the possibility to
transmit on quantum systems not only classical information, that is bits en-
coded in quantum systems, but also “genuine” quantum information (e.g.,
qubit). This happens for instance when one tries to communicate a single
copy of an “unknown” quantum system: in this case no classical measure-
ment allows to extract complete information about the source state; then
the sender can only transmit a unknown state ρi to the receiver, who tries
to recover the original source state. This leads to the concept of quantum
capacity of quantum channels. Interestingly enough, the transmission of
unknown quantum states can be used to share entanglement among many
parties, sending, for instance, one of two subsystems to another place. In
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fact, it is very useful for many quantum information protocols, like quantum
teleportation. On the other hand, by using only classical communication
it is impossible to share entanglement among different parties, because any
measurement on any of two entangled subsystems will completely destroy it.

As we will see in Sec. 2.2.6, the classical capacity of a quantum channel
“measures” the communication efficiency in transferring classical data (bits),
while the quantum capacity “measures” the efficiency in transferring quan-
tum data (qubits). In general, the transmission of quantum systems over
quantum channels is, of course, influenced by the presence of physical noise.
In this context, a quantum channel is well described treating the quantum
system, in which the (classical or quantum) information is encoded, as an
open quantum system, i.e. a system interacting with an external noisy en-
vironment (see Sec. 2.2.1). As in the classical scenario, a quantum channel
is called memoryless when the effect of the noise on each use of the channel
does not depend on the effect of the noise on the previous use, as well as for
memoryless classical channels. In the following of this thesis we will consider
basically memoryless quantum channels and we will analyze an example of
memory channels only at the end of Chapter 4.

In real noisy quantum channels the quantum fidelity of transmitting quan-
tum states is obviously less than one. In order to protect quantum informa-
tion from the unavoidable noise the theory of quantum error-corrections was
independently discovered by Shor in 1995 [77] and by Stean in 1996 [78]. The
quantum error-correcting codes follow similar principles as the ones used for
classical channels (see Sec. 2.1.1). However, there are some differences be-
tween classical and quantum information theory and, in the quantum case,
we have to overcome three further obstacles. First of all, the no-cloning
theorem2 forbids to implement the repetition code, because one cannot clone
quantum states [24]. Secondly, the quantum errors are continuous. The noise
can change the value of the quantum bit, e.g. |0〉 → |1〉, but it can also
introduce a continuous error in the relative phase of a quantum superposi-
tion, e.g. |0〉+ |1〉 → |0〉+ eiθ|1〉 with θ being a continuous real number in
the range [0, 2π). Thirdly, the simple measurement of the output from the

2The no-cloning theorem is one of the earlier results of the idea to apply quantum
mechanics to information theory [24]. It makes impossible to clone an unknown quantum
state, i.e. it is impossible to construct a device that copies unknown quantum states; nev-
ertheless cloning only orthogonal states is possible. Moreover, if the cloning was possible,
then it would be possible to communicate faster than light using quantum effects, violating
the Einstein’s theory of relativity.
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Figure 2.2: Block diagrams of the encoding and decoding procedures in the
definition of classical and quantum capacity.

channel (decoding) destroys quantum information because of the Heisenberg
principle.

However, all these limitations are not fatal and can be overcome (see
Ref. [1] for more details). By adding extra qubits and carefully encoding the
quantum state we wish to protect, a quantum system can be insulated against
noise effects and errors. In other terms, error correcting codes allow one to
reduce errors by a suitable encoding of logical qubits into larger systems.
The basic idea is to construct the error-correcting codes, that allow, on one
hand, to encode the quantum states in a special way making them robust
against the effect of the noise, and, on the other hand, to decode them when
the recovering of the original state is desired. As in the classical context, this
approach is successful also in quantum communication. Indeed, both the
quantum and the classical capacity of a channel are obtained maximizing,
over all possible encoding and decoding procedures, the ratio among the
number of bits or qubits transmitted and the “redundancy” employed into
the code. Particularly, denote with E an encoding map from n qubits to m
inputs of a quantum channel E and with D a decoding map from m channel
outputs to n qubits, as in Fig. 2.2.

The classical capacity C(E) of a noisy quantum channel E is thus defined
as follows [79]

lim
ε→0

lim sup
n→∞

{ n

m
: ∃m,E,D ∀|ψ〉∈{|0〉,|1〉}⊗n F

(|ψ〉, D ◦ E⊗m ◦ E(|ψ〉〈ψ|)) > 1− ε
}

(2.7)

where F (. . .) is the quantum fidelity defined in Eq. (1.30) and D ◦ E⊗m ◦E
means that we first operate with the encoding map E on n qubits, then
with E⊗m on m inputs and, finally, with the decoding map D on m channel
outputs. The input state |ψ〉 is chosen to be a tensor product of states |0〉
and |1〉: since we are encoding classical information in quantum states, it is
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Figure 2.3: Possible schemes of encoding and decoding strategies on sin-
gle and multi uses of the channel. Particularly, in the first one the sender
(receiver) encodes (decodes) the message on individual systems (classical en-
coder/decoder). In the second and in the third one, only one of them uses
a multi-use encoding/decoding procedure. In the last one the sender con-
structs an encoding on multi signals (quantum encoder) and the receiver
realizes joint measurements of them (quantum decoder). The first three con-
figurations are useful to described the classical capacity of the channel only.
The quantum capacity, instead, can only be described in terms of the last
configuration with optimal encodings being on entangled states and optimal
decodings being joint quantum measurements.

not necessary to be able to transfer superpositions of the input messages. In
other words, the classical capacity of a quantum channel is defined as the
optimal rate (i.e., transmitted bits per channel use) at which the sender can
send a tensor product state, i.e. |ψ〉 ∈ {|0〉, |1〉}⊗n, of n qubits, for arbitrarily
large n, to the receiver, who is able to recover it with fidelity greater than
1−ε, with arbitrarily small ε, after block-encoding, channel transmission and
block decoding procedures.

Similarly, the quantum capacity Q(E) is defined as [79]

lim
ε→0

lim sup
n→∞

{ n

m
: ∃m,E,D ∀|ψ〉∈H⊗n F

(|ψ〉, D ◦ E⊗m ◦ E(|ψ〉〈ψ|)) > 1− ε
}

, (2.8)

whereH is the two-dimensional Hilbert space of a two-level quantum system.
Notice that Q assumes the same meaning as above for C with the only
(but important) difference that now the encoding is realized on any possible
superposition of n qubits, i.e. |ψ〉 ∈ H⊗n. Clearly, for any quantum channel
E , one has Q(E) ≤ C(E), because the capability of transmitting quantum
superpositions of n qubits includes trivially the ability of sending separable
states. Besides, with respect to classical channels, in quantum information
theory one can exploit a peculiar property of quantum mechanics, that is
entanglement, to construct optimal encoding. Similarly, one can optimize
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the decoding strategies by considering joint quantum measurements of the
received signals. Possible schemes of encoding and decoding procedures on
single and multi uses of the channel are shown in Fig. 2.3.

Physical implementations

At present, the only suitable carrier for long-distance quantum communi-
cation is the photon [23]. However, other systems, e.g. atoms or ions, are

Figure 2.4: On the left, example of a real quantum channel, i.e. an 800-metre-
long optical fibre installed in a public sewer system located in a tunnel un-
derneath the River Danube, where it is exposed to temperature fluctuations
and other environmental factors. It has been used to realize long-distance
quantum teleportation across the River Danube [35]. On the right, scheme
of a satellite single-photon link recently studied in Ref. [34]. They have im-
plemented a quantum communication channel between Earth and space by
simulating a single photon source on a low-Earth orbit geodetic satellite and
by detecting the transmitted photons with the telescope at the Matera Laser
Ranging Observatory of the Italian Space Agency.
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studied but their applicability for quantum communication schemes is not
feasible within the near future. Nevertheless, one of the problems of photon-
based communication schemes is the loss of photons in the quantum channel.
This limits the bridgeable distance for single photons to the order of 100 km
with the present technology. Recent quantum communication experiments
and some quantum cryptography applications already cover this distance
[31]. In principle, this drawback can eventually be overcome by subdividing
the larger distance to be bridged into smaller sections and applying peri-
odically quantum purification through a full ‘quantum repeater’, in order to
compensate the decoherence effects possibly induced by the physical channel.

Optical fibers are the most common type of channel for optical commu-
nications. The transmitters in optical fiber links are generally light-emitting
diodes (LEDs) or laser diodes. Since optical fibers transmit infrared wave-
lengths with less attenuation and dispersion, the infrared light is commonly
used; the classical telecom choices are 1300 and 1550 nm. The signal en-
coding is typically simple intensity modulation and the introduction of the
erbium-doped fiber amplifier allows a periodic signal regeneration, at very
low cost. Practically, a photon in some quantum state goes in the optical
fiber, suffers noise (e.g., depolarization) and distortion in passing through it,
and, if the photon is not absorbed and does not tunnel out, emerges in a
transformed quantum state at the output side (see the left part of Fig. 2.4).

Free-space optical communication is also used today in a variety of appli-
cations. In this field, Free Space Optics (FSO) is a telecommunication tech-
nology, that uses light propagating in free space to transmit data between two
points, and is useful, for example, in those cities where the laying of fibre optic
cables is expensive. Moreover, since the air turbulence is not present outside
the atmosphere, FSO is also used to communicate between space-crafts. For
free space it is preferable to use either shorter wavelengths, around 800 nm,
where efficient detectors exist, or much longer wavelengths, 4-10 µm, where
the atmosphere is more transparent. Initially, free-space quantum key distri-
bution has been proposed by sending single photons through open air even
in daylight for a 10 km-long transmission [32, 33]. Another experiment of
free-space secure quantum communication between La Palma and Tenerife
Canary Islands has been shown in Ref. [30]. Recently, a very interesting
experimental study of a single-photon exchange between a satellite and the
telescope at the Matera (Italy) Laser Ranging Observatory (MLRO) of the
Italian Space Agency (ASI) has been realized [34] (see the scheme on the
right part of Fig. 2.4).
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2.2.1 Open Quantum Systems

In this section we develop the mathematical tools that are commonly used to
describe noise effects in quantum communication. A quantum system that
does not interact with the outside world is said to be closed. It could be
represented by an isolated atom, an electron in free space (isolated spin), or
(at most) the universe as a whole. A closed quantum system can be described
by a single wavefunction, Ψ, and by a time unitary evolution,

|Ψ(t)〉 = U(t, t0)|Ψ(t0)〉 (2.9)

where U(t, t0) = e−
i
~H(t−t0) is the unitary time evolution operator from the

time t0 to the time t, associated to a time-independent Hamiltonian H.
In the real world there are no perfectly closed quantum systems, except

perhaps the universe as a whole. Real systems are “open” quantum systems
that suffer from unwanted interactions with the external environment, whose
dynamics we wish to neglect, or average over. Some examples are an atom
in the presence of an external electromagnetic field, an electron interacting
with other excitations in a solid or, in general, any physical systems (almost
all) that suffer from the influence of an external environment.

The traditional tools used by physicists for the description of open quan-
tum systems are represented by master equations, Langevin equations and
stochastic differential equations [80]. These techniques provide us with dif-
ferential equations, whose solution gives a continuous time description of
the system dynamics. However, their application is limited to those cases
where the environment is Markovian, i.e. a thermal bath in equilibrium and
approximately unperturbed by the system.

The quantum operation (or quantum channel) formalism is a more general
tool for describing the dynamical evolution of any open quantum system
[1, 14, 3]. This approach is very powerful because it is useful to describe
completely different physical scenarios. They describe, for instance, closed
systems weakly or strongly coupled to the environment and a particular case
of this situation is represented by quantum measurements. Moreover, they
are well suited to describe any transition from the initial state to the final
state of a system (discrete state change), without necessary explicit reference
to time evolution [1, 14]. Indeed, the basic idea is to represent each processing
step (free evolution, controlled time evolution, preparations, measurements,
transmission of quantum information over long distances and the storing
of it in some quantum memory) by a channel, which converts input states
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to the output states. The quantum channels play a fundamental role in
many different branches of physics, specifically in all those situations where
decoherence and noise effects come into play. Ideally, the quantum systems
carrying the information do not interact with the environment; this kind of
channels is called an ideal channel. In real situations, instead, interaction
with an external noisy environment, i.e. additional, unobservable degrees of
freedom, cannot be avoided. These real channels are called noisy quantum
channels.

At a mathematical level, a quantum operation or quantum channel (some-
times called superoperator) is a linear map that transforms quantum states
into quantum states as

ρ′ = E(ρ) . (2.10)

In this formalism, we will use the notation E1⊗E2 to consider the composition
in parallel of two quantum channels E1 and E2. For instance, the symbol
E⊗N will indicate N uses of a memoryless channel. On the other hand, the
composite channel E2 ◦ E1 will mean a channel in which we first operate with
E1 and then with E2 on the same system, i.e. E2 (E1(ρ)); this is a composition
in series of two channels.

The dynamics of an open quantum system can be described basically in
three different approaches, that turn out to be equivalent.

• The most natural and physical way of understanding quantum chan-
nels is as a unitary interaction between the principal system and an
environment, that together form a closed quantum system (see Sec.
2.2.2) [1, 14, 3]. This approach is concrete and much related to the real
world but it suffers from the drawback of not being mathematically
convenient.

• A second approach, analyzed in Sec. 2.2.3, starts from a set of physi-
cally motivated axioms that a dynamical map in quantum mechanics
is expected to satisfy. The advantage of this second approach is that
it is very general and describes a wide range of physical situations.

• Finally, a third way of understanding open quantum systems is pro-
vided by a powerful mathematical representation, called operator-sum
or Kraus representation (see Sec. 2.2.4). This procedure is more ab-
stract but quite useful both for calculations and for theoretical work.
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2.2.2 System-environment description

First of all, we start from the physical idea of studying open system dynamics
as the result of an interaction with an environment. Indeed, one can always
consider an “artificial” environment, E, starting in a (not necessarily pure)
state ρE, and a model dynamics specified by a unitary operator U , describing
the collective evolution of the system and the environment, such that

E(ρ) = TrE[U(ρ⊗ ρE)U †] , (2.11)

where TrE is the partial trace over the environment. In this description
of an open quantum system we assume that the initial state of the system
and the environment is a product state. This is not true in general, but it
is reasonable to assume it in many cases of practical interest. Indeed, the
interaction between the system and the outside world is always on, constantly
building up correlations, but, when the experimentalist prepares a quantum
system in its initial state, all the correlations are completely destroyed.

Another important comment concerns the characterization of the envi-
ronment. Usually, the outside world has nearly infinite degrees of freedom,
therefore this system-environment representation is practically unfeasible.
Actually, the Stinespring’s dilation theorem [81] proves that there always
exists an “artificial” environment with Hilbert space HE and a unitary op-
eration U such that Eq. (2.11) holds with ρE being a pure state. It can
even be shown that the environment space HE can be chosen such that
dimHE ≤ dim2H, where H is the Hilbert space of the system. The artifi-
ciality of the environment is not a weak point of this formalism, because one
wants to ignore the real environment dynamics and focus only on the princi-
pal system dynamics. Finally, note that this representation is unique up to
unitary equivalence (strictly speaking, it is unique up to a partial isometry).

In the following, we call Eq. (2.11) with mixed ρE a “physical represen-
tation” of E to distinguish it from the Stinespring dilation, and to stress its
connection with the physical picture of the noisy evolution represented by E .
In real physical experiments the environment initial state is usually a mixed
state, e.g. a thermal state. Note that any Stinespring dilation gives rise to a
physical representation. Moreover from any physical representation one can
construct a Stinespring dilation by purifying ρE with an external ancillary
system C, and by replacing U with the unitary coupling UC = U ⊗ 11C . Of
course, in a physical representation of E one has the advantage to treat with
an (even more physical) environment of smaller size than the pure one.
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2.2.3 Physically motivated axiomatic approach

An axiomatic approach to open quantum systems is based on a set of physi-
cal requirements which we expect to be satisfied by quantum channels. This
method is more abstract respect to the previous one (system plus environ-
ment) but it is also extremely powerful for describing a wide range of circum-
stances. In order to represent a “physical” transformation, i.e. a transfor-
mation that could be implemented in a experimental laboratory, a quantum
channel has to satisfy some reasonable physical constraints.

First of all, every map E representing noisy evolution in a quantum chan-
nel must preserve the trace of ρ, since E(ρ) is also a state, and so it must
be trace preserving, i.e. Tr[E(ρ)] = Tr[ρ]. Another property (stemming from
physical requirements) is that E is a convex-linear map on the set of density
matrices, i.e., for probabilities {pi},

E
(∑

piρi

)
=

∑
piE(ρi) . (2.12)

A quantum channel must also satisfy the physical property of complete posi-
tiveness. Indeed, if E maps density operators into density operators, then it
must be positive for any positive operator A: the quantum map E must be
positive. Furthermore, if E acts on a subsystem Q of a larger physical system
R +Q (R is an external ancilla), i.e. (I ⊗E)(ρRQ), then it must be true that
also (I ⊗ E) is positive for any positive operator A on the combined system
RQ, where I denotes the identity map on system R. In this case, the quan-
tum map is said completely positive. Note that a completely positive map is
also positive but the viceversa is not true. Indeed, an example of a positive
map, which is not completely positive, is the operation of the mathematical
transposition. It preserves positivity of operators on the principal system,
but does not continue to preserve positivity when applied to systems which
contain the principal system as a subsystem.

Therefore, a quantum channel is a completely positive, trace-preserving
(CPT) map. Besides, a quantum map E is called unital if E(11) = 11, i.e. if
E maps the identity operator to itself. Notice that, in general, the Hilbert
space of the output can be also different from the input one.

2.2.4 Operator-sum or Kraus representation

Any quantum channel E can be also represented in an elegant form known
as operator-sum (or Kraus) representation [1, 14, 2]. It is important because
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it allows us to describe the dynamics of the principal system in an intrinsic
way, i.e. without considering explicitly the properties of the environment.
The operator-sum representation is based on operators, Ak, acting on the
principal system alone. In this way it is easy to show that many different en-
vironmental interactions may give rise to the same dynamics of the principal
system. This representation is given by

E(ρ) =
∑

k

AkρA†
k , (2.13)

where the operators Ak are known as operation elements or Kraus operators
for the quantum channel E and satisfy the condition

∑

k

A†
kAk = 11 , (2.14)

in such a way that the map is trace-preserving. Note that, if the output
Hilbert space Hout is different from the input one Hin, then Ak will be oper-
ators mapping Hin to Hout. It is known that there always exists a represen-
tation with at most d2 Kraus operators, if the principal system has a Hilbert
space of dimension d. Moreover, the map is unital if

∑

k

AkA
†
k = 11. (2.15)

Let us point out that this representation is not unique. In fact, there exist
other Kraus operators that represent the same superoperator. In particular,
for a given set of Kraus operators {Ak}, one can construct other infinite sets
{Bh}, giving rise to the same quantum operation E , according to the relation
Bh =

∑
k uhkAk, where uhk are the elements of a generic unitary matrix. This

property is related to the important physical observation that the same sys-
tem dynamics can characterize completely different physical processes. The
only example, in which the Kraus representation is unique, is the unitary
evolution of a physical system. It can be written in the form of a quantum
channel, i.e. ρ → UρU †, where the unitary evolution U is the unique Kraus
operator. Viceversa, if in the Kraus representation there is only one Kraus
operator, then the evolution is unitary because of the trace-preserving con-
dition. More generally, let us suppose that our physical system is isolated
but its Hamiltonian evolution is uncertain because of the presence of some
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(classical) random processes. The result is that the evolution is given by
different Hamiltonians Hi applied with different probabilities pi, i.e.

ρ →
∑

i

piUiρU †
i , (2.16)

with Ui being the unitary evolution associated with Hamiltonian Hi. There-
fore, the relative Kraus operators have the form of

√
pi Ui. Moreover, a

projective measurement process can be regarded as a quantum channel in
which the Kraus operators are the projection operators, while for a POVM
process the Kraus operators are the generalized measurement operators (see
Sec. 1.3).

Finally, let us stress that, given a system-environment unitary interaction
U and an initial pure state of the environment |e0〉, one can always provide a
Kraus representation choosing a basis in the Hilbert space of the environment
{|ek〉} and taking the Kraus operators as Ak = 〈ek|U |e0〉, i.e.

E(ρ) = TrE[U(ρ⊗ |e0〉〈e0|)U †] =
∑

k

〈ek|[U(ρ⊗ |e0〉〈e0|)U †]|ek〉 =
∑

k

AkρA†
k .

Vice versa, supposing to have a CPT map with operation elements {Ak},
satisfying the completeness relation

∑
k A†

kAk = 11, we can find an appropri-
ate unitary operator U to model the evolution of the open quantum system
as a system coupled unitarily to an environment in a larger Hilbert space.
Indeed, let |ek〉 be an orthonormal basis set for E, in one-to-one correspon-
dence with the index k for the operation elements Ak, and let us define an
operator U which acts on states of the form |ψ〉|e0〉 as follows:

U |ψ〉|e0〉 =
∑

k

Ak|ψ〉|ek〉 , (2.17)

where |e0〉 is just some standard pure state of the model environment. Note
that for arbitrary states |ψ〉 and |φ〉 of the principal system, one has

〈ψ|〈e0|U †U |φ〉|e0〉 =
∑

k

〈ψ|A†
kAk|φ〉 = 〈ψ|φ〉 , (2.18)

by the completeness relation. Thus the operator U can be extended to a
unitary operator acting on the entire space of the joint system (that is, system
plus environment). Requiring that

E(ρ) =
∑

k

AkρA†
k =

∑

k

〈ek|[U(ρ⊗ |e0〉〈e0|)U †]|ek〉 , (2.19)
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we want U to satisfy

Ak = 〈ek|U |e0〉 . (2.20)

Such U is conveniently represented as the following block matrix

U =




[A0] . . . . . .
[A1] . . . . . .

...
...

. . .




in the basis |ek〉. Note that the Kraus operators Ak only determine the first
block column of this matrix and the determination of the rest can be done
by us choosing the entries such that U is unitary.

2.2.5 Heisenberg picture: Dual channel

It is also useful to reformulate the quantum channels in the Heisenberg
representation. Here we keep fixed the states of the system and the trans-
formation induced on the system by the channel is described by means of
a linear map EH on the operators Θ ∈ B(H). We represent with B(H) the
algebra of all bounded3 operators. This map on the operators is called dual
channel [14] and is defined by the relation

Tr[E(ρ) Θ] = Tr[ρ EH(Θ)] , (2.21)

for all ρ ∈ D(H) (D(H) denotes the space of the density operators) and for
all Θ ∈ B(H). Therefore, starting from Eq. (2.13), the Kraus representation
of the dual channel is

EH(Θ) =
∑

k

A†
kΘAk , (2.22)

where the operation elements satisfy Eq. (2.14). It is easy to note that the
dual channel is always unital, since EH(11) =

∑
k A†

kAk = 11. Finally, we
observe that the dual channel is a linear, completely positive map but, in
general, is not trace preserving or, even, it is trace decreasing.

3In mathematics, a bounded operator is a linear transformation Θ mapping a normed
vector space V to another one W for which the ratio of the norm of Θ(v) to that of v is
bounded by the same number, over all non-zero vectors v in V .
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2.2.6 Classical and quantum information transfer

In the context of quantum information theory, some emphasis is put on
characterizing the properties of noisy quantum channels in terms of their
information capacities [79, 3]. These figures of merit are the quantum coun-
terpart of the Shannon capacity of a classical communication line [10], which
“measures” the performances of the map in conveying classical or quantum
information. More precisely, they coincide with the maximal rate, i.e. the
maximum number of bits or qubits per channel use, at which we can trans-
mit classical or quantum information asymptotically undisturbed through a
noisy channel. Even though impressive achievements have been obtained in
this field in recent years, several open questions are still under investigation
— we refer the reader to Ref. [82] and references therein for details. For
instance, for classical channels the capacity C is additive: the capacity as-
sociated with the use of two channels is equal to the sum of the capacity of
each channel, individually considered, i.e. C(E1 ⊗ E2) = C(E1) + C(E2). For
quantum channels, instead, the additivity issue is a difficult open problem
and in the following chapters some additivity conditions are found for some
class of quantum channels, i.e. Gaussian channels. Trivially, in an ideal
channel the information is reliably transmitted through it without any loss,
i.e. technically one says that the (classical or quantum) fidelity between the
output and the input (classical or quantum) states is equal to one.

Consider now the transmission of classical data through a noisy quan-
tum channel E (e.g., by encoding the message into the states of photons
propagating through a lossy optical fiber). You can imagine to encode (E)
the classical data (bit) in the polarization of photons, to transmit photonic
quantum states through optical fibers, and to decode (D) them into classical
information at the output side as in Fig. 2.2. In other words, the chan-
nel E ◦ E ◦ D has the form of a classical communication channel, where E
and D are, respectively, the encoding and decoding maps. Therefore, in this
situation, the one-shot classical capacity of a quantum channel E is given by

C1(E) = sup
E,D

C(E ◦ E ◦D) (2.23)

where, now, the supremum is taken over all possible encodings and decodings
of classical bits. Note that C(E ◦ E ◦D) is the classical channel capacity in
Eq. (2.1) of the classical channel E ◦ E ◦ D. In this context, the adjective
“one-shot” refers to the fact that we are encoding information only on tensor



2.2 Quantum communication 49

product states, as explained in Sec. 2.2. A computable expression for the
one-shot classical capacity, thus making it an interesting quantity, is given
in the Holevo-Schumacher-Westmoreland theorem [83, 84, 85, 86].

Theorem 1 (Holevo-Schumacher-Westmoreland) : The one-shot clas-
sical capacity C1(E) of a quantum channel E is

C1(E) = sup
pj ,ρj

[
S

(∑
j

pjE(ρj)

)
−

∑
j

pjS (E(ρj))

]
, (2.24)

where the supremum is taken over all probability distributions pj and collec-
tions of density operators ρj. The quantity in [. . .] is also called Holevo’s

information χ, i.e. χ(pj, ρj) = S
(∑

j pjE(ρj)
)
−∑

j pjS (E(ρj)).

This theorem quantifies the transmitted information in terms of quantum
entropy and so it makes possible to apply quantum statistical physics to the
issue of quantum capacity limits. As a consequence, at most n bits of classical
information can be carried by a quantum system of n distinguishable qubits.

Moreover, one can consider many uses of the channel exploiting entan-
glement in the encoding and decoding procedures. The classical capacity of
a quantum channel E , defined in Eq. (2.7) is equivalent to

C(E) = lim
N→∞

1

N
C1(E⊗N) (2.25)

where another optimization over the number of uses of the channel is con-
sidered. However, according to an additivity conjecture, it is believed that
C(E) coincides with C1(E).

In a similar way one can define the entanglement assisted classical ca-
pacity Ce(E) of a quantum channel E , by supposing that the sender and the
receiver can share an arbitrary amount of maximally entangled states before
the transmission [1, 3]. This quantity can be computed as

Ce(E) = sup
ρ

I(ρ, E) . (2.26)

where the supremum is taken over all input states ρ and all possible entan-
gled encoding and decoding procedures, and I(ρ, E) is the quantum mutual
information of the channel E . This last quantity is defined as

I(ρ, E) = S(ρ) + S(E(ρ))− S(ρ, E) , (2.27)
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with S(ρ, E) being the so-called entropy exchange of a channel E for a given
input ρ, i.e.,

S(ρ, E) = S[(E ⊗ I)(|Ψ〉〈Ψ|)] , (2.28)

where we are assuming that |Ψ〉 is a purification of ρ ∈ H in a larger Hilbert
space H1 ⊗H2 such that ρ = Tr1[|Ψ〉〈Ψ|] = Tr2[|Ψ〉〈Ψ|] (see Sec. 1.1). Note
that E ⊗I is a channel that applies E to the principal system input state and
the identity map I to the ancilla state. The quantum mutual information
I(ρ, E) is positive, concave with respect to the input state and additive. Due
to these properties of the quantum mutual information, the capacity Ce(E)
is additive and so coincides with the corresponding one-shot version. This
is an important simplification with respect to what happens for the classical
capacity C(E).

The quantum capacity Q refers, instead, to the coherent transmission of
quantum information (measured in number of qubits), i.e. quantum states,
through a quantum channel. It is more difficult to treat than classical capac-
ities discussed above and its explicit calculation is one of the basic issues in
quantum communication. The quantum capacity, defined in Eq. (2.8), can
be computed as [87, 88, 89, 90]

Q(E) = lim
N→∞

1

N
Q(E)(N) = lim

N→∞
1

N
max

ρ
J(ρ, E⊗N) , (2.29)

where the maximization is performed over all input states for N uses of the
quantum cannel and J(ρ, E⊗N) is the coherent information of E⊗N , defined
[91] for a generic channel E as follows

J(ρ, E) = S(E(ρ))− S(ρ, E) . (2.30)

Note that the calculation of the quantum capacity is a daunting task es-
sentially for two reasons. Firstly, since the coherent information is known
not to be additive (unlike the classical and quantum mutual information),
the regularization for N which tends to infinite (i.e., limN→∞) is necessary.
Secondly, due to lacking concavity properties, the coherent information may
have local maxima which are not global ones. On top of this, for Bosonic
channels this optimization is over an infinite dimensional Hilbert space.

In the following section we will study an important property of a quan-
tum channel, i.e. degradability, that enables us to simplify the analysis of
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the quantum capacity issue and to identify channels (degradable) with ad-
ditive coherent information (i.e., Q(E) = Q(E)(1)) and other channels (anti-
degradable) with null quantum capacity (i.e., Q(E) = 0). In this thesis we
will study this property for Bosonic and qubit Gaussian channels.

2.3 Degradability of quantum channels

In Sec. 2.2.2 we have shown that any quantum channel E acting on a system
A can be described as a unitary coupling between the system A in the input
state ρa with an external ancillary system B (describing the environment)
prepared in some fixed pure state |e0〉, i.e.

E(ρa) = Trb[Uab(ρa ⊗ |e0〉〈e0|)U †
ab] , (2.31)

where Trb[. . .] is the partial trace over the environment B, Uab is a unitary
operator in the composite Hilbert space Ha ⊗Hb.

In Ref. [38], Devetak and Shor introduced the definition of degradability
of a quantum channel. Loosely speaking, degradable are those channels where
the modified state of the environment can be recovered from the output state
of the channel through the action of a third channel (see Fig. 2.5).

Definition 2 A quantum channel E is called degradable if there exists a CPT
map T such that

(T ◦ E) = Ecom , (2.32)

where Ecom is the so-called complementary (conjugate) channel (see Refs.
[38, 92, 93]), mapping the initial state of the system into the output state of
the environment after the noisy evolution, i.e.

Ecom(ρa) = Tra[Uab(ρa ⊗ |e0〉〈e0|)U †
ab] . (2.33)

Notice that we are considering a Stinespring representation of the channel,
i.e. unitary interaction with an environment initially in a pure state. This
property is a powerful tool for the challenging problem of channel quantum
capacity’s evaluation. Indeed, the degradable channels allow for a single let-
ter formula expression for Q — i.e., the maximum of their output coherent
information is additive (see below). The latter is much easier to handle than
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its regularized version and, in some cases, enables for a complete character-
ization of the Q (e.g., see the dephasing channel in Ref. [38] and amplitude
damping channel in Ref. [41]). Besides, if a quantum channel is degradable,
the coherent information is a concave function and, interestingly, the local
maxima coincide with global ones. Another important feature of degradabil-
ity is that it does not depend on physical operations applied locally on input
and output states. Indeed, suppose to consider a degradable channel E . On
one hand, if one applies a unitary operation U1 to the input state ρ, since
the degradability is defined for a generic input state, it still holds also for the
state U1ρU †

1 . On the other hand, any unitary operation U2 applied to the
output state of the channel, i.e. U2E(ρ)U †

2 , can be always absorbed in the
CPT map T , recovering trivially the degradability property in Eq. (2.32).
This feature is very useful because, by using U1 and U2, one can analyze the
degradability for simplified (canonical) forms of the quantum channel, as will
be shown in Chapter 3 for Bosonic systems and in Chapter 4 for qubits.

Finally, let us point out that the definition of degradable quantum chan-
nels can be considered the quantum version of degraded broadcast classical
channels in Sec. 2.1.4. Indeed, one can interpret a quantum channel as a
two-user quantum broadcast channel connecting a single transmitter to two
receivers, i.e. two output systems A and B, described by the noisy evolutions
E(ρa) and Ecom(ρa), respectively.

Degradability and additivity

Here we want to prove that the degradability implies the additivity of the
coherent information and then simplifies the quantum capacity issue (i.e.
single-letter formula for the quantum capacity), according to the following
theorem [38].

Theorem 2 For a degradable channel E the coherent information J is ad-
ditive and the quantum capacity is given by the single-letter formula Q(E) =
Q(E)(1) := maxρ J(ρ, E).

Proof: The coherent information is

J(ρ, E) = S(E(ρ))− S(ρ, E) , (2.34)
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where S(ρ, E) is the entropy exchange of the channel E for a given input ρ,
i.e.

S(ρ, E) = S[(E ⊗ I)(|Ψ〉〈Ψ|)] (2.35)

where |Ψ〉 is a purification of ρ and E⊗I is a map applying E to the principal
system input state and the identity map I to the ancilla state. Note that the
coherent information for a process on a composite state is greater than or
equal to the total of the ‘marginal’ coherent information for the reductions
of the process and the initial state of the subsystems. Mathematically, one
has

J(ρ,⊗Ei) ≥
∑

i

J(ρi, Ei) , (2.36)

where ρi are the reduced density operators of ρ and {Ei} is a set of quantum
channels. Therefore, one says that the coherent information is superadditive.
Now we will prove that for a degradable channel it is also subadditivity and
then, for this class of channels, the equality (i.e. the additivity of the coherent
information) also holds. In particular, since the environment is initially in a
pure state, one has that S(ρ, E) = S(Ecom(ρ)) and the coherent information
of the channel is

J(ρ, E) = S(E(ρ))− S(Ecom(ρ)) , (2.37)

where S(Ecom(ρ)) is the von Neumann entropy of the output state of the
complementary channel, i.e. the von Neumann entropy of the final state of
the environment. This will be show in the lemma proved below.

Now we use the degradability property of the channel E , that is

T (E(ρ)) = Ecom(ρ) , (2.38)

for any input state ρ. This intermediate map T can be described, of course,
as a unitary interaction V between the final state of the system E(ρ) and
another environment F , i.e.

T (E(ρ)) = TrF

[
V (E(ρ)⊗ |0〉F 〈0|) V †] , (2.39)

hence,

S (Ecom(ρ)) = S
(
TrF

[
V (E(ρ)⊗ |0〉F 〈0|) V †]) . (2.40)
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Note that

S
(
V (E(ρ)⊗ |0〉F 〈0|) V †) = S(E(ρ)) , (2.41)

because the von Neumann entropy is invariant under unitary transformations
and, moreover, one has

S ((E(ρ)⊗ |0〉F 〈0|)) = S(E(ρ)) + S (|0〉F 〈0|) = S(E(ρ)) , (2.42)

with the von Neumann entropy of a pure state being zero.
Combining Eqs. (2.40)-(2.41), the coherent information can be so written

as the quantum conditional entropy between the environments F and E, i.e.

J(ρ, E) = S(F, E)− S(E) = S(F |E) . (2.43)

It is know that the conditional entropy is subadditive [1, 14]. Therefore, the
coherent information J is subadditive (and superadditive, by definition) and
then additive. This fact implies that the quantum capacity is given by the
single-letter formula, i.e.

Q(E) = Q(E)(1) := max
ρ

J(ρ, E) . (2.44)

This concludes the proof of the theorem. Interestingly enough, apart from
the additivity of the coherent information, since the quantum conditional
entropy is also a concave function, the coherent information is too. Therefore,
it implies an important useful simplification in the calculation of the quantum
capacity Q, i.e. it is sufficient to search for local maxima in order to calculate
Q. ¥

Now we prove a lemma, used in the theorem above, that states the equiva-
lence between the entropy exchange of E and the von Neumann entropy of
the output state of the complementary channel, i.e. the von Neumann en-
tropy of the final environmental state, when the initial environmental state
is pure (Stinespring representation) [88, 94].

Lemma 1 : If the initial state of the environment is pure, then the entropy
exchange assume the more useful form

S(ρ, E) = S(Ecom(ρ)) , (2.45)

where S(Ecom(ρ)) is the von Neumann entropy of the transformed state of the
environment.
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Proof: By definition, the entropy exchange of the channel E for a given
input ρ of a system A has the expression

S(ρ, E) = S[(E ⊗ I)(|Ψ〉〈Ψ|)] , (2.46)

where |Ψ〉 is a purification of ρ in a larger Hilbert space with an extra ancilla
R. Recall that E ⊗I is a composite channel in which E acts on the principal
system input state and the identity map I on the ancilla state E. Besides,

(E ⊗ I)(|Ψ〉〈Ψ|) = TrE

[
(U ⊗ 11R)|Ψ〉〈Ψ| ⊗ |0〉E〈0|(U ⊗ 11R)†

]
, (2.47)

where U describes the unitary evolution of the map E and TrE is the partial
trace over the environment. Then, one has

S ((E ⊗ I)(|Ψ〉〈Ψ|)) = S
(
TrE

[
(U ⊗ 11R) (|Ψ〉〈Ψ| ⊗ |0〉E〈0|) (U ⊗ 11R)†

])

= S
(
TrAR

[
(U ⊗ 11R) (|Ψ〉〈Ψ| ⊗ |0〉E〈0|) (U ⊗ 11R)†

])

= S
(
TrA

[
U (ρ⊗ |0〉E〈0|) U †]) = S(Ecom(ρ)) . (2.48)

Let us stress that the second equality is due to the Schmidt decomposition
[1, 14] of pure bipartite states4 and there the purity of the environment comes
into play. ¥

2.3.1 Weakly complementary and degradable channels

Recently, a generalization of the notion of degradability has been proposed as
an useful tool for studying the quantum capacity properties of one- and multi-
mode Bosonic Gaussian and qubit channels [44, 52, 53, 54]. This suggested
the possibility of classifying these maps in terms of simple canonical forms.
Proceeding along similar lines, the exact solution of the quantum capacity of
an important subset of those channels was obtained in Refs. [42, 55].

4Let us recall the Schmidt decomposition theorem [1, 14]. For a pure state |Ψ〉 of a
composite system AB, there exist orthonormal bases |iA〉 for the subsystem A and |iB〉
for the subsystem B, such that |Ψ〉 =

∑
i λi|iA〉|iB〉, with λi being non-negative numbers,

called Schmidt coefficients, satisfying
∑

i λ2
i = 1. A corollary of this theorem is that the

reduced density operators ρA and ρB have the same eigenvalues, i.e. ρA =
∑

i λ2
i |iA〉〈iA|

and ρB =
∑

i λ2
i |iB〉〈iB |, and then S(ρA) = S(ρB). In other words, the von Neumann

entropy of the two reduced states ρA and ρB of a bipartite system AB in a pure state are
identical.
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The definition of degradability in Eq. (2.32) can be generalized to the
notion of weak-degradability, given by substituting the Stinespring represen-
tation of E with its physical representation of Eq. (2.11) with mixed ρE

instead of the pure state |e0〉 (see Sec. 2.2.2), i.e.

E(ρa) = Trb[Uab(ρa ⊗ σb)U
†
ab] , (2.49)

where Uab is the unitary coupling of the system A with environment prepared
in some mixed state σb. Equation (2.49) motivates the following [52, 53]

Definition 3 For any physical representation (2.49) of the quantum channel
E we define its weakly complementary as the map Ẽ : D(Ha) → D(Hb)
which takes the input state ρa into the state of the environment B after the
interaction with A, i.e.

Ẽ(ρa) = Tra[Uab(ρa ⊗ σb)U
†
ab] . (2.50)

The transformation (2.50) is CPT and describes a quantum channel con-
necting systems A and B. It is a generalization of the complementary (con-
jugate) channel Ecom defined above. In particular, if Eq. (2.49) arises from
a Stinespring dilation (i.e. if σb of Eq. (2.50) is pure) the map Ẽ coincides
with Ecom. Hence the latter is a particular instance of a weakly complemen-
tary channel of E . On the other hand, by using the purification procedure
(see Sec. 1.1), we can always represent a weakly complementary map as a
composition

Ẽ = T ◦ Ecom , (2.51)

where T is the partial trace over the purifying system (here “ ◦ ” denotes
the composition of channels). As we will see, the properties of weakly com-
plementary and complementary maps in general differ. Hence, we propose
the following definition [52, 53] (see Fig. 2.5):

Definition 4 Let E , Ẽ be a pair of mutually weakly-complementary channels
such that

(T ◦ E)(ρa) = Ẽ(ρa) , (2.52)

for some CPT channel T : D(Ha) → D(Hb) and all density matrix ρa ∈
D(Ha). Then E is called weakly degradable while Ẽ – anti-degradable. Sim-
ilarly if

(T ◦ Ẽ)(ρa) = E(ρa) , (2.53)
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Figure 2.5: Weakly degradable vs. anti-degradable channels. A channel E
is weakly degradable if there exists a CPT map T which, for all input ρa

of Alice (the sender), allows Bob (the receiver) to recover the environment
output Ẽ(ρa) from E(ρa) as in Eq. (2.52). A channel E is anti-degradable if,
instead, a third party (Charlie) which is monitoring the channel environment
can reconstruct Bob state, E(ρa), from Ẽ(ρa) via a CPT transformation T
as in Eq. (2.53). Weak-degradability reduces to the degradability notion of
Ref. [38] if the environment σb is pure.

for some CPT channel T : D(Hb) → D(Ha) and all density matrix ρa ∈
D(Ha), then E is anti-degradable while Ẽ is weakly degradable.

Weak-degradability and anti-degradability are not mutually exclusive prop-
erties – for instance, will see in Sec. 3.3.1 that a beam-splitter channel with
transmissivity 1/2 satisfies both Eqs. (2.52) and (2.53).

Let us stress again that in Ref. [38] the channel E is called degradable if
in Eq. (2.52) we replace Ẽ with the complementary map Ecom of E . Clearly
any degradable channel [38] is weakly degradable but the opposite is not
necessarily true. Notice, however, that, due to Eq. (2.51), in the definition of
anti-degradable channel we can always replace weakly complementary with
complementary (for this reason there is no point in introducing the notion
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of weakly anti-degradable channel). This allows us to verify that if E is anti-
degradable (2.53) then its complementary channel Ecom is degradable [38] and
vice-versa. It is also worth pointing out that channels which are unitarily
equivalent to a channel E which is weakly degradable (anti-degradable) are
also weakly degradable (anti-degradable), as discussed for the degradability
in Sec. 2.3.

One can verify that anti-degradable channels (where this property is de-
fined irrespectively from the purity of σb associated with the physical rep-
resentation) cannot be used to convey quantum messages in reliable fashion
— i.e., their quantum capacity Q nullifies [41, 52, 53, 95, 96]. As discussed
in [52] this is a consequence of the no-cloning theorem [24] (more precisely,
of the impossibility of cloning with arbitrary high fidelity [97, 98, 99, 100]).
Indeed, assume by contradiction Q > 0. This means that by employing suf-
ficiently many times the map E , Alice (the sender) will be able to transfer to
Bob (the receiver) a generic unknown state |ψ〉. However, since the channel
is anti-degradable, everything Bob gets from the channel can also be recon-
structed by a third party (Charlie), which is monitoring the environment, by
cascading Ẽ with the CPT map T of Eq. (2.53). This implies that at the end
of the day both Bob and Charlie will have a copy of |ψ〉, which is impossible.
Therefore, the anti-degradable channels cannot be used to transfer quantum
information.

Heisenberg picture

It is useful also to reformulate our definitions in the Heisenberg picture
(see Sec. 2.2.5) [53]. Remind that the dual map EH is defined on the alge-
bra B(Ha) of bounded operators of A in such a way that Tra[E(ρa) Θa] =
Tra[ρa EH(Θa)] for all ρa ∈ D(Ha) and for all Θa ∈ B(Ha). From this it
follows that the Heisenberg picture counterpart of the physical representa-
tion (2.49) is given by the unital channel

EH(Θa) = Trb

[
U †

ab (Θa ⊗ 11b) Uab (11a ⊗ σb)
]

. (2.54)

Similarly, from (2.50) it follows that in the Heisenberg picture the weakly
complementary of the channel is described by the completely positive unital
map

ẼH(Θb) = Trb

[
U †

ab(11a ⊗Θb) Uab

(
11a ⊗ σb)

]
, (2.55)

which takes bounded operators in Hb into bounded operators in Ha.
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Within this framework the weak-degradability property (2.52) of the
channel EH requires the existence of a channel TH taking bounded opera-
tors of Hb into bounded operators of Ha, such that

(EH ◦ TH)(Θb) = ẼH(Θb) , (2.56)

for all Θb ∈ B(Hb). Notice that in the Heisenberg picture the maps are com-
posed in the opposite order with respect to the Schrödinger representation.
Similarly we say that a quantum channel EH is anti-degradable, if there exists
a channel T H from B(Ha) to B(Hb), such that

(ẼH ◦ T H)(Θa) = EH(Θa) , (2.57)

for all Θa ∈ B(Ha).





Chapter 3

Bosonic Gaussian channels

Bosonic Gaussian channels (BGC) are ubiquitous in physics and, not very
surprisingly, a lot of effort has been recently devoted to studying their prop-
erties [45, 46, 59, 60, 101, 102, 103, 104]. They arise whenever a harmonic
system interacts linearly with a number of Bosonic modes which are inac-
cessible in principle or in practice. They provide realistic noise models for
a variety of quantum optical and solid state systems. For instance, they
describe the noise in transmission lines which employ photons as informa-
tion carriers including optical fibers, wave guides, free-space electromagnetic
communication, and account for all processes where the transmitted signals
undergo loss, amplification, and/or squeezing transformations. Moreover,
they also include noise models for Bosonic many-body systems, like quan-
tum condensates.

Within the context of quantum information theory [1, 14, 3, 79] BGCs
play a fundamental role and include all the physical transformations which
preserve the “Gaussian character” of the transmitted signals, that can be
seen as the quantum counterpart of Gaussian channels in classical informa-
tion theory (see Sec. 2.1.3) [10, 76]. Due to their relatively simple structure,
these channels provide also an ideal theoretical playground for the study of
continuous variable quantum information processing [105], including quan-
tum communication [49], teleportation and cryptography [106]. Specifically,
from a quantum information perspective, a key question is whether or not
a channel allows for the reliable transmission of classical or quantum infor-
mation. It is relevant not only from a technological point of view but also
from the point of view of quantum information theory where they pose some
important open problems. Particularly, most of the efforts focused on the
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evaluation of the optimal transmission rates of these maps under the con-
straint on the input average energy both in the multi-mode scenario (where
the channel acts on a collection of many input Bosonic modes) and in the
one-mode scenario (where, instead, it operates on a single input Bosonic
mode). As for classical Gaussian channels in Sec. 2.1.3, the unconstrained
capacity would be infinite and the channel capacity becomes an interesting
quantity when an input power constraint is taken. In particular, in order
to avoid such nonphysical values, relevant physical constraints are necessary
to be introduced, while maximizing over the classical or quantum informa-
tion encoded in the physical system. For instance, one can consider only the
subset of states

F = {ρ : Tr[ρH] < P} (3.1)

where H is the Hamiltonian of n harmonic oscillators H =
∑n

i=1(x
2
i + p2

i )/2
and P is a constraint, for example, on the mean photon number N = P−1/2.
Analogously, for tensor products one considers F⊗n = {ρ : Tr[ρH⊗n] < nP}.

In the calculation of the quantum capacity significant progress has been
made in recent years [84, 85, 86, 87, 88, 89, 107], although for some impor-
tant cases, like the thermal noise channel modelling a realistic fiber with offset
noise, it is still not yet known. In few cases the exact values of the communi-
cation capacities of the channels have been computed [49, 50, 51, 96, 102]. In
the general case, only certain bounds are available and, in the context of aver-
age input photon number constraint, it is believed that the optimal (classical
or quantum) communication rates of such channels should be achieved by en-
coding messages into Gaussian input states [45, 96, 108, 109, 110, 111, 112].
However, apart from the noiseless case, the only nontrivial map for which
such a conjecture has been proved is the purely lossy channel where photons,
carrying information, couple through beam-splitters with an external vacuum
state [51]. Recently, Gaussian encodings have been proved to be optimal for
a class of Gaussian channels and some exact results for the quantum capacity
have been shown in Ref. [55].

BGCs are generally believed to provide also a natural example of maps
with additive properties [113]. For example, it has been conjectured that
their maximum Holevo information and minimum Rényi entropies should be
additive, although only preliminary results have been obtained so far [47, 48,
51]. In this context, the degradability properties represent a powerful tool to
simplify the quantum capacity issue of such Gaussian channels. Indeed, in



Bosonic Gaussian channels 63

this chapter it will be shown that with some (important) exceptions, Gaussian
channels which operate on a single Bosonic mode (i.e., one-mode Gaussian
channels) can be classified as weakly degradable or anti-degradable [52, 53,
56]. This paved the way for the solution of the quantum capacity for a
large class of these maps [55]. Therefore, a general construction of unitary
dilations of multi-mode quantum channels is proved, allowing us, for instance,
to characterize their weak-degradability/anti-degradability features [54].

In this chapter we analyze the Bosonic Gaussian channels. In Sec. 3.1
some basics of quantum optics are presented in order to describe the Bosonic
systems. After a quick overview of Bosonic Gaussian maps in Sec. 3.2, we
investigate the one-mode case in Sec. 3.3 [52, 53, 56]. In particular, we first
analyze two basic examples, i.e. the beam-splitter and the linear amplifier.
We discuss their composition rules, weak-degradability properties and quan-
tum capacity. Then we extend these results to generic one-mode Gaussian
channels by exploiting a unitary equivalence to beam-splitter/amplifier maps.
Therefore, we consider a more general framework to characterize all one-mode
BGCs in terms of a canonical representation. A full weak-degradability clas-
sification is discussed in more detail and we find that, apart from the class
of channels which are unitarily equivalent to the channels with additive clas-
sical noise, all one-mode Bosonic Gaussian channels can be characterized in
terms of weak- and/or anti-degradability. Finally, we determine a new set of
channels with null quantum capacity.

In Sec. 3.4 we propose a complete analysis of multi-mode Bosonic Gaus-
sian channels, clarifying the structure of unitary dilations of general Gaussian
channels involving any number of Bosonic modes [54]. In this way, the weak-
degradability properties of multi-mode channels are investigated. Moreover,
we characterize the minimal number of environmental modes necessary to
describe the unitary dilation of a generic multi-mode map [62]. The chapter
ends with a detailed analysis of the two-mode case in Sec. 3.5. This is im-
portant since any n-mode channel can always be reduced to single-mode and
two-mode parts [57]. We show their degradability features and investigate a
useful decomposition of a generic map with the additive classical noise map
that allows us to find new sets of channels with zero quantum capacity.
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3.1 Bosonic systems

The quantization of the electromagnetic field is one of the most important
cornerstones of the quantum optics theory [61]. The expansion of the vector
potential of the electromagnetic field in terms of modes enables to reduce
this problem to the quantization of the harmonic oscillator for each mode,
i.e the following Hamiltonian for the electromagnetic field

H =
∑

k

~ωk

(
a†kak + 1/2

)
, (3.2)

where ~ is the Planck constant, ωk are the mode frequencies, ~ωk is the
energy of a photon in the mode k, in which there is a number of photons nk

corresponding to the term a†kak. The quantity 1/2~ωk is the energy of the
vacuum quantum fluctuations in each mode. Since photons are Bosons, the
operators ak and a†k satisfy the standard commutation relations, i.e.

[ak, ak′ ] = [a†k, a
†
k′ ] = 0 , (3.3)

[ak, a
†
k′ ] = δkk′ . (3.4)

Equivalently, each Bosonic mode is characterized by canonical observables
Qk and Pk, i.e.

Qk =
ak + a†k√

2
, (3.5)

Pk =
ak − a†k

i
√

2
, (3.6)

obeying the canonical commutation relation [Qk, Pk′ ] = iδkk′ (from now
on, ~ is, usually, set to one). The eigenvalues of the Hamiltonian H are
~ωk (nk + 1/2) and the relative eigenstates |nk〉 are known as Fock or num-
ber states. These are the eigenstates of the number operator Nk = a†kak, as
follows

Nk|nk〉 = nk|nk〉 (3.7)

Particularly, the ground state of the k-th oscillator, corresponding to zero
photons in that field mode, is given by

ak|0〉 = 0 , (3.8)
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and has an energy equal to 1/2~ωk because of the quantum fluctuations of
the vacuum. The total ground state energy is so 1/2

∑
k ~ωk and is known as

zero-point energy. In this context, the raising and lowering operators of the
harmonic oscillator eigenstate ladder, a†k and ak, represent, respectively, the
creation and the annihilation of a photon in the mode k (in the following,
called Bosonic mode). For this reason, they are also called creation and an-
nihilation operators, respectively. This behavior is mathematically expressed
by the following relations,

a†k|nk〉 =
√

nk + 1|nk + 1〉 , (3.9)

ak|nk〉 =
√

nk|nk − 1〉 , (3.10)

and, applying repeatedly the creation operator, the number or Fock states
have the explicit expression

|nk〉 =
(a†k)

nk

√
nk!

|0〉 . (3.11)

These states are pure states, corresponding to a definite number of photons
in the field, and are extremely difficult to be created experimentally.

Displacement (Weyl) operators and characteristic functions

In order to describe more appropriately the state of each Bosonic mode k,
we introduce the displacement (Weyl) operators as

D(µ) ≡ exp[µa† − µ∗a] = exp [i(Q,P ) · z] ≡ V (z) (3.12)

with a being the annihilation operator of the mode k, z = (x, y)T being a
column vector of R2 and µ a complex variable. For simplicity, in the following
we will consider a single mode k and we will neglect the subscripts k. The
correspondence between the phase-space representation in terms of a and a†

and the Weyl representation in terms of P and Q is ruled out by setting1

z =
√

2(=[µ],−<[µ])T . In the Weyl framework the canonical commutation
relation for each mode k is written as

V (z) V (z′) = exp

[
i

2
∆(z, z′)

]
V (z + z′) ,

1=[x] and <[x] denote the imaginary and real parts of a complex number x, respectively.
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where ∆(z, z′) is the symplectic form

∆(z, z′) = −i zT · σy · z′ = x′y − xy′ , (3.13)

with σy being the second Pauli matrix. In this chapter, in fact, we will use
both of these frameworks because in some contexts it is better to use one in
the place of the other one in order to simplify the calculations. Note that
the displacement operators satisfy the following properties

D(µ)†aD(µ) = a + µ , (3.14)

D(µ)†a†D(µ) = a† + µ∗ , (3.15)

D(µ)† = D(−µ) = D(µ)−1 . (3.16)

Moreover, applying the displacement operator to the vacuum state of the
mode k, i.e.

|µ〉 ≡ D(µ)|0〉 , (3.17)

one obtains a characterization of each Bosonic mode k in terms of its coher-
ent states |µ〉 [61]. By definition, they are eigenvectors of the annihilation
operator a. Indeed, one has

a|µ〉 = µ|µ〉 . (3.18)

The coherent states have an indefinite number of photons but a definite phase
(and are more accessible experimentally), while, on the contrary, the num-
ber states have a completely random phase. These vectors possess various
appealing properties. Specifically, they minimize the uncertainty relations
of any couple of conjugate quadratures, e.g. P and Q. In general, they
have to satisfy the Heisenberg’s uncertainty relation ∆P∆Q ≥ 1

2
~, where

∆Q =
√
〈Q2〉 − 〈Q〉2 and ∆P =

√
〈P 2〉 − 〈P 〉2 (here 〈X〉 stands for the ex-

pectation value of the observable X in a quantum state ρ, i.e. 〈X〉 = Tr[ρX]).

The condition ∆P∆Q = ~
2

with ∆P = ∆Q =
√
~
2

is satisfied by coherent

states. An explicit expression of coherent states in terms of number states
|n〉 is given by

|µ〉 = e−|µ|
2/2

∞∑
n=0

,
µn

√
n!
|n〉 (3.19)
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and the probability of finding n photons in the state |µ〉 follows a Poisson
distribution, i.e.

p(n) =
n̄ne−n̄

n!
, (3.20)

where n̄ = |µ|2 is the mean number of photons in the coherent state |µ〉. Be-
sides, since the Fock states |n〉 form a complete orthonormal set, the following
completeness relation for the coherent state holds, i.e.

1

π

∫
d2µ|µ〉〈µ| = 11 , (3.21)

with d2µ := d<[µ] d=[µ] = 1
2

dx dy.
Using Eq. (3.21) it is possible to expand any other state of the system as a

superposition of the |µ〉s with coefficients which define quasi-probability den-
sity functions. Exploiting this and Eq. (3.17), one can also use displacement
operators as an over-complete operator basis [46, 59, 60, 61]. In particular,
given Θ any trace-class2 operator of the system (e.g., a density matrix ρ), we
can write

Θ =

∫
d2µ

π
χ(µ) D(−µ) =

∫
d2z

2π
φ(z) V (−z) , (3.22)

where

χ(µ) ≡ Tr[Θ D(µ)] = Tr[Θ V (z)] ≡ φ(z) . (3.23)

with dz := dx dy
Equation (3.23) defines the characteristic function of the operator Θ.

This is a complex function of the variables µ and µ∗ which provides us with
a faithful description of the original operator thanks to the “orthogonality”
relation

Tr[D(µ)D(−ν)] = δ(2)(µ− ν) , (3.24)

with δ(2)(µ − ν) being the Dirac delta in the complex plane. In particular,
one can consider the characteristic function of a density operator ρ, and, in
this case, the function (3.23) needs to possess certain properties [46, 59, 60]:

2Mathematically, a trace-class operator is a compact operator for which a trace may
be defined.
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1) φ(0) = 1 and φ(z) is continuous at z = 0 ;

2) φ(z) is ∆-positive definite, i.e.

n∑

j, k=1

cj c∗k φ(zj − zk) exp

[
i

2
∆(zj, zk)

]
≥ 0 , (3.25)

for any number n of z1, . . . zn, and with c1, . . . cn being generic complex
numbers.

Actually, they are sufficient and necessary conditions for φ(z) being a charac-
teristic function of a quantum state ρ. Notice that the characteristic function
is the Fourier transform of the Wigner function, i.e. a quasi-probability dis-
tribution that allows a pictorial representation of the abstract notion of a
quantum state and also to calculate quantum mechanical expectation values
simply using concepts of classical statistical mechanics [61].

Moreover, the phase space formalism gives the possibility of defining the
so-called Gaussian states. Indeed, the Gaussian states of the mode a are
density operators ρ whose characteristic function is Gaussian, i.e.,

φ(z) = exp

[
−1

4
zT · γ · z + imT z

]
, (3.26)

with γ and m being the second and the first order moment of the state
ρ [45, 46, 59, 60]. We will characterize them more explicitly for the generic
multi-mode case in the following, as in Eqs. (3.40) and (3.41). Examples of
Gaussian states are thermal, coherent and squeezed states, but a Fock state
(except the vacuum) is not Gaussian.

A thermal state is defined by a density operator of the form

ρ =
e
− a†a

kBT

Tr[e
− a†a

kBT ]
, (3.27)

where T is the temperature and kB is the Boltzmann constant. Its charac-
teristic function is as in Eq. (3.26) with m = 0 and covariance matrix

γ = (2N0 + 1)11 . (3.28)

Here N0 ≡ 〈a†a〉 is the average photon number of the thermal state, which
is related to T through the Planck distribution function

N0 =
1

e
~ω

kBT − 1
, (3.29)
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with ~ω being the photon energy. For N0 = 0 one recovers the vacuum state.
For a thermal state, one has 〈Q〉 = 〈P 〉 = 0 and ∆P = ∆Q = N0 + 1

2
.

A squeezed state can be defined as a state that may have less noise in one
of quadratures (e.g., in P or in Q) than a coherent state. In other terms, it
satisfies the condition ∆P∆Q = ~

2
with ∆P 6= ∆Q. Therefore, they represent

a more general class of minimum-uncertainty states than the particular case
of coherent states. A squeezed state can be obtained applying the unitary
squeezing operator,

S(r; ϕ) = exp
(
1/2 ε∗ a2 − 1/2 ε a†

2
)

, (3.30)

with ε = reiϕ being the squeezing factor, to a coherent state. Precisely, r
represents the degree of the attenuation and amplification of two uncertain-
ties, while ϕ describes a rotation in the phase space representation. When
r = 1 one recovers a coherent state, in which the noise is equal in both
quadratures. A squeezed state is so given applying first a squeezing and then
a displacement to the vacuum, i.e.

|µ, ε〉 = D(µ)S(r; ϕ)|0〉 . (3.31)

These squeezing operators satisfy the relations

S(r; ϕ) a S†(r; ϕ) = a cosh r + eiϕ a† sinh r , (3.32)

S(r; ϕ) a† S†(r; ϕ) = a† cosh r + e−iϕ a sinh r , (3.33)

S(r; ϕ)† = S(r; ϕ)−1 = S(−r; ϕ) . (3.34)

Multi-mode case and symplectic formalism

The previous definitions can be easily generalized to the multi mode case
by using the Weyl operator formalism. Consider a system composed by n
Bosonic modes having canonical coordinates Q1, P1, · · · , Qn, Pn. The canon-
ical commutation relations of the canonical coordinates, [Rj, Rj′ ] = i(σ2n)j,j′ ,
where R := (Q1, · · · , Qn; P1, · · · , Pn), are grasped by the 2n× 2n commuta-
tion matrix

σ2n =

[
0 11n

−11n 0

]
, (3.35)

when this order of canonical coordinates is chosen, (here 11n is the n×n iden-
tity matrix) [45, 59, 114]. Even though different reordering of the elements
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of R will not affect the definitions that follow, we find it useful to assume
a specific form for σ2n. One defines the group of real symplectic matrices
Sp(2n,R) as the set of 2n× 2n real matrices S which satisfy the condition

Sσ2nS
T = σ2n . (3.36)

Since Det[σ2n] = 1, and σ−1
2n = −σ2n, any symplectic matrix S has Det[S] = 1

and it is invertible with S−1 ∈ Sp(2n,R). Similarly, one has ST ∈ Sp(2n,R).
Symplectic matrices play a key role in the characterization of Bosonic sys-
tems. Indeed, the Weyl (displacement) operators, defined as

V (z) = V †(−z) := exp[iRz] , (3.37)

with z := (x1, x2, · · · , xn, y1, y2, · · · , yn)T being a column vector of R2n, gen-
eralize those for single mode above. Then it is possible to show [46] that for
any S ∈ Sp(2n,R) there exists a canonical unitary transformation U which
maps the canonical observables of the system into a linear combination of
the operators Rj, verifying the condition

U † V (z) U = V (Sz) , (3.38)

for all z. This is often referred to as metaplectic representation. Conversely,
one can show that any unitary U which transforms V (z) as in Eq. (3.38)
must correspond to an S ∈ Sp(2n,R). As in the single-mode case, Weyl
operators allow one to rewrite the canonical commutation relations as

V (z)V (z′) = exp[− i
2
zT σ2nz

′]V (z + z′) , (3.39)

and permit again a complete descriptions of the system in terms of (charac-
teristic) complex functions as in Eq. (3.22-3.23) but replacing x = (x, y)T

with z = (x1, x2, · · · , xn, y1, y2, · · · , yn)T and dz := dxdy with the differen-
tial d2nz := dx1 · · · dxndy1 · · · dyn. Within this framework, generalizing the
single-mode definition above, a density operator ρ of n modes is said to rep-
resent a Gaussian state if its characteristic function φ(z) has a Gaussian form
as in Eq. (3.26) with m being a real vector of mean values

mj := Tr[ ρRj] , (3.40)

and the 2n × 2n real symmetric matrix γ being the covariance matrix [46,
59, 60] of ρ. For generic density operators ρ (not only the Gaussian ones)
the latter is defined as the variance of the canonical coordinates R, i.e.,

γj,j′ := Tr
[
ρ
{
(Rj −mj), (Rj′ −mj′)

}]
, (3.41)
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with {·, ·} being the anti-commutator, and it is bound to satisfy the uncer-
tainty relations

γ > iσ2n , (3.42)

with σ2n being the commutation matrix (3.35). Up to an arbitrary vector m
(that can be nullified by displacement operators, without loss of generality),
the uncertainty inequality presented above uniquely characterizes the set of
Gaussian states, i.e. any γ satisfying (3.42) defines a Gaussian state. Let us
first notice that if γ satisfies (3.42) then it must be (strictly) positive definite
γ > 0, and have Det[γ] > 1. From Williamson theorem [115] it follows that
there exists a symplectic S ∈ Sp(2n,R) such that (see Appendix A)

γ = S

[
D 0
0 D

]
ST , (3.43)

where D := diag(d1, · · · , dn) is a diagonal matrix formed by the symplectic
eigenvalues dj > 1 of γ. For S = 112n Eq. (3.43) gives the covariance matrix
associated with thermal Bosonic states. This also shows that any covariance
matrix γ satisfying (3.42) can be written as

γ = SST + ∆ , (3.44)

with ∆ > 0. This is indeed the matrix

∆ := S

[
D − 11n 0

0 D − 11n

]
ST ,

with D as in Eq. (3.43) which is positive since D > 11n. The extremal
solutions of Eq. (3.44), i.e., γ = SST , are minimal uncertainty solutions and
correspond to the pure Gaussian states of n modes (e.g., multi-mode squeezed
vacuum states). They are uniquely determined by the condition Det[γ] = 1
and satisfy the condition [104]

γ = −σ2n(γ−1)σ2n . (3.45)
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3.2 Bosonic Gaussian channels

Gaussian channels arise from linear dynamics of open Bosonic system in-
teracting with a Gaussian environment via quadratic Hamiltonians [45, 54].
Loosely speaking, they can be characterized as CPT maps that transform
Gaussian states into Gaussian states [114, 116, 117]. Recalling Sec. 2.2,
in the Schrödinger picture the noise evolution is described by applying the
transformation to the states (i.e., the density operators), ρ 7→ E(ρ). In the
Heisenberg picture the transformation is applied to the observables of the
system, while leaving the states unchanged, Θ 7→ EH(Θ).

Due to the representation (3.22) and (3.23) any CPT transformation on
the n-modes can be characterized by its action on the Weyl operators of the
system in the Heisenberg picture (e.g., see Ref. [53]). In particular, a Bosonic
Gaussian channel (BGC) is defined as a map which, for all z, operates on
V (z) according to [45]

V (z) 7−→ EH(V (z)) := V (Xz) exp
[−1

4
zT Y z + ivT z

]
, (3.46)

with v being some fixed real vector of R2n, and with Y,X ∈ R2n×2n be-
ing some fixed real 2n × 2n matrices (the noise and the interaction term,
respectively) satisfying the complete positivity condition

Y > iΣ with Σ := σ2n −XT σ2nX . (3.47)

In the context of BGCs the above inequality is the quantum channel coun-
terpart of the uncertainty relation (3.42). In fact, it is obtained simply im-
posing the condition in Eq. (3.25) to the output characteristic function.
More generally, one has EH(V (z)) = V (X · z) f(z), where f(z) has to satisfy
some conditions in order to have a CPT map, e.g. for n = 1 the matrices
Mjk = f(zj−zk) exp [−i/2∆(zj, zk) + i/2∆(X zj, X zk)] have to be positive,
with ∆(z, z′) defined in Eq. (3.13) [45]. When f(z) = 1 and X is a symplec-
tic transformation, i.e. E is unitarily implemented, this map is better known
as Bogoliubov transformation [3]. Up to a vector v, Eq. (3.47) uniquely de-
termines the set of BGCs and bounds Y to be positive-semidefinite, Y > 0.
However, differently from (3.42) in this case strict positivity is not a neces-
sary prerequisite for Y . A completely positive map defined by Eqs. (3.46)
and (3.47) will be referred to as Bosonic Gaussian channel. Notice that the
action of BGC on a generic operator can be reduced to its action on the Weyl
operators, because they represent an over-complete operator basis.



3.2 Bosonic Gaussian channels 73

As mentioned before, such a map is a model for a wide class of physi-
cal situations, ranging from communication channels such as optical fibers,
to open quantum systems, and to dynamics in harmonic lattice systems.
Whenever one has only partial access to the dynamics of a system that can
be well-described by a time evolution governed by a Hamiltonian that is a
quadratic polynomial in the canonical coordinates, one will arrive at a model
described by Eqs. (3.46) and (3.47).

An important subset of BGCs is given by set of Gaussian unitary trans-
formations which have Y = 0, X ∈ Sp(2n,R), and v arbitrary. They include
the canonical transformations of Eq. (3.38) (characterized by v = 0), and the
displacement transformations (characterized by having X = 112n and v arbi-
trary). The latter simply adds a phase to the Weyl operators and correspond
to unitary transformations of the form EH(V (z)) := V (−v)V (z)V (v) =
V (z) exp[ivT z].

In the Schrödinger picture the BGC transformation (3.46) induces a map-
ping of the characteristic functions of the form

φ(z) 7−→ φ′(z) := φ(Xz) exp[−1
4
zT Y z + ivT z] . (3.48)

which in turn yields the following transformation of the mean and the co-
variance matrix

m 7−→ XT m + v ,

γ 7−→ XT γX + Y . (3.49)

Indeed, one has

φ′(z) = Tr[ρ EH(V (z))] = Tr[ρ V (Xz)] exp
[−1

4
zT Y z + ivT z

]

= φ(Xz) exp[−1
4
zT Y z + ivT z] . (3.50)

Clearly, BGCs always map Gaussian input states into Gaussian output states.
Besides, one could derive a ‘Green function’ representation of these maps in
the following way [44]. Consider the action of a linear superoperator E which
transforms a generic trace-class operator Θ into Θ′ = E(Θ). Equation (3.22)
allows us to represent this mapping in terms of a linear transformation of the
characteristic function φ(z) of Eq. (3.23). The characteristic function of the
output operator Θ′ is

φ′(z) = Tr[Θ′ V (z)] = Tr[Θ EH(V (z))] =

∫
d2nz′

(2π)n
φ(z′) Tr[V (−z′)EH (V (z))] ,
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that can be written in a more compact form as

φ′(z) =

∫
d2nz′

(2π)n
φ(z′) G(z′, z) , (3.51)

with

G(z′, z) ≡ Tr[V (−z′) EH(V (z))] = Tr[E(V (−z′)) V (z)] . (3.52)

In these expressions EH is the dual of E which describes the channel in the
Heisenberg picture (see Sec. 2.2.5). We call Eq. (3.52) the Green function of
E : according to previous definitions it provides us with a complete charac-
terization of the channel. The Bosonic Gaussian channels are characterized
by Green functions (3.52) of the form

G(z′, z) = δ(2n)(z′ −Xz) exp
[−1

4
zT Y z + ivT z

]
. (3.53)

Indeed, as can be directly verified from Eq. (3.51), we notice again that such
maps have the peculiar property of transforming input Gaussian states into
output Gaussian states.

Composition rules

For purposes of assessing quantum or classical information capacities, out-
put entropies, or studying degradability or anti-degradability of a channel
(as discussed in Sec. 2.3), the full knowledge of the channel is not required:
transforming the input or the output with any unitary operation (say, Gaus-
sian unitaries) will not alter any of these quantities [52, 53, 54, 55, 56]. It
is then convenient to take advantage of this freedom to simplify the descrip-
tion of the BGCs. To do so we first notice that the set of Gaussian maps is
closed under composition. Consider then E ′ and E ′′ two BGCs described re-
spectively by the elements X ′, Y ′, v′ and X ′′, Y ′′, v′′. The composition E ′′ ◦E ′
where, in Schrödinger representation, we first operate with E ′ and then with
E ′′, is still a BGC and it is characterized by the parameters

v = (X ′′)T v′ + v′′ ,

X = X ′X ′′ ,

Y = (X ′′)T Y ′ X ′′ + Y ′′ . (3.54)
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Figure 3.1: Simplification of E ′ by cascading it through proper encoding and
decoding Gaussian unitary transformations U1 and U2. The resulting channel
E is unitary equivalent to E ′ and it is characterized by the matrices of the
form (3.55).

Exploiting these composition rules it is then easy to verify that the vector v
can always be compensated by properly displacing either the input state or
the output state (or both) of the channel. For instance by taking X ′′ = 112n,
Y ′′ = 0 and v′′ = −v′, Eq. (3.54) shows that E ′ is unitarily equivalent to
the Gaussian channel E which has v = 0 and X = X ′, Y = Y ′. Therefore,
without loss of generality, in the following we will focus on BGCs having
v = 0.

More generally, consider the setup of Fig. 3.1 where we cascade a generic
BGC E ′ described by matrices X ′, Y ′ as in Eq. (3.47) with a couple of canoni-
cal unitary transformation U1 and U2 described by the symplectic matrices S1

and S2 respectively. The resulting BGC E is then described by the matrices

X = S1(X
′)S2, (3.55)

Y = ST
2 (Y ′)S2 .

For single mode (n = 1) this procedure induces a simplified canonical form [48,
53, 56] which, up to a Gaussian unitarily equivalence, allows one to focus only
on transformations characterized by X and Y which, apart from some special
cases, are proportional to the identity (as we will show in Sec. 3.3). In Sec.
3.4 we will generalize some of those results to an arbitrary number of modes
n. To achieve this goal, we first present an explicit dilation representation
in which the mapping (3.46) is described as a (canonical) unitary coupling
between the n modes of the system and some extra environmental modes
which are initially prepared into a Gaussian state.
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Figure 3.2: A general Gaussian channel of n modes, written as a unitary
dilation by unitarily coupling them to a Gaussian state ρE of (at most) 2n
environmental modes E as in Eq. (3.56). Here γE is the covariance matrix
of ρE.

Unitary dilation problem

Let us briefly introduce the problem of unitary dilations of generic Bosonic
Gaussian channels. Specifically, we ask if, given a BGC channel acting on
n modes as in Eq. (3.46), it can be realized by invoking ` 6 2n additional
(environmental) modes E through the expression

E(ρ) = TrE[U(ρ⊗ ρE)U †] , (3.56)

where ρ is the input n-mode state of the system, ρE is a Gaussian state
of an environment, U is a canonical unitary transformation which couples
the system with the environment, and TrE denotes the partial trace over
E (see Fig. 3.2). In the case in which ρE is pure, Eq. (3.56) corresponds
to a Stinespring dilation [81] of the channel E , otherwise it is a physical
representation, as in Sec. 2.2.2. It is worth to stress that this problem is
not trivial because, although the Stinespring representation of the channel is
always possible, however it is not necessarily true that one can find a physical
representation with ρE being a (not necessarily pure) Gaussian state and U
being a canonical unitary transformation. In the following, we will start to
face directly this problem for one-mode channels [52, 53] and, later, we will
generalize these results for multi-mode, proving a general unitary dilation
theorem and analyzing also the two-mode case in detail [54].
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3.3 One-mode Bosonic Gaussian channels

In this section, we focus on one-mode Bosonic Gaussian channels which
act on the density matrices of a single Bosonic mode A. Loosely speak-
ing, they can be characterized as a CPT transformation E operating on a
Bosonic mode, described by the annihilation operator a, and producing out-
put Gaussian states (see Sec. 3.1) when acting on Gaussian input states ρa

[45, 46, 59, 60].
A complete description of these maps, specified by its action on the Weyl

operators Va(z), is obtained as in Eq. (3.46), where n = 1 and X,Y ∈ R2×2

are real 2× 2 matrices satisfying the CPT condition in Eq. (3.47). However,
in this case the inequality in Eq. (3.47) reduces to the simpler condition

Y + i (Det[X]− 1) σ2 > 0 (3.57)

(where σ2 is defined in Eq. (3.35) for n = 1) that is trivially equivalent to
the inequality

Det[Y ] > (Det[X]− 1)2 . (3.58)

Within the limit imposed by Eq. (3.58) we can use Eq. (3.48) to describe the
whole set of the one-mode Gaussian channels.

As shown in the following, an interesting fact about these channels is
that, except for the additive classical noise channel [56], they admit a physi-
cal representation in terms of a single mode environment originally prepared
in a Gaussian state [53]. Within such representation one can show that
the Bosonic Gaussian channels (3.53) are either weakly degradable or anti-
degradable, exploiting the unitary equivalence with the beam-splitter and
amplifier channels [52]. A canonical classification of such maps obtained
recently in the paper [56] enables us to simplify the analysis of the weak-
degradability property and to study more easily the cases in which the en-
vironment is described by more than one Bosonic mode [52, 53] (cf. also
Ref. [48]). Finally, we focus mostly on the anti-degradability property and
we show that, by exploiting the composition rules of one-mode Bosonic Gaus-
sian channels, one can extend the set of the maps with null quantum capacity
well beyond the set of anti-degradable maps. In this way, we exhibit a new
set of channels useless for the transfer of quantum information, extending a
previous result in Ref. [45]. All these results will be shown in detail in this
chapter [52, 53].
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3.3.1 Beam-splitter and linear amplifier

Before taking generic Bosonic Gaussian channels into account, we start to
study two simple particular cases, present in almost all real quantum optics
experiments, i.e. the beam-splitter and the linear amplifier [61]. In particu-
lar, we will investigate their composition rules, weak-degradability features
and quantum capacity. This will be propaedeutical for the characterization
of the whole class of single-mode channels.

One of the simplest optical processes is attenuation by a beam-splitter
(BS). It is an optical device (e.g., a semitransparent mirror) that splits an
incident optical beam into two coherent parts by reflecting (with probability
1− k2) and transmitting (with probability k2) some fraction of the incident
beam. The parameter k2 is called the transmissivity of the beam-splitter. It
is made either of thin layers of metal or multi layer dielectric films deposited
on glass. This device preserves all the mode properties, like the light fre-
quency, the size of the beam, the curvature of the wavefront. However, the
energy conservation requires a phase shift π/2 in the reflection of one of the
two modes, while the direction of the propagation is given by geometrical
considerations. From the photon point of view, the beam-splitter acts like a
random selector with reflects the photons with probability 1− k2 and trans-
mits them with a probability k2, but its effect on any particular photon is
unpredictable3. This model well describes, for instance, the losses inside an
optical fiber and the optical attenuation over distance (but also what hap-
pens in a quantum memory). The beam-splitter is mathematically described
by the following linear transformations of two single mode operators a and b

a′ ≡ U †
ab a Uab = k a−

√
1− k2 b , (3.59)

b′ ≡ U †
ab b Uab =

√
1− k2 a + k b , (3.60)

with k2 ∈ [0, 1] being the transmissivity and Uab is a unitary interaction
between the two modes a and b, i.e.

Uab = exp

[
(ba† − b†a) arctan

√
1− k

k

]
(3.61)

If k2 = 1/2, this device is known as balanced 50/50 beam-splitter. If k = 1,
one obtains the identity map, i.e. U †

abaUab = a and U †
abbUab = b. Moreover,

3This principle is used in a commercially available product, that is the Quantum Ran-
dom Number Generator [31].
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the beam-splitter can be seen as a Bosonic channel, where the mode a would
correspond to the main system and the mode b to an external environment.
If the initial state of the mode b is a Gaussian state, the relative beam-splitter
is a Bosonic Gaussian channel.

An optical amplifier is any optical medium used to amplify the power
of a laser beam. It is very useful for communication systems, because, for
example, it enables to compensate the unavoidable losses in the transmission
of optical beams over long distances and it is usually periodically placed
in optical fiber links. Particularly, a linear amplifier is an amplifier whose
output is linearly related to its input. This linear amplification process is
described by the following operator transformations,

a′ = k a−
√

k2 − 1 b , (3.62)

b′ = −
√

k2 − 1 a + k b , (3.63)

where k2 ≥ 1 is the amplification factor. Again, for k = 1 this map corre-
sponds to the identity, i.e. a′ = a and b′ = b. A practical implementation of
this model consists of a group of inverted two-level atoms; in this case the
linearity is obtained by assuming that only one-photon processes take place.
For example, it could correspond to a laser with the end mirrors removed,
being perturbed by a weak external field. Notice that the linear amplifier
can be considered a Bosonic channel and it is Gaussian if the input state of
the mode b is Gaussian, e.g. an environmental thermal state.

According to the operator transformation above, it is easy to verify that
the BS/amplifier map, defined as E [k, σb], (distinguished by k < 1 and k > 1,
respectively) operates on a generic (not necessarily Gaussian) state ρa by
transforming its characteristic function χ(µ) as follows:

χ(µ) → χ′(µ) =





χ(kµ) ξ(
√

1− k2µ) k ∈ [0, 1]

χ(kµ) ξ(−√k2 − 1µ∗) k > 1 ,

(3.64)

with

ξ(µ) = Tr[σb exp(µb† − µ∗b)] , (3.65)

being the Gaussian characteristic function of the environment state σb. With-
out loss of generality, in the following we will assume σb to have null first
order momentum (it can always be compensated through a suitable uni-
tary operator acting on the output of the channel). Particularly, from now
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on, σb is chosen to be a thermal state as in Eq. (3.27), whose character-
istic function ξ(µ) is a Gaussian with γ given by Eq. (3.28) and with N0

being the average photon number. The description of beam-splitter and
amplifier channels, as in Eq. (3.46), corresponds to have X = k11 and
Y = |k2 − 1|(2N0 + 1)11, satisfying trivially the inequality (3.58) because
Det[Y ] = (k2 − 1)2(2N0 + 1)2 > (k2 − 1)

2
= (Det[X]− 1)2.

Analogously the weakly complementary map Ẽ [k, σb] of Eq. (2.50) pro-
duces the transformation,

χ(µ) → χ′(µ) =





χ(−√1− k2µ) ξ(kµ) k ∈ [0, 1]

χ(−√k2 − 1µ∗) ξ(kµ) k > 1 .

(3.66)

It is worth noticing that the weakly complementary channel of a BS with
transmissivity k2 is another BS with transmissivity 1− k2.

Examples of composite channels

Figure 3.3: From left to right, pictorial representation of a BS, a linear
amplifier, the weakly-complementary map of a BS and of a linear amplifier,
respectively.

Now we try to compose beam-splitter and amplifier channels (see Fig.
3.3). As in Sec. 2.2.1, we use the word ‘composition’ in the sense that the
channels are considered in succession, i.e. the second channel is applied to
the output of the first channel and so on. We will find that these com-
posite channels will be equivalent to a beam-splitter or an amplifier with
“rescaled” environment (i.e., whose covariance matrix, γ, is a combination of
two component ones, γ1 and γ2) and “rescaled” gain/attenuation coefficient
(i.e., k = k1k2).
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• BS + BS

We combine two beam-splitter channels with attenuation parameter
k2

1 and k2
2, respectively (see Fig. 3.4). The characteristic function

evolution of these two maps is:

– BS 1:

χ(µ) → χ′(µ) = χ(k1µ) , ξ(
√

1− k2
1µ) (3.67)

– BS 2

χ(µ)′ → χ′′(µ) = χ′(k2µ) ξ(
√

1− k2
2µ) , (3.68)

with ξ(µ) being a Gaussian characteristic function of the environment
state σb as in Eq. (3.65). By defining a new attenuation coefficient

Figure 3.4: Graphical representation of the composition of two BS channels
with attenuation coefficient k2

1 and k2
2, respectively.

k = k1k2 < 1, it is possible represent the channel BS+BS like another
BS with transmissivity k2. Indeed,

χ(µ) → χ′′(µ) = χ(kµ) ξ(
√

1− k2µ) , (3.69)

as in Eq. (3.64), where

γ =
k2

2(1− k2
1)

1− k2
γ1 +

1− k2
2

1− k2
γ2 , (3.70)

with γ1 and γ2 being environment input state covariance matrices for
the BS channels, respectively4.

4Notice that the composition of two BS (amplifiers) with parameters k1 and k2 and
environment, respectively, b1 and b2 (not necessarily Gaussian), is another BS (amplifier)
with k = k1k2 and with the environmental initial state being the output state of another

BS (amplifier) with k̄ = k2

√
|1−k2

1|√
|1−k2

1k2
2|

and input states b1 and b2.
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• Amplifier + Amplifier

Here we compose two amplifier channels with gain parameter k2
1 and

k2
2, respectively (see Fig. 3.5).

Figure 3.5: Graphical representation of the composition of two amplifier
channels with gain parameter k2

1 and k2
2, respectively.

As done for BS+BS case, by introducing a new amplification coefficient
k = k1k2 > 1, the composite map is another amplifier with efficiency k2,
where the Gaussian environmental state has the following covariance
matrix

γ = σx

[
k2

2(k
2
1 − 1)

k2 − 1
γ1 +

k2
2 − 1

k2 − 1
γ2

]
σx , (3.71)

with σx being the first Pauli matrix

(
0 1
1 0

)
, γ1 and γ2 being the

environment input state covariance matrices for the amplifier channels,
respectively.

• BS + Amplifier

Let us mix a beam-splitter with attenuation coefficient k2
1 and an

amplifier with gain parameter k2
2 (see Fig. 3.6). We will show that the

composite map (corresponding to the parameter k = k1k2) is a BS or
an amplifier, according to that k < 1 or k > 1, respectively.

- k = k1k2 < 1

In this case, it is possible represent the channel BS+amplifier like
a beam-splitter characterized by transmissivity k2 and environ-
mental covariance matrix

γ =
k2

2(1− k2
1)

1− k2
γ1 +

(k2
2 − 1)

1− k2
σxγ2σx , (3.72)
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Figure 3.6: Graphical representation of the composition of a BS with atten-
uation coefficient k2

1 and an amplifier with gain parameter k2
2.

with γ1 and γ2 being the environment input state covariance ma-
trices for the BS and the amplifier, respectively.

- k = k1k2 > 1

In this other case, instead, the map BS+amplifier is equivalent to
a new amplifier with amplification coefficient k2 and

γ = σx

[k2
2(1− k2

1)

k2 − 1
σxγ1σx +

k2
1(k

2
2 − 1)

k2 − 1
γ2

]
σx . (3.73)

• Amplifier + BS

Let us consider an amplifier with gain parameter k2
1 followed by a

beam-splitter with attenuation coefficient k2
2 (see Fig. 3.7), in an in-

verse order with respect to the results above.

Figure 3.7: Graphical representation of the composition of an amplifier with
gain parameter k2

1 and a BS with attenuation coefficient k2
2.

Analogously to the previous case, the composite map (corresponding
to the parameter k = k1k2) is a BS or an amplifier, according to that
k < 1 or k > 1, respectively.
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- k = k1k2 < 1

In this case, the channel amplifier+BS corresponds to a BS with
attenuation coefficient k2 and

γ =
k2

2(k
2
1 − 1)

1− k2
σxγ1σx +

1− k2
2

1− k2
γ2 , (3.74)

with γ1 and γ2 being the environment input state covariance ma-
trices for the amplifier and the BS, respectively.

- k = k1k2 > 1

Now, instead, the composite map is an amplifier with efficiency
k2, where the equivalent covariance matrix of the Gaussian envi-
ronment for the composite map is

γ = σx

[k2
2(k

2
1 − 1)

k2 − 1
γ1 +

1− k2
2

k2 − 1
σxγ2σx

]
σx . (3.75)

Weak-degradability

Now we will show that the BS/amplifier map, E [k, σb], whose characteristic
function evolves as in Eq. (3.64), is weakly degradable for k2 > 1/2 and
anti-degradable for k2 6 1/2 [52].

Consider first the amplifier case where k > 1. To show that E [k, σb]
satisfies the weak-degradability condition in Eq. (2.52) we define the quantity
k′2 ≡ (2k2 − 1)/k2 and notice that this is always greater than or equal to 1.
Our claim is that one can identify the map T of Eq. (2.52) with the weakly
complementary map (2.50) of an amplifier of gain k′2, i.e., T = Ẽ [k′, σb].
This can be verified by studying how Ẽ [k′, σb]◦E [k, σb] acts on a generic state
ρa. Combining Eqs. (3.64), (3.66) and using similar calculations as above, it
follows that the characteristic function χ(µ) of ρa is transformed into

χ(−
√

k2(k′2 − 1)µ∗) ξ(

√
(k′2 − 1)(k − 1)µ) ξ(k′µ)

= χ(−
√

k2(k′2 − 1)µ∗) ξ(

√
(k′2 − 1)(k2 − 1) + k′2µ)

= χ(−
√

k2 − 1µ∗) ξ(kµ) , (3.76)

where we used the properties of the Gaussian function ξ and the identity
k2(k′2−1) = k2−1. By comparison with Eq. (3.66), we notice that Ẽ [k′, σb]◦
E [k, σb] operates on ρa as Ẽ [k, σb]. Since this is true for all ρa we get

Ẽ [k, σb] = Ẽ [k′, σb] ◦ E [k, σb] , (3.77)
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proving the thesis.
Consider now the BS case where k ∈ [0, 1]. Here we distinguish two differ-

ent regimes. For k ∈ [1/
√

2, 1] the channel E [k, σb] is still weakly degradable
and satisfies Eq. (3.77), the only difference being that now Ẽ [k′, σb] represents
the weakly complementary of a BS map of transmissivity k′2 = (2k2−1)/k2 ∈
[0, 1]. The formal proof goes as in Eq. (3.76), which now becomes

χ(−
√

k2(1− k′2)µ) ξ(−
√

(1− k′2)(1− k2)µ) ξ(k′µ)

= χ(−
√

k2(1− k′)2µ) ξ(

√
(1− k′2)(1− k2) + k′2µ)

= χ(−
√

1− k2µ) ξ(kµ) . (3.78)

For k ∈ [0, 1/
√

2] instead we can show that E [k, σb] is anti-degradable by ob-
serving that it satisfies the condition (2.53) with T being the weakly comple-
mentary Ẽ [k′′, σb] of a BS channel of transmissivity k′′2 = (1−2k2)/(1−k2) ∈
[0, 1], i.e.,

E [k, σb] = Ẽ [k′′, σb] ◦ Ẽ [k, σb] . (3.79)

The proof is again obtained through Eqs. (3.64) and (3.66) by showing that
the transformations on a generic χ(µ) induced by Ẽ [k′′, σb] ◦ Ẽ [k, σb] and by
E [k, σb] coincide. Indeed, one has

χ(

√
(1− k2)(1− k′′2)µ) ξ(

√
(1− k′′2)k2µ) ξ(k

′′
µ)

= χ(

√
(1− k2)(1− k′′2)µ) ξ(

√
(1− k′′2)k2 + k′′2µ)

= χ(kµ) ξ(
√

1− k2µ). (3.80)

Quantum Capacity

Here we analyze the quantum capacity of weakly degradable BS/amplifier
channels, E [k, σb] [45, 55]. This will enable us to find BS/amplifier channels
with null capacity. Let the input state ρa of the system A and σb of the
environment be a thermal state with an average photon number N and N0,
respectively. Then the output state of E [k, σb](ρa) is again a thermal state
with N replaced by

N ′ = k2N + max{0, (k2 − 1)}+ |k2 − 1|N0 , (3.81)
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where k2 is the attenuation/gain coefficient for the beam-splitter/amplifier
channel. Since the coherent information (see Sec. 2.2.6) [45]

J(ρ, E [k, σb]) = g(N ′)− g

(
D + N ′ −N − 1

2

)
− g

(
D −N ′ + N − 1

2

)

increases with the input power N , we obtain a lower bound QG(E [k, σb]) for
the quantum capacity Q(E [k, σb]) in the infinite power limit, i.e.

Q(E [k, σb]) ≥ QG(E [k, σb]) = lim
N→∞

J(ρ, E [k, σb]) (3.82)

= log k2 − log |k2 − 1| − g (NE)

where D =
√

(N + N ′ + 1)2 − 4k2N(N + 1) and g(x) = (x + 1) log(x + 1)−
x log x (see Fig. 3.8).

Figure 3.8: Quantum capacity of degradable BS/amplifier channels as a func-
tion of k2, i.e. Q = log k2

|k2−1| , with the environmental average photon number
being initially null, i.e. N0 = 0.

In Ref. [55] it was shown that the quantum capacity of degradable Gaus-
sian Bosonic channels can be calculated explicitly by showing that Gaussian
encodings (i.e., using Gaussian input states) are optimal. In other words, the
lower bound in Eq. (3.82) coincides exactly with the quantum capacity of
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these degradable BS/amplifier channels, i.e. Q(E [k, σb]) = QG(E [k, σb]) with
N0 = 0 (Stinespring representation, see Sec. 2.2.2).

Besides, starting from Eq. (3.82), it is possible to find out how the input
mean photon number of the environment N0 depends on the factor k2 for a
generic BS/amplifier E [k, σb], that has QG(E [k, σb]) = 0.

QG(E [k, σb]) = 0 −→ k2 =
exp g(N0)

exp g(N0)∓ 1
(3.83)

where the sign in the denominator is − or + according to the fact that k ≥ 1
or k ≤ 1, respectively. Note in Fig. 3.9 that, when k becomes closer and
closer to 1 (i.e., E [k, σb] → identity map), one needs to put more and more
noise in the channel (through N0) in order to have QG = 0. For k = 1 one
has, trivially, a noiseless quantum channel.

Figure 3.9: The input mean photon number of the environment N0 as a
function of the factor k, for a generic BS/amplifier with Q(E [k, σb]) = 0.
Above this lower bound, Q is always vanishing.

More generally, in the following we will use the composition rules ex-
amined above in order to study the relation between the noise (N0) and the
parameter k2 for BS/amplifers with null quantum capacity, i.e. Q = 0. These
results will be derived in a more powerful and compact way in Sec. 3.3.5.

Let us consider the composite amplifier + BS map and use the nice prop-
erty that, if you compose a generic channel with an anti-degradable one (for
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which Q = 0), the global quantum capacity is always zero, of course. It is
rigourously proved by using the so-called quantum data processing inequal-
ity [1]. Particularly, we consider a BS with transmissivity k2 = 1/

√
2 (anti-

degradable) and with a Gaussian environment in a pure state, i.e. γ2 = 11.
For simplicity, assume γ1 = 11 also for the amplifier map.

• BS-like channels

In this case, the equivalent BS has an environmental covariance matrix
γ as in Eq. (3.74) and assuming γ = (2N0 + 1)11, it is possible to
connect N0 (noise parameter) and k for these zero capacity channels as

N0 =
2k2 − 1

2(1− k2)
. (3.84)

This relation is reported in Fig. 3.14, in which it is obtained in a more
general approach, and it is a lower bound for the null quantum capacity
region in the case of k < 1 (compare also with Eq. (3.154)).

Now, let us suppose to know one point (BS-like) in the plane in Fig.
3.10, for example {k̄2 = 0.95, N̄0 = 10}, in which the quantum capacity
Q is zero. Let us construct a family of the parametric curves (starting
from {k̄2, N̄0}) such that their points correspond to BS/amplifier chan-
nels with null capacity. This result is important because it enables one
to know ‘a priori’ if the quantum capacity of a BS/amplifier is zero,
by knowing only k2 and N0, by assuming that the environmental input
state is a thermal state. In order to achieve it, starting from a BS with
parameters {k̄2, N̄0}, we add in ‘series’ an amplifier or a BS, in order to
move in the ‘direction’ of channels with larger or smaller k′2, i.e. more
or less attenuating maps. However, the new noise parameter N ′

0 cannot
change in an arbitrary way but following the composition rules above.

First of all, let us consider how to obtain channels with smaller k′2 and
with null quantum capacity. Add another BS with transmissivity k̃2

and γ = (2Ñ0 +1)11 (thermal state) and, as shown above, the resulting
map will be another BS with the following relation between k′ (= k̃k̄ <
k̄) and N ′

0:

N ′
0 = N0 +

1− k̃2

1− k′2
(Ñ0 −N0) (3.85)

This relation describes a family of zero-capacity curves as a function
of k̃2 and Ñ0 (reported on the right panel in Fig. 3.10). Equivalently,
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in order to ‘move’ towards channels with larger k′ and with Q = 0,
we add an amplifier with gain k̃2 and γ = (2Ñ0 + 1)11. In this way, k′

(= k̃k̄ > k̄) and N ′
0 are related as

N ′
0 = N̄0 +

k̃2 − 1

1− k′2
(Ñ0 + N̄0 + 1) (3.86)

and the relative family of zero-capacity curves, corresponding to differ-
ent choices of k̃2 and Ñ0, is shown on the left panel in Fig. 3.10.

Figure 3.10: A family of curves N0 vs. k2, associated to BS-like channels with
Q = 0 and corresponding to different k̃2 and Ñ0, is shown in the cases of k′ <
k̄ (right panel) and k′ > k̄ (left panel), as in Eqs. (3.85, 3.86), respectively.
The starting point of these parametric curves is {k̄2 = 0.95, N̄0 = 10}.

• Amplifier-like channels

If, instead, k > 1, from γ = N0 + 1
2

with γ as in Eq. (3.75), one obtains

N0 =
1

2(k2 − 1)
(3.87)

and this relation is reported again in Fig. 3.14 and it is associated
to a null quantum capacity region for k > 1; compare also with Eq.
(3.154). Again, suppose to know one point (amplifier-like) in Fig. 3.11,
for example {k̄2 = 1.05, N̄0 = 10}, in which Q = 0. By using the same
procedure as above, we find a similar family of the parametric curves
with Q = 0 but, as in Eq. (3.85) for k′ > k̄, and as in Eq. (3.86) for
k′ < k̄ (see Fig. 3.11).
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Figure 3.11: A family of curves N0 vs. k2, associated to amplifier-like chan-
nels with Q = 0 and corresponding to different k̃2 and Ñ0, is shown in the
cases of k′ < k̄ (right panel) and k′ > k̄ (left panel), as in Eqs. (3.86) and
(3.85), respectively. The starting point is {k̄2 = 1.05, N̄0 = 10}.

3.3.2 Unitary equivalence

After analyzing the composition rules, the weak-degradability properties
and the quantum capacity of BS and amplifier maps, we show that (al-
most) all one-mode Bosonic Gaussian channels are unitarily equivalent to
beam-splitter/amplifier channels, up to squeezing transformations. Since the
degradability properties are invariant under unitary transformations, applied
individually to the input and the output states (see Sec. 2.3), proving these
features for BS and amplifier channels turns out enough to characterize (al-
most) all one-mode Bosonic Gaussian channels [52].

As before, we focus on a generic one-mode Gaussian channel, which can be
expressed as in Eq. (2.49) with σb being a (possibly mixed) Gaussian state of
a single environmental Bosonic mode described by the annihilation operator
b. We say that it admits a single-mode unitary representation. From now
on, we will use the notation E(ρa) ≡ E [Uab, σb](ρa) = Trb[Uab(ρa⊗σb)U

†
ab] and

Ẽ(ρa) ≡ Ẽ [Uab, σb](ρa) = Tra[Uab(ρa ⊗ σb)U
†
ab]. In particular, Uab describes a

linear coupling which performs the transformation [46, 45],

Uab ~v U †
ab = A · ~v , (3.88)

where ~vT = (a, a†, b, b†) and A being a 4 × 4 complex symplectic matrix. In
particular, to preserve the commutation relation among the operators a, a†,
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b and b†, the matrix A satisfies the following constraints

4∑
j=1

(−1)j+1|Aij|2 = 1 , (3.89)

for i = 1, 3 and

4∑
j=1

(−1)j+1A1jA3 j+(−1)j+1 = 0 ,

4∑
j=1

(−1)j+1A1jA
∗
3j = 0 . (3.90)

Almost all one-mode Gaussian channels can be expressed in this way.
The only exception to this rule is represented by maps which are unitarily
equivalent to additive classical noise channels (see Sec. 3.3.3) [53, 56]. Within
the single-mode unitary representation of E , the weakly complementary map
in Eq. (2.50) of E is again a one-mode Gaussian channel [45, 93] which can
be seen as a transformation which maps D(Ha) into itself, by introducing
an irrelevant isometry which exchanges a and b [41]. We will show that the
weak-degradability of the Gaussian map E [Uab, σb] with Uab as in Eq. (3.88)
depends only upon the real parameter,

q ≡ |A11|2 − |A12|2 , (3.91)

with A11 and A12 being elements of the matrix A. The quantity (3.91) is
an invariant of the unitary representation of the map, i.e., it depends on
E but not on the choice of Uab and σb. This property will be discussed
in detail in the following when analyzing the canonical form of one-mode
BGCs [52, 53, 56] (see also Ref. [48]). Notice that in the notation of generic
one-mode BGCs in Eq. (3.46) q is directly related to X as q = Det[X].
Without loss of generality, as previously discussed above, we assume σb to
have null first order momentum. Another important simplification arises by
considering the one-parameter family of unitaries U

(k)
ab (3.88) associated with

beam-splitter (BS) and amplifier transformations (examined in Sec. 3.3.1).
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For k ∈ [0, 1] they are characterized by the matrix

A(k) =




k 0 −√1− k2 0

0 k 0 −√1− k2√
1− k2 0 k 0

0
√

1− k2 0 k


 ,

(3.92)

which describes superposition of the modes a and b at the output of a beam-
splitter of transmissivity k2. For k > 1 instead the U

(k)
ab are characterized by

the matrix

A(k) =




k 0 0 −√k2 − 1

0 k −√k2 − 1 0

0 −√k2 − 1 k 0

−√k2 − 1 0 0 k


 ,

(3.93)

which defines an amplification of a with gain parameter k2. Notice that in
both cases Eq. (3.91) yields

|A(k)
11 |2 − |A(k)

12 |2 = k2 , (3.94)

and k2 ≡ q according to Eq. (3.91).
Therefore, it is possible to demonstrate that the map E [Uab, σb] is weakly

degradable for q > 1/2 and anti-degradable for q 6 1/2 (see Table 3.1). As
discussed below, the BS/amplifier maps (examined in Sec. 3.3.1) E [k, σb] ≡
E [U

(k)
ab , σb] and their weakly conjugates Ẽ [k, σb] ≡ Ẽ [U

(k)
ab , σb] can be used to

express a generic one-mode Gaussian channel via proper unitary transfor-
mations, with some remarkable exceptions in the case of q = 0, 1 [56]. We
can, therefore, prove the weak-degradability or anti-degradability property
of one-mode Gaussian maps by focusing only on the subset E [k, σb]. Con-
sider, in fact, a generic Gaussian map of the form E [Uab, σb] with the real
parameter q of Eq. (3.91) being positive and 6= 1. According to Eq. (3.106)
we can write,

E [Uab, σb](ρa) = Sa

( E [k = q, σ′b](ρa)
)

S†a , (3.95)

with σ′b ≡ S ′bσbS
′
b
† and Sa, S ′b being, respectively, unitary squeezing operators

of a and b which depend on A but not on the input state ρa. Since squeezed
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Value of q Equivalent map

q < 0 Ẽ [1− q, σ′b] Anti-degradable
conjugate amplifier (Q = 0)

0 < q 6 1/2 E [q, σ′b] Anti-degradable
BS of transmissivity q (Q = 0)

1/2 6 q < 1 BS of transmissivity q
E [q, σ′b] Weakly degradable

1 < q amplifier (degradable for σ′b pure)

Table 3.1: Weak-degradability and anti-degradability conditions for the one-
mode Bosonic channel E [Uab, σb]. In the first column we report the value of
the characteristic parameter q of Eq. (3.91). In the second column we report
the BS or amplifier map which, according to Eqs. (3.95) and (3.96), is uni-
tarily equivalent to E (σ′b are Gaussian states obtained by properly squeezing
σb). Although for q = 0 and q = 1 the equivalent BS or amplifier map not
always exists [56], still one can show that these maps are respectively anti-
degradable and weakly degradable. Channels which are anti-degradable have
null quantum capacity. Those which are weakly degradable with σb pure (i.e.,
degradable) have instead additive coherent information. The case q = 1/2 is
an example of a channel which satisfies both the weak-degradability (2.52)
and the anti-degradability (2.53) condition. This is a consequence of the sym-
metry of the fields emerging from the opposite output ports of a balanced
50/50 beam-splitter.

thermal states are Gaussian, the above expression shows that any Gaussian
channel E [Uab, σb] is unitarily equivalent to an amplifier channel for q > 1 and
to a BS channel for q ∈]0, 1[. This implies that E [Uab, σb] is anti-degradable
for q ∈]0, 1/2] and weakly degradable for q > 1/2 and q 6= 1. Consider now
the case of maps with q of Eq. (3.91) being negative. Here Eq. (3.95) is
replaced by

E [Uab, σb](ρa) = Sa

( Ẽ [1− q, σ′b](ρa)
)

S†a , (3.96)

where, again, Sa and σ′b are, respectively, a squeezing operator and a Gaussian
state [in writing Eq. (3.96) an isometry a ↔ b is implicitly assumed]. Since
1 − q > 1, Eq. (3.96) shows that E is unitarily equivalent to the weakly
conjugate map of the amplifier channel E [1 − q, σ′b]. This is equivalent to
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say that E [Uab, σb] with negative q are always anti-degradable. Finally, for
q = 0 and q = 1 the channel is, respectively, anti-degradable and weakly
degradable. The analysis of these maps is slightly more complex since it is
not always possible to describe them in terms of BS/amplifier channels, as
shown in Sec. 3.3.3 [56, 53].

Decomposition rules

Here we give an explicit derivation of the decomposition rules (3.95) and
(3.96) which allow us to express any generic one-mode Gaussian map with
q 6= 0, 1 in terms of BS or amplifier channels (studied in detail in Sec. 3.3.1).
Remind that we are considering composition of channels in series, i.e. the
output state of a quantum channel becomes the input of the next channel
(see Sec. 2.2.1). For the sake of clarity we will analyze separately the cases
q ∈]0, 1[, q > 1 and q < 0 [52].

• Maps with q ∈]0, 1[

Consider first the case of one-mode Gaussian channel of the form
E [Uab, σb] with the real parameter q of Eq. (3.91) being positive and
smaller than 1. Under this condition, apart from redefining the phases
of a and b, the elements A1j of the matrix (3.88) can be parametrized
as follows

A11 =
√

q cosh r ,

A12 =
√

q eiϕ sinh r ,

A13 = −
√

1− q cosh s ,

A14 = −
√

1− q eiψ sinh s , (3.97)

where r, s, ϕ, and ψ are real quantities and where the last two ex-
pressions come from the constraint (3.89). Let us then introduce the
(unitary) squeezing transformations [61]:

Sa(r; ϕ) a S†a(r; ϕ) = a cosh r + eiϕ a† sinh r ,

Sb(s; ψ) b S†b(s; ψ) = b cosh s + eiψ b† sinh s . (3.98)
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On one hand, they allow us to write

(S†a ⊗ S†b) a′ (Sa ⊗ Sb) =
√

q a−
√

1− q b = U
(q)
ab a

[
U

(q)
ab

]†
, (3.99)

where U
(q)
ab is the BS transformation defined as in Eq. (3.92) while

a′ = Uab a U †
ab represents the evolution of a under the unitary Uab of

E [Uab, σb]. On the other hand, we get

(S†a ⊗ S†b) b′ (Sa ⊗ Sb) = A21a + A22a
† + A23b + A24b

†1 ,

(3.100)

with b′ = Uab b U †
ab and with A2j being complex parameters which

satisfies the symplectic conditions analogous to those of Eqs. (3.89)
and (3.90), i.e.,

|A21|2 − |A22|2 + |A23|2 − |A24|2 = 1 ,
√

q A21 −
√

1− q A23 = 0 ,
√

q A22 −
√

1− q A24 = 0 . (3.101)

Equation (3.100) can be cast in a more compact form by properly
parameterizing the A2j;

A21 =
√

1− q cosh(t) eiφ ,

A22 =
√

1− q sinh(t) eiφ′ ,

A23 =
√

q cosh(t) eiφ ,

A24 =
√

q sinh(t) eiφ′ , (3.102)

with t, φ, and φ′ real. This yields

(S†a ⊗ S†b) b′ (Sa ⊗ Sb) = eiφ U
(q)
ab

(
S ′b b S ′b

†
) [

U
(q)
ab

]†
,

(3.103)

where S ′b ≡ Sb(t, φ
′−φ) is a squeezing operator (3.100) acting on b and

where U
(q)
ab is the BS unitary coupling of Eq. (3.99). By absorbing the

phase φ into the definition of b′ and by noticing that S ′b does not affect
a, Eqs. (3.99), (3.103), and (3.88) give

Uab ~v U †
ab = (Sa ⊗ Sb) U

(q)
ab S ′b ~v S ′b

†
[U

(q)
ab ]† (Sa ⊗ Sb)

† ,

(3.104)
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which enables us to decompose Uab as the following product:

Uab = (Sa ⊗ Sb) U
(q)
ab S ′b . (3.105)

Replacing this into Eq. (2.49) we finally get

E [Uab, σb](ρa) = SaTrb[SbU
(q)
ab (ρa ⊗ σ′b)[U

(q)
ab ]†S†b ]S

†
a

= SaTrb[U
(q)
ab (ρa ⊗ σ′b)[U

(q)
ab ]†]S†a

= Sa

( E [k = q, σ′b](ρa)
)

S†a . (3.106)

In this expression the Sa was brought out of the trace since it is acting
on a. Vice versa, Sb has been simplified by exploiting the invariance of
the trace under unitary transformation. Finally, the Gaussian state σ′b
is the squeezed version under S ′b of the environmental state σb, i.e.,

σ′b ≡ S ′bσbS
′
b
†
. (3.107)

Equation (3.106) shows that, for q ∈]0, 1[ the map E [Uab, σb] is unitary
equivalent to the BS channel E [k = q, σ′b].

• Maps with q > 1

For q greater than one Eqs. (3.105) and (3.106) still hold: the only

difference being that now U
(q)
ab represents an amplifier map defined by

the matrix of Eq. (3.93). This can be shown following the same deriva-
tion of the case q ∈]0, 1[ by replacing the parameterizations (3.97) and
(3.102) with

A11 =
√

q cosh r ,

A12 =
√

q eiϕ sinh r ,

A13 = −
√

q − 1 e−iψ sinh s ,

A14 = −
√

q − 1 cosh s , (3.108)

and

A21 = −
√

q − 1 sinh(t) eiφ′ ,

A22 = −
√

q − 1 cosh(t) eiφ ,

A23 =
√

q cosh(t) eiφ ,

A24 =
√

q sinh(t) eiφ′ . (3.109)
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• Maps with q < 0

To analyze the channels E [Uab, σb] with q negative it is useful to intro-
duce a isometry Ξab = Ξ†ab which transforms a in b and vice versa while
leaving the vacuum state invariant, i.e., Ξab a Ξab = b, Ξab b Ξab = a,
and Ξab|Ø〉 = |Ø〉. This is a unitary transformation which for any
bounded operator Θab on Ha ⊗Hb satisfies the identity

Trb[ΞabΘabΞab]⊗ 11b = Ξab (11a ⊗ Tra[Θab]) Ξab. (3.110)

Consider, then, the unitary transformation ΞabUab with Uab being the
unitary coupling associated with E [Uab, σb]. From Eq. (3.88) it follows

(Ξab Uab) ~v (U †
ab Ξab) = Ã · ~v (3.111)

where Ã is a 4×4 matrix which is obtained by shifting by 2 the columns
of the matrix A which describes the unitary Uab, i.e., Ãij = Ai,j⊕2 where
⊕ represents the sum modulus 4. From the constraint (3.89) it then
follows that the coefficient (3.91) of Ã is greater than 1, i.e.,

q̃ = |Ã11|2 − |Ã12|2 = |A13|2 − |A14|2
= 1− (|A11|2 − |A12|2) = 1− q > 1 . (3.112)

We can then use the analysis above to show that there exist squeezing
transformations Sa, Sb, and S ′b which allows us to write Ξab Uab =

(Sa⊗Sb) U
(q̃)
ab S ′b with U

(q̃)
ab being an amplifier coupling (3.93). Therefore,

we get

Uab = Ξab (Sa ⊗ Sb) U
(q̃)
ab S ′b . (3.113)

Exploiting the identity (3.110) this yields

E [Uab, σb](ρa)⊗ 11b (3.114)

= Trb[Ξab (Sa ⊗ Sb) U
(q̃)
ab S ′b(ρa ⊗ σb)S

′
b
†
[
U

(q̃)
ab

]†
(Sa ⊗ Sb)

† Ξab]⊗ 11b

= Ξab(11a ⊗ Tra[(Sa ⊗ Sb)U
(q̃)
ab × (ρa ⊗ σ′b)

[
U

(q̃)
ab

]†
(Sa ⊗ Sb)

†])Ξab

= Ξab(11a ⊗ SbTra[U
(q̃)
ab (ρa ⊗ σ′b)

[
U

(q̃)
ab

]†
]S†b)Ξab

= Ξab(11a ⊗ Sb Ẽ [1− q, σ′b](ρa) S†b)Ξab ,
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where we used the fact that Tra[U
(q̃)
ab (ρa ⊗ σ′b)

[
U

(q̃)
ab

]†
] is the weakly

complementary channel Ẽ [q̃, σ′b] of an amplifier with coupling U
(q̃)
ab and

the identity q̃ = 1− q. Finally, the above expression can be cast in the
less formal but certainly simpler form (3.96) where the isometry Ξab is
implicitly assumed.

3.3.3 Canonical representation

From now on, we will analyze one-mode BGCs in a more general framework
in terms of Weyl operators, being able to study in more details also the
‘singular’ cases found above (e.g., q = 0 or q = 1) in terms of six canonical
classes [53]. In fact, this formalism will allow us to generalize more easily all
one-mode results to the multi-mode case in Sec. 3.4. As done in Sec. 3.3.2,
let us focus first on an important subset of one-mode Gaussian channels,
given by the maps E which possess a physical representation (2.49) with σb

being a Gaussian state of a single external Bosonic mode B and with Uab

being a canonical transformation of Qa, Pa, Qb and Pb (the latter being the
canonical observables of the mode B). In particular let σb be a thermal state
of average photon number N0 as in Sec. 3.3.1, and let Uab be such that

U †
ab (Qa, Pa, Qb, Pb) Uab = (Qa, Pa, Qb, Pb) ·M , (3.115)

with M being a 4× 4 symplectic matrix of block form

M ≡
(

m11 | m21

m12 | m22

)
. (3.116)

This yields the following evolution for the characteristic function φ(z),

φ′(z) = Tra[E(ρa) Va(z)] = Tra[ρa EH(Va(z))]

= Trab

[
U †

ab (Va(z)⊗ 11)Uab (ρa ⊗ σb)
]

= Trab

[(
Va(m11 · z)⊗ Vb(m12 · z)

)
(ρa ⊗ σb)

]

= φ(m11 · z) exp[−(2N0 + 1)|m12 · z|2/4] , (3.117)

which is of the form (3.48) by choosing m = 0, X = m11 and Y = (2N0 +
1) mT

12 ·m12. It is worth stressing that in the case of Eq. (3.117) the CPT
condition in Eq. (3.58) is guaranteed by the symplectic nature of the matrix
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M , i.e. by the fact that Eq. (3.115) preserves the commutation relations
among the canonical operators. Indeed, we have

Det[Y ] = (2N0 + 1)2 Det[m12]
2 = (2N0 + 1)2 (Det[m11]− 1)2

> (Det[m11]− 1)2 = (Det[X]− 1)2 , (3.118)

where in the second identity the condition (3.126) was used.
As already shown in terms of beam-splitter and amplifier maps in Sec.

3.3.2, with certain important exception, one-mode Gaussian channels (3.46)
are unitarily equivalent to transformations which admit physical representa-
tion with σb thermal state and Uab as in Eq. (3.115). In the next sections, this
unitary equivalence, in Eq. (3.95), will be described more generally in the
symplectic formalism, where symplectic matrices take the place of the par-
ticular squeezing transformations used above, in order to obtain a canonical
representation of all one-mode BGCs.

Canonical form

Following Ref. [56] any Gaussian channel (3.48) can be transformed (through
unitarily equivalence as in Eq. (3.55)) into a simple canonical form. Namely,
given a channel E characterized by the vector v and the matrices X, Y of
Eq. (3.48), one can find unitary operators Ua and Wa such that the channel
defined by the mapping

ρa −→ E (can)(ρa) = Wa E(Ua ρa U †
a) W †

a for all ρa, (3.119)

is still of the form (3.48) but with v = 0 and with X, Y replaced, respectively,
by the matrices Xcan, Ycan of Table 3.2, i.e.

φ′(z) = φ(Xcan · z) exp
[−1

4
zT · Ycan · z

]
. (3.120)

An important consequence of Eq. (3.120) is that, to analyze the weak-degra-
dability properties of a one-mode Gaussian channel, it is sufficient to focus
on the canonical map E (can) which is unitarily equivalent to it (see Sec. 2.3).

The dependence on the matrix Xcan of E (can) upon the parameters of E
can be summarized as follows,

Xcan =





{ √
Det[X] 11 Det[X] > 0√
|Det[X]| σz Det[X] < 0

rank[X] 6= 1

(11 + σz)/2 rank[X] = 1 ,

(3.121)
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Channel E Class E (can)

Det[X] Xcan Ycan

0 rank[X] = 0 A1 0 (2N0 + 1) 11
0 rank[X] = 1 A2 (11 + σz)/2 (2N0 + 1) 11
1 rank[Y ] = 1 B1 11 (11− σz)/2
1 rank[Y ] 6= 1 B2 11 N0 11

k2 (k 6= 0, 1) C k 11 |k2 − 1|(2N0 + 1) 11
−k2 (k 6= 0) D k σz (k2 + 1)(2N0 + 1) 11

Table 3.2: Canonical form for one-mode Gaussian Bosonic channels. In the
first columns the properties of X and Y of the map E are reported. In last
two columns instead we give the matrices Xcan and Ycan of the canonical form
E (can) associated with E — see Eqs. (3.119) and (3.120). In these expressions
σz is the third Pauli matrix, N0 is a non-negative constant and k is a positive
constant. Notice that the constraint (3.58) is always satisfied. In B1 the free
parameter Nc has been set equal to 1/2 — see discussion below Eq. (3.122).

with σz being the third Pauli matrix. Analogously for Ycan we have

Ycan =





√
Det[Y ] 11 rank[Y ] 6= 1

Nc (11− σz) rank[Y ] = 1 .
(3.122)

The quantity Nc is a free parameter which can set to any positive value
upon properly calibrating the unitaries Ua and Wa of Eq. (3.119). Follow-
ing Ref. [56] we will assume Nc = 1/2. Notice also that from Eq. (3.58),
rank[Y ] = 1 is only possible for Det[X] = 1.

Equations (3.121) and (3.122) show that only the determinant and the
rank of X and Y are relevant for defining Xcan and Ycan. One can verify
that Xcan and Ycan maintain the same determinant and rank of the original
matrices X and Y , respectively. This is a consequence of the fact the E and
E (can) are connected through a symplectic transformation for which Det[X],
Det[Y ], rank[X], and rank[Y ] are invariant quantities.

The six inequivalent canonical forms of Table 3.2 follow by parametrizing
the value of

√
Det[Y ] to account for the constraints imposed by the inequal-

ity (3.58). It should be noticed that to determine which class a certain
channel belongs to, it is only necessary to know if Det[X] is null, equal to 1,
negative or positive ( 6= 1). If Det[X] = 0 the class is determined by the rank
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Figure 3.12: Pictorial representation of the classification in terms of canonical
forms of Table 3.2. Depending on the values of Det[X], rank[X] and rank[Y ],
any one-mode Gaussian channel can be transformed to one of the channels
of the scheme through unitary transformations as in Eq. (3.119). The point
on the thick oriented line for Det[X] < 0 represent the maps of D, those
with Det[X] > 0 and Det[X] 6= 1 represent C. The classes A1,2 and B1,2 are
represented by the four points of the graph. Notice that the channel B2 and
A1 can be obtained as limiting cases of D and C. The dotted arrows connect
channels which are weakly complementary (2.50) of each others with respect
to the physical representations introduced in Sec. 3.3.3. For instance the
weakly complementary of B1 is channel of the class A2 (and vice-versa) —
see Sec. 3.3.4 and Table 3.3 for details. Note that the weakly complementary
channel of A1 belongs to B2. However, not all the channels of B2 have weakly
complementary channels which are in A1.

of the matrix. If Det[X] = 1 the class is determined by the rank of Y (see
Fig. 3.12). Within the various classes, the specific expression of the canoni-
cal form depends then upon the effective values of Det[X] and Det[Y ]. We
observe also that the class A1 can be obtained as a limiting case (for k → 0)
of the maps of class C or D. Analogously the class B2 can be obtained as
a limiting case of the maps of class C. Indeed consider the channel with
Xcan = k11 and Ycan = |k2 − 1|(2N ′

0 + 1)11 with N ′
0 = N0/(|k2 − 1|) − 1/2,

with N0 and k positive (k 6= 0, 1). For k sufficiently close to 1, N ′
0 is positive
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and the maps belongs to the class C of Table 3.2. Moreover in the limit of
k → 1 this channel yields the map B2. Let us notice that Det[X] is directly
related to the invariant quantity q used above in the analysis in terms of
BS/amplifiers, i.e. Det[X] ≡ q, in Sec. 3.3.2.

Finally it is interesting to study how the canonical forms of Table 3.2
compose under the product (3.54), i.e.,

◦ A1 A2 B1 B2 C D
A1 A1 A1 A1 A1 A1 A1

A2 A1 A2 A2 A2 A2 A2

B1 A1 A2 B1 B1/B2 C D
B2 A1 A2 B1/B2 B2 C D
C A1 A2 C C B2/C D
D A1 A2 D D D C

(3.123)

In this table, for instance, the element on the row 2 and column 3 repre-
sents the class (i.e. A2) associated to the product E ′′ ◦ E ′ between a channel
E ′ of B1 and a channel E ′′ of A2. Notice that the canonical form of the prod-
ucts B1 ◦ B2, B2 ◦ B1 and C ◦ C is not uniquely defined. In the first case in
fact, even though the determinant of the matrix X of Eq. (3.54) is one, the
rank of the corresponding Y might be one or different from one depending on
the parameters of the two “factor” channels: consequently the B1 ◦ B2 and
B2 ◦B1 might belong either to B1 or to B2. In the case of C ◦C instead it is
possible that the resulting channel will have Det[X] = 1 making it a B2 map.
Typically however C ◦ C will be a map of C. Composition rules analogous
to those reported here have been extensively analyzed in Refs. [47, 52, 108].

Canonical single-mode physical representation

Apart from the case B2 that will be treated separately (see below), all
canonical transformations of Table 3.2 can be expressed as in Eq. (3.117),
i.e. through a physical representation (2.49) with σb being a thermal state
of a single external Bosonic mode B and Uab being a linear transforma-
tion (3.115)5. To show this it is sufficient to verify that, for each of the
classes of Table 3.2 but B2, there exists a non-negative number N0 and a

5The exceptional role of B2 corresponds to the fact that any one-mode Bosonic Gaussian
channel can be represented as a unitary coupling with a single-mode environment plus an
additive classical noise (see below and Ref. [59]).
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symplectic matrix M such that Eq. (3.117) gives the mapping (3.120). This
yields the conditions

m11 = Xcan , (3.124)

m12 = O

√
Ycan

2N0 + 1
, (3.125)

with OT = O−1 being an orthogonal 2× 2 matrix to be determined through
the symplectic condition

Det[m11] + Det[m12] = 1 , (3.126)

which guarantees that U †
abQaUab and U †

abPaUab satisfy canonical commutation
relations. It is worth noticing that, once m11 and m12 are determined within
the constraint (3.126), the remaining blocks (i.e. m21 and m22) can always
be found in order to satisfy the remaining symplectic conditions of M . An
explicit example will be provided in few paragraphs. For the classes A1, A2,
B1, D, and C with k < 1, Eqs. (3.125) and (3.126) can be solved by choosing
O = 11. Note that for B1 the latter setting is not necessary. Any non-negative
number will do the job: thus we choose N0 = 0 making the density matrix
σb the vacuum of the B. For C with k > 1 instead a solution is obtained by
choosing O = σz. The corresponding transformations (3.115) for Qa and Pa

(together with the choice for the Gaussian environmental initial state) are
summarized below and represent one solution of the unitary dilation problem
discussed in Sec. 3.2.

Class σb U †
ab Qa Uab U †

ab Pa Uab

A1 thermal (N0) Qb Pb

A2 thermal (N0) Qa + Qb Pb

B1 vacuum (N0 = 0) Qa Pa + Pb

C(k < 1) thermal (N0) k Qa +
√

1− k2 Qb k Pa +
√

1− k2 Pb

C(k > 1) thermal (N0) k Qa +
√

k2 − 1 Qb k Pa −
√

k2 − 1 Pb

D thermal (N0) k Qa +
√

k2 + 1 Qb −k Pa +
√

k2 + 1 Pb .

To complete the definition of the unitary operators Uab we need to provide
also the transformations of Qb and Pb. This corresponds to fixing the blocks
m21 and m22 of M and cannot be done uniquely: one possible choice is
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presented in the following table

Class U †
ab Qb Uab U †

ab Pb Uab

A1 Qa Pa

A2 Qa Pa − Pb

B1 Qa −Qb −Pb

C k < 1
√

1− k2 Qa − k Qb

√
1− k2 Pa − k Pb

C k > 1
√

k2 − 1 Qa + k Qb −√k2 − 1 Pa + k Pb

D
√

k2 + 1 Qa + k Qb

√
k2 + 1 Pa − k Pb .

The above definitions render explicit the fact that the canonical form C
represents beam-splitter (k < 1) and amplifier (k > 1) channel (investigated
in detail in Sec. 3.3.1) [45]. We will see in the following sections that the
class D is formed by the weakly complementary of the amplifier channels of
the class C and corresponds to the case q < 0 in Sec. 3.3.2.

Finally it is important to note that the above physical representations
are equivalent to Stinespring representations only when the average photon
number N0 of σb nullifies. In this case the environment B is represented by
a pure input state (i.e. the vacuum). According to our definitions this is
always the case for the canonical form B1 while for the canonical forms A1,
A2, C and D it happens for N0 = 0.

For the sake of clarity, here we give the explicit expressions of the matrix
M of Eq. (3.116) associated with the physical representations of the classes
A1, A2, B1, C and D, discussed above. They are

MA1 ≡




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


 ,

MA2 ≡




1 0 1 0
0 0 0 1
1 0 0 0
0 1 0 −1


 ,

MB1 ≡




1 0 1 0
0 1 0 0
0 0 −1 0
0 1 0 −1


 ,
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MC ≡




k 0
√

1− k2 0

0 k 0
√

1− k2√
1− k2 0 −k 0

0
√

1− k2 0 −k


 (for k < 1),

MC ≡




k 0
√

k2 − 1 0

0 k 0 −√k2 − 1√
k2 − 1 0 k 0

0 −√k2 − 1 0 k


 (for k > 1),

MD ≡




k 0
√

k2 + 1 0

0 −k 0
√

k2 + 1√
k2 + 1 0 k 0

0
√

k2 + 1 0 −k


 .

The class B2: Additive classical noise channel

As mentioned above, the class B2 of Table 3.2 must be treated separately.
The map B2 corresponds6 to the additive classical noise channel [45], in which
classical isotropic Gaussian noise is added to an otherwise lossless channel.
In the framework of the Weyl operators it can be written as

E(ρa) =

∫
d2z p(z) Va(z) ρa Va(−z) , (3.127)

with p(z) = (2πNv)
−1 exp[−|z|2/(2Nv)] which, in Heisenberg picture, can be

seen as a random shift of the annihilation operator a. Analogously, in terms
of the complex phase space, it is defined by the one-mode CPT map acting
on the Bosonic mode a, i.e. E(ρa) =

∫
d2µ p(µ) Da(µ) ρa D†

a(µ), where the
integral is performed on the complex plain, Da(µ) is the displacement oper-
ator of a and p(µ) ≡ (2πNv)

−1 exp (−|µ|2/(2Nv)) is a Gaussian distribution
with variance Nv.

These channels admit a natural physical representation which involve two
environmental modes in a pure state (see Ref. [56] for details) but do not have
a physical representations (2.49) involving a single environmental mode. This

6This can be seen for instance by evaluating the characteristic function of the
state (3.127) and comparing it with Eq. (3.120).
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can be verified by noticing that in this case, from Eqs. (3.124) and (3.125)
we get

m11 = 11 , (3.128)

m12 =
√

Nv/(N0 + 1/2) O , (3.129)

which yields

Det[m11] + Det[m12] = 1±Nv/(N0 + 1/2) , (3.130)

independently7 of the choice of the orthogonal matrix O. Therefore, apart
from the trivial case Nv = 0, the only solution to the constraint (3.126) is
by taking the limit N0 → ∞. This would correspond to representing the
channel B2 in terms of a linear coupling with a single-mode thermal state
σb of “infinite” temperature. Unfortunately this is not a well defined object.
However, we can mention the “asymptotic” representation of B2 as limiting
case of C class maps, to claim at least that there exists a one-parameter
family of one-mode Gaussian channels which admits single-mode physical
representation and which converges to B2. Indeed, the characteristic function
of the output can be expressed as follows,

χ′a(µ) ≡ Tr[E(ρa)Da(µ)] = χa(µ) exp[−2Nv|µ|2] . (3.131)

As discussed in [92] we can represent the transformation χa(µ) → χ′a(µ)

as the limit for k → 1 of a BS channel E [U
(k)
ab , σb] with transmissivity k2

with a thermal environment state σb having mean photon number M0 =
2Nv/(1− k2), i.e.

E(ρa) = lim
k2→1

E [U
(k)
ab , σb](ρa) = lim

k2→1
Trb

[
U

(k)
ab (ρa ⊗ σb)U

(k)
ab

†]
, (3.132)

where U
(k)
ab is the unitary transformation

U
(k)
ab

†
a U

(k)
ab = k a +

√
1− k2 b ,

U
(k)
ab

†
b U

(k)
ab = k b−

√
1− k2 a . (3.133)

Note that the quantity with the limit in the right hand side term of
Eq. (3.132) is a physical representation of the map E [U

(k)
ab , σb]. From it a

Stinespring representation of E [U
(k)
ab , σb] can be constructed as follows

E [U
(k)
ab , σb](ρa) = Trbc

[
U

(k)
ab ⊗ 11c

(
ρa ⊗ |ψ〉bc〈ψ|

)
U

(k)
ab

† ⊗ 11c

]
, (3.134)

7This follows from the fact that Det[O] = ±1 since OT = O−1.



3.3 One-mode Bosonic Gaussian channels 107

where the trace is performed on b and on an ancillary system Hc and with
|ψ〉bc being a purification of σb (see Sec. 1.1). Following Ref. [45] we choose
|ψ〉bc to be a two mode Gaussian state having the following characteristic
function

χbc(µ1, µ2) = Tr
[
|ψ〉bc〈ψ| Db(µ1) Dc(µ2)

]

= exp
[
− (M0 + 1/2)(|µ1|2 + |µ2|2)− i

√
M0(M0 + 1)(µ1µ

∗
2 − µ2µ

∗
1)

]
.

Exploiting Eq. (3.133) we can compute the characteristic function of the
output state: this is

χ′a(µ) = χa(kµ) χbc(
√

1− k2µ, 0) . (3.135)

From Eq. (3.135) we have that the map E [U
(k)
ab , σb] yields an output state

having characteristic functions of the form

χ′a(µ) = χa(kµ) exp[−(1− k2)(M0 + 1/2)|µ|2] , (3.136)

where we used the fact that characteristic function of the thermal state σb is

χb(µ) = exp[−(M0 + 1/2)|µ|2] . (3.137)

By replacing M0 = 2Nv/(1 − k2) into (3.136) and taking the limit k → 1,
it is easy to verify that this expression gives (3.131) for all input ρa. Let us
remark that in the limit of k → 1 the quantity M0 = 2Nv/(1− k2) diverges
and σb approaches a thermal state of infinity temperature. Even though this
object and the corresponding purification (3.135) are not mathematically
well defined, for all k < 1 the density matrix σb and its purification |ψ〉bc are
legitimate states of the systems b and c [56].

As shown in Ref. [56], let us compute the coherent information J (see Sec.

2.2.6) at the output of the channel E [U
(k)
ab , σb] and its conjugate Ẽ [U

(k)
ab , σb]

for a Gaussian input state ρa having characteristic function

χa(µ) = exp[−(N + 1/2)|µ|2] . (3.138)

The analysis simplifies since, for Stinespring conjugate channels, we have the
following relation of the coherent information of complementary channels

J(ρ, E [U
(k)
ab , σb]) = −J(ρ, Ẽ [U

(k)
ab , σb]) . (3.139)
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Furthermore, if ρ is Gaussian, we can use the results of [45] (see also Sec.

3.3.1) to express the coherent information J(ρ, E [U
(k)
ab , σb]) as follows

J(ρ, E [U
(k)
ab , σb]) = g(N ′)− g

(D + N ′ −N − 1

2

)
− g

(D −N ′ + N − 1

2

)
(3.140)

where g(x) = (x + 1) log(x + 1)− x log x and

N ′ = k2N + (1− k2)M0 = k2N + 2Nv , (3.141)

D =
√

(N + N ′ + 1)2 − 4k2N(N + 1) . (3.142)

Notice that, even though for k → 1 the quantity M0 = 2Nv/(1−k2) diverges,
Eq. (3.140) does not. In particular for k = 1 we get

N ′|k=1 = N + 2Nv , (3.143)

D|k=1 = D1 ≡
√

(2Nv + 1)2 + 8NvN , (3.144)

and

J(ρ, E [U
(k)
ab , σb])

∣∣∣
k=1

= g(N + 2Nv)− g
(D1 + 2Nv − 1

2

)
(3.145)

−g
(D1 − 2Nv − 1

2

)
. (3.146)

As pointed out in Ref. [56], in the limit of N >> 1, the function (3.146)
becomes

lim
N→∞

J(ρ, E [U
(k)
ab , σb])

∣∣∣
k=1

' log

(
1

2eNv

)
, (3.147)

which is positive for Nv < 1/(2e). Indeed, by choosing Nv = 0.99/(2e), the

function J(ρ, E [U
(k)
ab , σb])

∣∣∣
k=1

becomes negative for N close to 0 and so it is

positive for N >> 1. Note that analogous results apply for other elements of
the family of maps E [U

(k)
ab , σb]. Indeed, consider the limit N >> 1 of (3.140)

for arbitrary k < 1. This yields

lim
N→∞

J(ρ, E [U
(k)
ab , σb]) ' log

(
k2

1− k2

)
− g

( 2Nv

1− k2

)
. (3.148)
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Since for x >> 1 one has g(x) ∼ log(ex), in the limit k → 1 the above
equation reduces to (3.147). As in the case k = 1, for k2 > 1/2 there
are values of 2Nv such that Eq. (3.148) is positive. On the other hand for
the same values it is possible to have J < 0 for sufficiently small N (for
instance Nv = 1/10 and k2 = 9/10). In other words, using Eq. (3.139),
both the channel (3.127) and its Stinespring conjugate have positive coherent
information for some input states and, then, positive quantum capacities.

Therefore, the additive classical noise channel is a counterexample to the
claim (shown in Sec. 3.3.2 and proved more generally in Sec. 3.3.4) that all
one-mode Gaussian channel are either weakly degradable or anti-degradable,
i.e. it is neither degradable nor anti-degradable.

3.3.4 Full weak-degradability classification

In the previous section we have shown that all one-mode Gaussian channels
are unitarily equivalent to one of the canonical forms of Table 3.2. Moreover
we have verified that, with the exception of the class B2, all the canonical
forms admits a physical representation (2.49) with σb being a thermal state
of a single environmental mode and Uab being a linear coupling. Here we will
use such representations to construct the weakly complementary (2.50) of
these channels and to study their weak-degradability properties, extending
the results in Sec. 3.3.2 [53].

Weakly complementary channels

We construct the weakly complementary channels Ẽ of the class A1, A2, B1,
C and D starting from their single-mode physical representations (2.49) of
Sec. 3.3.3. Because of the linearity of Uab and the fact that σb is Gaussian,
the channels Ẽ are Gaussian. This can be seen for instance by computing
the characteristic function (3.23) of the output state Ẽ(ρa)

φ′′(z) = Trb[Ẽ(ρa) Vb(z)] = Trb[ρa ẼH(Vb(z))]

= φ(m21 · z) exp[−1

2
(N0 + 1/2) |m22 · z|2] , (3.149)

where m21, m22 are the blocks elements of the matrix M of Eq. (3.116)
associated with the transformations Uab, and with N0 being the average pho-
ton number of σb (the values of these quantities are given in the tables of
Sec. 3.3.3). By setting m = 0, X = m21 and Y = (2N0 + 1) mT

22 m22,
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Eq. (3.149) has the same structure (3.48) of one-mode Gaussian channels.
Therefore, by cascading Ẽ with an isometry which exchanges A (system)
with B (environment) (see Refs. [41, 52]), we can then treat Ẽ as an one-
mode Gaussian channel operating on A (this is possible because both A and
B are Bosonic one-mode systems). With the help of Table 3.2 we can then
determine which classes can be associated with the transformation (3.149).
This is summarized in Table 3.3.

Class of E Ẽ Class of Ẽ
X Y

A1 11 0 B2

A2 11 (2N0 + 1) (11− σz) B1

B1 (11 + σz)/2 11 A2

C k < 1
√

1− k2 11 k2(2N0 + 1)11 C (k < 1)

C k > 1
√

k2 − 1 σz k2(2N0 + 1) 11 D

D
√

k2 + 1 11 k2(2N0 + 1) 11 C (k > 1)

Table 3.3: Description of the weakly complementary (2.50) of the canonical
forms A1, A2, B1, C and D of Table 3.2 constructed from the physical repre-
sentations (2.49) given in Sec. 3.3.3. In the first column is indicated the class
of E . In the central columns instead is given a description of Ẽ in terms of the
representation (3.48). Finally in the last column is reported the canonical
form corresponding to the map Ẽ . In all cases the identification is immediate:
for instance the canonical form of the map ẼA1 belongs to the class B2, while
the canonical form of the map ẼD is the class C with Det[Xcan] > 1. In the
case of ẼA2 the identification with the class B1 was done by exploiting the
possibility freely varying Nc of Eq. (3.122) — see Ref. [56]. A pictorial rep-
resentation of the above weak-degradability connections is given in Fig. 3.12.

Weak-degradability properties

Using the compositions rules of Eqs. (3.54) and (3.123) it is easy to ver-
ify that the canonical forms A1, A2, D and C with k 6

√
1/2 are anti-

degradable (2.53). Vice-versa one can verify that the canonical forms B1 and
C with k >

√
1/2 are weakly degradable (2.52) — for C, D and A1 these
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Figure 3.13: Pictorial representation of the weak-degradability regions for
one-mode Gaussian channels. All canonical forms with Det[X] 6 1/2 are
anti-degradable: this includes the classes A1, A2, D and part of the C. The
remaining (with the exception of B2) are instead weakly degradable. More-
over B1 is also degradable in the sense of Ref. [38]. The same holds for
channels of canonical form C with N0 = 0: the exact expression for the
quantum capacity of these channels was given in Sec. 3.3.1 [55].

results will be shown explicitly below [52]. Through unitary equivalence this
can be summarized by saying that all one-mode Gaussian channels (3.48)
having Det[X] 6 1/2 are anti-degradable, while the others (with the excep-
tion of the channels belonging to B2) are weakly degradable (see Fig. 3.13).
In particular, we recover all results obtained in terms of BS/amplifiers maps
in Sec. 3.3.2, by recalling that Det[X] ≡ q.

In the following we verify the above results by explicitly constructing
the connecting channels T and T of Eqs. (2.52) and (2.53) for each of the
mentioned canonical forms:

• For a channel E of standard form A1 or A2, anti-degradability can be
shown by simply taking T of Eq. (2.53) coincident with the channel E .
The result immediately follows from the composition rule (3.54).

• For a channel E of B1, weak-degradability comes by assuming the map
T to be equal to the weakly complementary channel Ẽ of E (see Ta-
ble 3.3). As pointed out in Ref. [56] this also implies the degradability
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of E in the sense of Ref. [38]. Let us remind that for B1 the physical rep-
resentation given in Sec. 3.3.3 was constructed with an environmental
state σb initially prepared in the vacuum state, which is pure. Therefore
in this case our representation gives rise to a Stinespring dilation.

• For a channel E of the class C with Xcan = k 11 and Ycan = |k2 −
1|(2N0 + 1)11 (see Sec. 3.3.1) we have the following three possibilities:

– If k 6
√

1/2 the channel is anti-degradable and the connecting
map T is a channel of C characterized by Xcan = k′ 11 and Ycan =
(1− (k′)2)(2N0 + 1)11 with k′ = k/

√
1− k2 < 1.

– If k ∈ [
√

1/2, 1[ the channel is weakly degradable and the con-
necting map T is again a channel of C defined as in the previous
case but with k′ =

√
1− k2/k < 1. For N0 = 0 the channel is also

degradable [38] since our physical representation is equivalent to
a Stinespring representation.

– If k > 1 the channel is weakly degradable and the connecting map
T is a channel of D with Xcan = k′ σz and Ycan = ((k′)2+1)(2N0+
1)11 with k′ =

√
k2 − 1/k. As in the previous case, for N0 = 0 the

channel is also degradable [38].

• For a channel E of D with Xcan = k σz and Ycan = (k2 + 1)(2N0 + 1)11
(k > 0 and N0 > 0) we can prove anti-degradability by choosing T
of Eq. (2.53) to be yet another maps of D with Xcan = k′ σz and
Ycan = ((k′)2 + 1)(2N0 + 1)11 where k′ = k/

√
k2 + 1. From Eq. (3.54)

and Table 3.3 it then follows that T̄ ◦ Ẽ is equal to E .

Concerning the case B2 it was shown in Sec. 3.3.3 [56] that the channel
is neither anti-degradable nor degradable in the sense of [38] (apart from
the trivial case N0 = 0 which corresponds to the identity map). On the
other hand one can use the continuity argument given there to claim that
the channel B2 can be arbitrarily approximated with maps which are weakly
degradable (those belonging to C for instance).

3.3.5 Weakly degradable channels with zero capacity

In Sec. 3.3.4 we saw that all channels (3.48) with Det[X] 6 1/2 are anti-
degradable. Consequently these channels must have null quantum capac-
ity [52, 53, 41]. Here we go a little further generalizing the results of Sec.



3.3 One-mode Bosonic Gaussian channels 113

3.3.1 and showing that the set of the maps (3.48) which can be proved to
have null quantum capacity include also some maps with Det[X] > 1/2. To
do this we will use the following simple fact (already used in Sec. 3.3.1):
Let be E1 a quantum channel with null quantum capacity and let be E2 some
quantum channel. Then the composite channels E1 ◦ E2 and E2 ◦ E1 have null
quantum capacity. The proof of this property follows by interpreting E2 as
a quantum operation performed either at the decoding or at encoding stage
of the channel E1. This shows that the quantum capacities of E1 ◦ E2 and
E2 ◦ E1 cannot be greater than the capacity of E1 (which is null). In the
following we show two cases where the above property turns out to provide
some nontrivial results [53].

Composition of two class D channels

We observe that according to composition rule (3.123) the combination of
any two channels E1 and E2 of D produces a map E21 ≡ E2 ◦ E1 which is in
the class C. Since the class D is anti-degradable the resulting channel must
have null quantum capacity. Let then kjσz and (k2

j + 1)(Nj + 1/2)11 be the
matrices Xcan and Ycan of the channels Ej, for j = 1, 2. From Eq. (3.54) one
can then verify that E21 has the canonical form C with parameters

k = k1k2 , (3.150)

N0 =
(k2

2 + 1)N2 + k2
2(k

2
1 + 1)N1

|k2
1k

2
2 − 1| +

1

2

(
k2

1k
2
2 + 2k2

2 + 1

|k2
1k

2
2 − 1| − 1

)
.(3.151)

Equation (3.150) shows that by varying kj, k can take any positive values: in
particular it can be greater than 1/

√
2 transforming E21 into a channel which

does not belong to the anti-degradable area of Fig. 3.13. On the other hand,
by varying the Nj and k2, but keeping the product k1k2 fixed, the parameter
N0 can assume any value satisfying the inequality

N0 > 1

2

(
k2 + 1

|k2 − 1| − 1

)
. (3.152)

We can therefore conclude that all channels C with k and N0 as in Eq. (3.152)
have null quantum capacity — see Fig. 3.14. A similar bound was found in
a completely different way in Ref. [45].
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Figure 3.14: The dark-grey area of the plot is the region of the parameters N0

and Det[X] = k2 where a channel with canonical form C can have not null
quantum capacity. For Det[X] < 1/2 the channel is anti-degradable. In the
remaining white area the quantum capacity is null since these maps can be
obtained by a composition of channels one of which being anti-degradable.
The curve above refers to the bound of Eq. (3.152). The contour of the
dark-grey area is instead given by Eq. (3.154).

Composition of two class C channels

Consider now the composition of two class C channels, i.e. E1 and E2, with
one of them (say E2) being anti-degradable. The canonical form of E1 and E2

have matrices Xcan and Ycan given by Xi = kj11 and Yj = |k2
j − 1|(2Nj + 1)11,

where for j = 1, 2, Nj and kj are positive numbers, with k1 6= 0, 1 and with
k2 ∈]0, 1/

√
2] (to ensure anti-degradability). From Eq. (3.54) follows then

that the composite map E21 = E2 ◦ E1 has still a C canonical form with
parameters

k = k1k2 , (3.153)

N0 =
|k2

2 − 1|N2 + k2
2|k2

1 − 1|N1

|k2
1k

2
2 − 1| +

1

2

(
k2

2|k2
1 − 1|+ |k2

2 − 1|
|k2

1k
2
2 − 1| − 1

)
.
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As in the previous example, k can assume any positive value. Vice-versa
keeping k fixed, and varying k1 > 1 and N1,2 it follows that N0 can take any
values which satisfy the inequality

N0 > 1

2

(
k2

|k2 − 1| − 1

)
. (3.154)

We can then conclude that all maps C with k and N0 as above must possess
null quantum capacity. The result has been plotted in Fig. 3.14. Notice
that the constraint (3.154) is an improvement with respect to the constraint
of Eq. (3.152). Finally let us point out that, by using a more general and
powerful approach, we recover similar results of Sec. 3.3.1.

3.4 Multi-mode Bosonic Gaussian channels

In this section we propose a general construction of unitary dilations (see Sec.
3.2) of multi-mode quantum channels, including all rank-deficient cases [54].
We characterize the minimal noise maps involving only true quantum noise,
showing a useful decomposition rule. Then, by using a generalized normal
mode decomposition recently introduced in Ref. [57], we generalize the results
of Refs. [52, 53] (analyzed above) concerning Gaussian weak complementary
channels to the multi-mode case giving a simple weak-degradability/anti-
degradability condition for such channels [54]. The minimal number of en-
vironmental modes of the multi-mode unitary dilations is also characterized
[62]. The chapter ends with a detailed analysis of the two-mode case. This is
important since any n-mode channel can always be reduced to single-mode
and two-mode components [57]. Finally, we detalize the degradability anal-
ysis and investigate a useful decomposition of a channel with the additive
classical noise map that allows us to find new sets of channels with zero
quantum capacity. All results in this section include the one-mode BGCs
results in Sec. 3.3 as a particular case for n = 1, of course.

3.4.1 Unitary dilation theorem

In relation to the problem examined in Sec. 3.2, we will construct Gaus-
sian dilations of generic multi-mode BGCs, including an analysis of all rank-
deficient cases, and later we will focus on dilations involving the minimal
number of modes [54, 62]. To proceed, we establish some conventions and
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notation. To start with, we write the commutation matrix of our n+` modes
in the block structure

σ := σ2n ⊕ σE
2` =

[
σ2n 0
0 σE

2`

] } 2n
} 2` ,

(3.155)

where σ2n and σE
2` are 2n× 2n and 2`× 2` commutation matrices associated

with the system and environmental modes, respectively. For σ2n we assume
the structure as defined in Eq. (3.35). For σE

2`, in contrast, we do not make
any assumption at this point, leaving open the possibility of defining it later
on8. Accordingly, the canonical unitary transformation U of Eq. (3.56) will
be uniquely determined by a 2(n+`)×2(n+`) real matrix S ∈ Sp(2(n+`),R)
of block form

S :=

[
s1 s2

s3 s4

]
, (3.156)

which satisfies the condition

SσST = σ , ⇐⇒





s1 σ2n sT
1 + s2 σE

2` sT
2 = σ2n ,

s1 σ2n sT
3 + s2 σE

2` sT
4 = 0 ,

s3 σ2n sT
3 + s4 σE

2` sT
4 = σE

2` .

(3.157)

In the above expressions, s1 and s4 are 2n × 2n and 2` × 2` real square
matrices, while s2 and sT

3 are 2n× 2` real rectangular matrices. Introducing
then the covariance matrices γ > iσ2n and γE > iσE

2` of the states ρ and ρE,
the identity (3.56) can be written as

S

[
γ 0
0 γE

]
ST

∣∣∣∣
2n

= s1 γ sT
1 + s2 γE sT

2 = XT γX + Y, (3.158)

where |2n denotes the upper principle submatrix of degree 2n, and where
X,Y ∈ R2n×2n satisfying the condition (3.47) are the matrices associated
with the channel E . In writing Eq. (3.158) we use the fact that due to the

8With this choice the canonical commutation relations of the n + ` mode read
as [Rj , Rj′ ] = iσj,j′ where R := (Q1, · · · , Qn; P1, · · · , Pn; r1, · · · , r2`) with Qj , Pj

being the canonical coordinates of the j-th system mode and with and r1, · · · , r2`

being some ordering of the canonical coordinates QE
1 , PE

1 ; · · · ; QE
` , PE

` of the en-
vironmental modes. For instance, taking σE

2` = σ2` corresponds to have R :=
(Q1, · · · , Qn; P1, · · · , Pn; QE

1 , · · · , QE
` ; PE

1 , · · · , PE
` ).
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definition (3.155) the covariance matrix of the composite state ρ⊗ρE can be
expressed as γ ⊕ γE.

With these definitions, the first part of the unitary dilation property (3.56)
can be written as follows:

Proposition 1 (Unitary dilations of Gaussian channels) Let γE be the
covariance matrix of a Gaussian state of ` modes and let S ∈ Sp(2(n+`),R)
be a symplectic transformation. Then there exists a symmetric 2n × 2n-
matrix Y > 0 and a 2n× 2n-matrix X satisfying the condition (3.47), such
that Eq. (3.158) holds for all γ.

Proof: The proof is straightforward: we write S in the block form (3.156)
and take X = sT

1 and Y = s2γEsT
2 . Since γE is a covariance matrix of ` modes,

γE − iσ2` > 0 and therefore s2(γE − iσ`)s
T
2 > 0. This leads to Eq. (3.47)

through the symplectic condition s1σ2nsT
1 + s2σ2`s

T
2 = σ2n in Eq. (3.157). ¥

This proves that any CPT map obtained by coupling n modes with a
Gaussian state of ` environmental Bosonic modes through a Gaussian unitary
U is a BGC. The converse property is more demanding. In order to present
it we find it useful to state first the following

Lemma 2 (Extensions of symplectic forms) Let, for some skew sym-
metric σE

2`, s1 and s2 be 2n × 2n and 2n × 2` real matrices forming a sym-
plectic system, i.e., s1 σ2n sT

1 + s2 σE
2` sT

2 = σ2n. Then we can always find real
matrices s3 and s4 such that S of Eq. (3.156) is symplectic with respect to
the commutation matrix (3.155).

Proof: Since the rows of S form a symplectic basis, given s1 and s2

(an incomplete symplectic basis), it is always possible to find s3 and s4 as
above. The proof easily follows from a skew-symmetric version of the Gram-
Schmidt process to construct a symplectic basis [118]. Note that it does not
restrict generality to take σE

2` = σ2`, as this can always be accompanied by
an appropriate similarity transform. Our problem at hand of extending a
symplectic form is then equivalent to the following problem. Suppose we are
given column vectors e1, · · · , en and f1, · · · , fn from R2(n+`) that satisfy

eT
j σ2(n+`)ek = 0, (3.159)

fT
j σ2(n+`)fk = 0, (3.160)

eT
j σ2(n+`)fk = δj,k, (3.161)
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for j, k = 1, · · · , n. The procedure continues by identifying vectors en+1 and
fn+1 such that eT

n+1σ2(n+`)fn+1 = 1 and

eT
n+1σ2(n+`)w = fT

n+1σ2(n+`)w = 0 (3.162)

for all
w ∈ Wn := span(e1, · · · , en, f1, · · · , fn). (3.163)

Now define
W⊥

n = {w : wT σ2(n+`)v = 0 ∀v ∈ Wn}. (3.164)

It is now not difficult to see that Wn ∩W⊥
n = {0} and R2(n+`) = Wn ⊕W⊥

n :
Suppose that the vector v has vT σ2(n+`)ej =: αj and vT σ2(n+`)fj =: βj for
j = 1, · · · , n. Then

v =

[
n∑

j=1

(−αjfj + βjej)

]
+

[
v +

n∑
j=1

(αjfj − βjej)

]
, (3.165)

where the first term is element of Wn and the second of W⊥
n . Following

a symplectic Gram-Schmidt procedure, the symplectic basis can hence be
completed, which is equivalent to extending the matrices s1 and s2 to a
symplectic

S =

[
s1 s2

s3 s4

]
∈ Sp(2(n + `),R). (3.166)

For a special subset of BGCs, in Sec. 3.4.5 we will present an explicit
expression for S based on a simplified (canonical) representation of the X
matrix that defines E . ¥

Due to the above result, the possibility of realizing unitary dilation Eq.
(3.56) for a generic BGC described by the matrices X and Y > iΣ = i(σ2n−
XT σ2nX), can be proven by simply taking s1 = XT and finding some 2n×2`
real matrix s2 and an `-mode covariance matrix γE > iσE

2` that solve the
equations

s2 σE
2` sT

2 = σ2n − s1 σ2n sT
1 = Σ , (3.167)

s2 γE sT
2 = Y . (3.168)

With this choice in fact Eq. (3.158) is trivially satisfied for all γ, while s1 and
s2 can be completed to a symplectic matrix S ∈ Sp(2(n + `),R). Note that
Sp(2(n + `),R) stands for the standard symplectic group here. The unitary
dilation property (3.56) can hence be restated as follows:
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Theorem 3 (Unitary dilations of Gaussian channels) For any real 2n
× 2n-matrices X and Y satisfying the condition (3.47), there exist ` smaller
than or equal to 2n, S ∈ Sp(2(n + `),R), and a covariance matrix γE of `
modes, such that Eq. (3.158) is satisfied.

Proof: As already noticed the whole problem can be solved by assum-
ing s1 = XT and finding s2 and γE that satisfy Eqs. (3.167) and (3.168).
We start by observing that the 2n × 2n matrix Σ defined in Eq. (3.47)
is skew-symmetric, i.e., Σ = −ΣT . Moreover, according to Eq. (3.47), its
support must be contained in the support of Y , i.e., Supp[Σ] ⊆ Supp[Y ].
Consequently given k := rank[Y ] and r := rank[Σ] as the ranks of Y and
Σ, respectively, one has that k > r. We can hence identify three different
regimes:

(i) k = 2n, r = 2n, i.e., both Y and Σ are full rank and hence invert-
ible. Loosely speaking, this means that all the noise components in the
channel are basically quantum (although may involve classical noise as
well).

(ii) k = 2n and r < 2n, i.e., Y is full rank and hence invertible, while Σ
is singular. This means that the some of the noise components can be
purely classical, but still nondegenerate.

(iii) 2n > k > r, i.e., both Y and Σ are singular. There are noise compo-
nents with zero variance.

Even though (i) and (ii) admit similar solutions, it is instructive to analyze
them separately. In the former case in fact there is a simple direct way of
constructing a physical dilation of the channel with ` = n environmental
modes.

(i) Since Σ is skew-symmetric and invertible there exists an O ∈ O(2n,R)
orthogonal such that

OΣOT =

[
0 µ
−µ 0

]
, (3.169)

where µ = diag(µ1, · · · , µn) and µi > 0 for all i = 1, · · · , n (see page 107 in
Ref. [119]). Hence K := M−1/2O with M := µ⊕ µ satisfies

KΣKT = σ2n . (3.170)
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Taking then s2 := K−1 we get9

s2 σ2n sT
2 = K−1 σ2n K−T = Σ , (3.171)

which corresponds to Eq. (3.167) for ` = n. Since s1 = XT , Lemma 2 guaran-
tees that this is sufficient to prove the existence of S. The condition (3.158)
finally follows by taking γE = KY KT which is strictly positive (indeed K
is invertible and Y > 0 because it has full rank) and which satisfies the
uncertainty relation (3.42), i.e.,

Y > iΣ =⇒ γE = KY KT > iKΣKT = iσ2n . (3.172)

This shows that the channel admits a unitary dilation of the form as
specified in Eq. (3.56) with ` = n environmental modes with commutation
matrix, σE

2n = σ2n – see discussion after Eq. (3.155). Such a solution, however,
will involve a pure state ρE only if Det[γE] = 1, i.e.,

Det[Y ]Det[K]2 = 1 ⇐⇒ Det[Y ] = Det[Σ] . (3.173)

When Det[γE] > 1, i.e., Det[Y ] > Det[Σ], we can still construct a pure dila-
tion by simply adding further n modes which purify the state associated with
the covariance matrix γE and by extending the unitary operator U associated
with S as the identity operator on them. For details see the discussion of case
(ii) given below. This corresponds to constructing a unitary dilation (3.56)
with the pure state ρE being defined on ` = 2n modes.

(ii) In this case Y is still invertible, while Σ is not. Differently from the
approach we adopted in solving case (i), we here derive directly a Stinespring
unitary dilation, i.e., we construct a solution with a pure γE that involves
` = 2n environmental modes. In the next section, however, we will show
that, dropping the purity requirement, one can construct unitary dilation
that involves ρE with only ` = 2n− r/2 modes.

To find s2 and γE which solve Eqs. (3.167) and (3.168), it is useful to first
transform Y into a simpler form by a congruent transformation, i.e.,

CY CT = 112n , (3.174)

9From now on, the symbol A−T will be used to indicate the transpose of the inverse of
the matrix A, i.e., A−T := (A−1)T = (AT )−1.
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with C ∈ Gl(2n,R) being not singular, e.g., C := Y −1/2. From Eq. (3.47) it
then follows that

112n > iΣ′ , (3.175)

with Σ′ := Y −1/2 Σ Y −1/2 being skew-symmetric (i.e., Σ′ = −(Σ′)T ) and
singular with rank[Σ′] = rank[Σ] = r [119]. We then observe that introducing

s2 = Y 1/2 s′2 , (3.176)

the conditions (3.167) and (3.168) can be written as

s′2 σE
2` (s′2)

T = Σ′ , (3.177)

s′2 γE (s′2)
T = 112n . (3.178)

Finding s′2 and γE which satisfy these expressions will provide us also a
solution of Eqs. (3.167) and (3.168).

As in the case of Eq. (3.169), there exists an orthogonal matrix O ∈
O(2n,R) which transforms the skew-symmetric matrix Σ′ in a simplified
block form. In this case however, since Σ′ is singular, we find [119]

OΣ′OT =




0
µ 0
0 0

−µ 0
0 0

0




} r/2
}n− r/2
} r/2
}n− r/2,

(3.179)

where now µ = diag(µ1, · · · , µr/2) is the r/2 × r/2 diagonal matrix formed
by the strictly positive eigenvalues of |Σ′| which satisfy the conditions 1 >
µj > 0, this being equivalent with

11r/2 > µ, (3.180)

as a consequence of inequality (3.175). Define then K := M−1/2 O with

M =




µ 0
0 11n−r/2

0

0
µ 0
0 11n−r/2




} r/2
}n− r/2
} r/2
}n− r/2.

(3.181)

It satisfies the identity

KΣ′KT =




0
11r/2 0
0 0

−11r/2 0
0 0

0




} r/2
}n− r/2
} r/2
}n− r/2.

(3.182)
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To show that Eqs. (3.177) and (3.178) admit a solution we take ` = 2n and
write σE

4n = σ2n⊕σ2n = σ4n with σ2n as in Eq. (3.35). With these definitions
the 2n× 4n rectangular matrix s′2 can be chosen to have the block structure

s′2 =
[

K−1 OT A
]

, (3.183)

with A being the following 2n× 2n symmetric matrix

A = AT =




0
0 0
0 11n−r/2

0 0
0 11n−r/2

0




} r/2
}n− r/2
} r/2
}n− r/2.

(3.184)

By direct substitution one can easily verify that Eq. (3.177) is indeed satisfied.
In fact, assuming σE

4n = σ2n ⊕ σ2n with σ2n as in Eq. (3.35), one has

s′2 σE
4n (s′2)

T − Σ′ =
[

K−1 OT A
] [

σ2n 0
0 σ2n

] [
K−T

AT O

]
− Σ′

= K−1σ2nK−T + OT Aσ2n AT O − Σ′

= K−1
(
KΣ′KT + B

)
K−T + OT Aσ2n AT O − Σ′

= K−1 BK−T + OT Aσ2n AT O

= O
(
M1/2BM1/2 + Aσ2n AT

)
OT , (3.185)

where we used Eq. (3.182) to write σ2n = KΣ′KT + B, with B being the
2n× 2n matrix

B :=




0
0 0
0 11n−r/2

0 0
0 −11n−r/2

0


 . (3.186)

The identity (3.177) finally follows by noticing that the last term in Eq. (3.185)
cancels since M1/2B = BM1/2 = B and Aσ2n AT = −B.

Inserting Eq. (3.183) into Eq. (3.178) yields now the following equation

α + AδT + δ AT + Aβ AT = M−1 , (3.187)

for the 4n× 4n covariance matrix

γE =

[
α δ
δT β

]
, (3.188)
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see below for details. A solution can be easily derived by taking

α = β =




µ−1 0
0 ξ11n−r/2

0

0
µ−1 0
0 ξ11n−r/2




} r/2
}n− r/2
} r/2
}n− r/2,

(3.189)

with ξ = 5/4 and

δ =




0
f(µ−1) 0

0 f(ξ11n−r/2)
f(µ−1) 0

0 f(ξ11n−r/2)
0




} r/2
}n− r/2
} r/2
}n− r/2,

(3.190)

with f(θ) := −(θ2 − 11)1/2. For all diagonal matrices µ compatible with the
constraint (3.180) the resulting γE satisfies the uncertainty relation γE >
iσ4n. Moreover, since it has Det[γE] = 1, this is also a minimal uncertainty
state, i.e., a pure Gaussian state of 2n modes. It is worth stressing that for
r = 2n, i.e., when also the rank of Σ is maximum, the above solution provides
an alternative derivation of the unitary dilation discussed in the part (i) of
the theorem. In this case the covariance matrix γE has block elements

α = β =

[
µ−1 0
0 µ−1

] }n
}n

, δ =

[
0 f(µ−1)

f(µ−1) 0

] }n
}n

,(3.191)

where µ is now a strictly positive n×n matrix, while Eqs. (3.176) and (3.183)
yield

s2 := Y 1/2OT

[
µ1/2 0

0 µ1/2

0 0
0 0

] }n
}n.

(3.192)

(iii) Here both Y and Σ are singular. This case is very similar to case
(ii). Here, the dilation can be constructed by introducing a strictly positive
matrix Ȳ > 0 which satisfies the condition

Π Ȳ Π = Y , (3.193)

with Π being the projector onto the support of Y . Such a Ȳ always exists
(Ȳ = Y + (11−Π)). By construction, it satisfies the inequality Ȳ > Y > iΣ.
According to Sec. 3.2, Ȳ and X define thus a BGC. Moreover, since Ȳ is
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strictly positive, it has full rank. Therefore, we can use part (ii) of the proof
to find a 2n×2` matrix s̄2 and γ̄E > iσ2` which satisfy the conditions (3.167)
and (3.168), i.e.

s̄2 σE
2` s̄T

2 = Σ , (3.194)

s̄2 γ̄E s̄T
2 = Ȳ . (3.195)

A unitary dilation for the channel Y, X is then obtained by choosing γE = γ̄E

and s2 = Πs̄2. In fact from Eq. (3.195) we get

s2 γE sT
2 = Π s̄2 γ̄E s̄T

2 Π = Π Ȳ Π = Y , (3.196)

while from Eq. (3.194)

s2 σE
2` sT

2 = Π s̄2 σE
2` s̄T

2 Π = Π Σ Π = Σ , (3.197)

where we have used the fact that Supp[Σ] ⊆ Supp[Y ]. ¥

In proving the second part of the unitary dilations theorem we provided
explicit expressions for the environmental state ρE of Eq. (3.56). Specifically
such a state is given by the pure 2n mode Gaussian state ρE characterized by
the covariance matrix γE of elements (3.189) and (3.190). A trivial observa-
tion is that this can always be replaced by the 2n modes vacuum state |Ø〉〈Ø|
having the covariance matrix γ

(0)
E = 112n. This is a consequence of the obvious

property that according to Eq. (3.44) all pure Gaussian states are equivalent
to |Ø〉〈Ø| up to a Gaussian unitary transformation. On the level of covari-
ance matrices, Gaussian unitaries correspond to symplectic transformations.
For a remark on unitarily equivalent dilations, see also Sec. 3.4.7. Hence, by
means of a congruence with an appropriate symplectic transformation, we
immediately arrive at the following corollary:

Corollary 1 (Gaussian channels with pure Gaussian dilations) Any
n-mode Gaussian channel E admits a Gaussian unitary dilation (3.56) with
ρE = |Ø〉〈Ø| being the vacuum state on 2n modes.

Proof: Let in fact s2 and γE be a solution of Eq. (3.167) and (3.168) for
the map E , with γE being the covariance matrix of a pure Gaussian states
of 2n modes (e.g., the solutions described in Theorem 3). Define now Sγ ∈
Sp(4n;R) the symplectic transformation which realize the identity γE =
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Sγ γ
(0)
E ST

γ . Since by Sγ σ2` ST
γ = σ2` by replacing s2 with s

(0)
2 = s2 Sγ it fol-

lows that γ
(0)
E , s

(0)
2 provide yet another solution of the Eqs. (3.167), (3.168),

and thus a unitary dilation for the channel E . ¥

Now we first give an explicit derivation of Eq. (3.187). Then we analyze
in detail the property of the state ρE associated with the covariance ma-
trix γE defined be the Eqs. (3.189) and (3.190). Replacing Eq. (3.183) into
Eq. (3.168), we get

112n = s′2 γE (s′2)
T =

[
K−1 OT A

] [
α δ
δT β

] [
K−T

AT O

]

= K−1 α K−T + OT A δT K−T + K−1 δ AT O + OT Aβ AT O

= OT
(
M1/2 α M1/2 + A δT M1/2 + M1/2 δ AT + Aβ AT

)
O ,

which leads to

M−1 = α + M−1/2AδT + δ AT M−1/2 + M−1/2 Aβ AT M−1/2 , (3.198)

and hence to Eq. (3.187) by the fact M−1/2A = AT M−1/2 = A = AT . Such
an equation admits the solution given in Eqs. (3.189) and (3.190). Explicitly
this corresponds to the 4n× 4n covariance matrix γE of the form




µ−1 0
0 ξ11

0 0
f(µ−1) 0

0 f(ξ11)

0
µ−1 0
0 ξ11

f(µ−1) 0
0 f(ξ11)

0

0
f(µ−1) 0

0 f(ξ11)
µ−1 0
0 ξ11

0

f(µ−1) 0
0 f(ξ11)

0 0
µ−1 0
0 ξ11




where for easy of notation 11 := 11n−r/2. By looking at the structure of this
covariance matrix, one realizes that it is composed by two independent sets
formed by r and 2n − r modes, respectively. The first set describes r/2
thermal states characterized by the matrices µ−1 which have been purified
adding further r/2 modes. The second set instead describes a collection of
2(n − r/2) = 2n − r modes prepared in a pure state formed by n − r/2
independent pairs of modes which are entangled. By reorganizing its rows
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and columns this can be cast into the simpler form

γE =




µ̄−1 f(µ̄−1)
f(µ̄−1) µ̄−1 0

0
ξ112n−r f(ξ112n−r)

f(ξ112n−r) ξ112n−r




} r
} r
} 2n− r
} 2n− r ,

(3.199)

where we used µ̄ to indicate the r × r matrix µ̄ = µ⊕ µ.

3.4.2 Reducing the number of environmental modes

An interesting question is the characterization of the minimal number of
environmental modes ` that need to be involved in the unitary dilation (3.56)
[62]. From Theorem 3 we know that such number is certainly smaller than
or equal to twice the number n of modes on which the BGC is operating: we
have in fact explicitly constructed one of such representations that involves
` = 2n modes in a minimal uncertainty, i.e., pure Gaussian state. We also
know, however, that there are situations10 in which ` can be reduced to just
n: This happens for instance for BGCs E with rank[Y ] = rank[Σ] = 2n, i.e.,
case (i) of Theorem 3. In this case one can represent the channel E in terms
of a Gaussian unitary coupling with ` = n environmental modes which are
prepared into a Gaussian state with covariance matrix

γE = KY KT , (3.200)

– see Eqs. (3.172). In general, this will not be of Stinespring form (not be
a pure unitary dilation) since γE is not a minimal uncertainty covariance
matrix. In fact, for n = 1 this corresponds to the physical representation of
E in Sec. 3.3 [53]. However, if Y and X satisfy the condition (3.173), our
analysis provides a unitary dilation involving merely ` = n modes in a pure
Gaussian state.

We can then formulate a necessary and sufficient condition for the chan-
nels E of class (i) which can be described in terms of n environmental modes
prepared into a pure state. It is given by (see also Sec. 3.4.3)

Y = Σ Y −1 ΣT , (3.201)

10Not mentioning the trivial case of Gaussian unitary transformation which does not
require any environmental mode to construct a unitary dilation.
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which follows by imposing the minimal uncertainty condition (3.45) to the
n-mode covariance matrix (3.200) and by using (3.170). Similarly one can
verify that given a pure n-modes Gaussian state ρE and an S ∈ Sp(4n,R)
(3.156) with an invertible subblock s2, then the corresponding BGC satisfies
condition (3.201). The above result can be strengthened by looking at the
solutions for channels of class (ii) of which the channel of class (i) are a proper
subset.

In order to reduce the number of the environmental modes, we prove
the Theorem 3 in a slightly different way. We will analyze separately two
different regimes of the rank of Y : i) k even and ii) k odd.

(i) First, let us consider the case in which k is an even number. To find s2

and γE which solve Eqs. (3.167) and (3.168), it is useful to first transform Y
into a simpler form by a congruent transformation. Particularly, it is always
possible [119] to find C ∈ Gl(2n,R) such that

Y ′ := CY CT =

[
11k 0
0 0

] } k
} 2n− k ,

, (3.202)

and

Σ′ := CΣCT =




0
µ 0
0 0

0

−µ 0
0 0

0 0

0 0 0




} r/2
} (k − r)/2
} r/2
} (k − r)/2
} 2n− k

(3.203)

where now µ = diag(µ1, · · · , µr/2) is the r/2 × r/2 diagonal matrix formed
by the strictly positive eigenvalues of |Σ′| which satisfy the conditions 1 >
µj > 0, this being equivalent with 11r/2 > µ, as a consequence of inequality
Y ′ > iΣ′. Note that rank[Σ′] = rank[Σ] = r [119]. We then observe that,
introducing s2 = C s′2, the conditions (3.167) and (3.168) can be written as

s′2 σE
2` (s′2)

T = Σ′ , (3.204)

s′2 γE (s′2)
T = Y ′ . (3.205)

Finding s′2 and γE which satisfy these expressions will provide us also a
solution of Eqs. (3.167) and (3.168). Hence, define the matrix M ∈ R2n×2n

as

K =

[
K̃ 0
0 112n−k

] } k
} 2n− k ,

, (3.206)



128 Bosonic Gaussian channels

where

K̃ =




µ−1/2 0
0 11(k−r)/2

0

0
µ−1/2 0

0 11(k−r)/2




} r/2
} (k − r)/2
} r/2
} (k − r)/2,

satisfying

KΣ′KT =




0
11r/2 0
0 0

0

−11r/2 0
0 0

0 0

0 0 0




} r/2
} (k − r)/2
} r/2
} (k − r)/2
} 2n− k

To show that Eqs. (3.204) and (3.205) admit a solution we take ` = k and
write σE

2l = σ2k = σk ⊕ σk with σk defined as above for σ2n. With these
definitions the 2n×2k rectangular matrix s′2 can be chosen to have the block
structure

s′2 =

[
K̃−1 A

0 0

] } k
} 2n− k.

(3.207)

with A being the following 2n× 2n symmetric matrix

A = AT =




0
0 0
0 11(k−r)/2

0 0
0 11(k−r)/2

0




} r/2
} (k − r)/2
} r/2
} (k − r)/2.

By direct substitution one can easily verify that Eq. (3.204) is indeed satisfied.
Inserting Eq. (3.207) into Eq. (3.205) yields now the following equation

α + AδT + δ AT + Aβ AT = K̃2 , (3.208)

for the 2k × 2k covariance matrix γE as in Eq. (3.188). A solution can be
easily derived by taking

α = β =




µ−1 0
0 ξ11(k−r)/2

0

0
µ−1 0
0 ξ11(k−r)/2




} r/2
} (k − r)/2
} r/2
} (k − r)/2,
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with ξ = 5/4 and

δ =




0
f(µ−1) 0

0 f(ξ11(k−r)/2)
f(µ−1) 0

0 f(ξ11(k−r)/2)
0




} r/2
} (k − r)/2
} r/2
} (k − r)/2,

with f(θ) := −(θ2 − 11)1/2. For all diagonal matrices µ compatible with
the constraint 11r/2 > µ the resulting γE satisfies the uncertainty relation
γE > iσ2k. It is also a pure Gaussian state of k modes, because of Det[γE] = 1.
By looking at the structure of this covariance matrix, one realizes that it is
composed by two independent sets formed by r and k−r modes, respectively.
The first set describes r/2 thermal states characterized by the matrices µ−1

which have been purified adding further r/2 modes. The second set instead
describes a collection of 2((k− r)/2) = k− r modes prepared in a pure state
formed by (k − r)/2 independent pairs of modes which are entangled.

(ii) Now, suppose that k is odd. One can find C ∈ Gl(2n,R) such that
Y ′ := CY CT is as in Eq. (3.202) while

Σ′ := CΣCT =




0
µ 0
0 0

−µ 0
0 0

0
0

0
0

0




} r/2
} (k − 1− r)/2
} r/2
} (k − 1− r)/2
} 2
} 2n− k − 1 ,

where µ is defined as above and 1 > µj > 0. Again, we want to find s′2 and
γE satisfying Eqs. (3.204-3.205). Hence, define the matrix M ∈ R2n×2n as

K =




K̃ 0 0
0 112 0
0 0 112n−k−1



} k − 1
} 2
} 2n− k − 1 ,

(3.209)

where

K̃ =




µ−1/2 0
0 11

0

0
µ−1/2 0

0 11




} r/2
} (k − 1− r)/2
} r/2
} (k − 1− r)/2,
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satisfying

KΣ′KT =




0
11r/2 0
0 0

−11r/2 0
0 0

0
0

0
0

0




} r/2
} (k − 1− r)/2
} r/2
} (k − 1− r)/2
} 2
} 2n− k − 1 ,

Now, in order to find a solution for Eqs. (3.204) and (3.205), we take ` = k
and write σE

2l = σ2k = σk−1⊕σk−1⊕σ2 with σk−1 and σ2 defined as above for
σ2n. With these definitions the 2n× 2k rectangular matrix s′2 can be chosen
to have the block structure

s′2 =




K̃−1 A 0

0 0
1 0
0 0

0 0 0




} k − 1
} 1
} 1
} 2n− k − 1.

(3.210)

with A being the following 2n× 2n symmetric matrix

A =




0
0 0
0 11(k−1−r)/2

0 0
0 11(k−1−r)/2

0




} r/2
} (k − 1− r)/2
} r/2
} (k − 1− r)/2.

and satisfies Eq. (3.204).
If one inserts Eq. (3.210) into Eq. (3.205), one obtains the same equation

as in Eq. (3.208) but for the 2k × 2k covariance matrix

γE =




α δ 0
δT β 0
0 0 112



} k − 1
} k − 1
} 2 ,

(3.211)

where the matrices α, β and δ are (k − 1) × (−1)k matrices defined as in
the case 1) but replacing k with k − 1. Again, the resulting γE satisfies the
uncertainty relation γE > iσ2k and represents a pure Gaussian state of k
modes (i.e., Det[γE] = 1). By looking at the structure of this covariance
matrix, one realizes that it is composed by three independent sets formed by
r, k− r and 1 modes, respectively. The first set describes r/2 thermal states
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characterized by the matrices µ−1 which have been purified adding further
r/2 modes. The second set describes instead a collection of 2((k−1−r)/2) =
k−1−r modes prepared in a pure state formed by (k−1−r)/2 independent
pairs of modes which are entangled. The third set represents a single mode
in the vacuum state.

In the following, however, we will show that one can construct a unitary
dilation that involves ρE with only ` = k − r′/2 modes and, dropping the
purity requirement, with only ` = k − r/2 modes. ¥

Now, let us note that with the choice we made on the symplectic form
σE

2` = σ2k, the two matrices α and β are k × k covariance matrices for two
sets of independent k/2 Bosonic modes satisfying the uncertainty relations
with respect to the form σk. In turn, the matrices δ and δT represent cross-
correlation terms among such sets. After all, the entire covariance matrix γE

corresponds to a pure Gaussian state. We characterize the minimal number
of the environmental modes in the unitary dilations of multi-mode maps
according to the following theorem.

Theorem 4 (Minimal dilations of Gaussian channels) Given a BGC
Φ described by matrices X and Y satisfying the conditions (3.47) and char-
acterized by the quantities k = rank[Y ] and

r = rank[Σ] , r′ = k − rank[Y − ΣY ª1ΣT ] . (3.212)

(where Y ª1 denotes the Moore-Penrose inverse [119]), then it is possible
to construct a unitary dilation of Stinespring form (i.e., involving a pure
Gaussian state ρE) with at most `pure = k − r′/2 environmental modes. It
is also always possible to construct a unitary dilation using ` = k − r/2
environmental modes which are prepared in a Gaussian, but not necessarily
pure state.

Proof: For simplicity we will consider the case in which k is even, but
trivially it holds also for the odd case. The key point is now the observation
that in Eq. (3.208), the matrix A couples only with those rows and columns
of the matrices δ and β which contain elements ξ11n−r/2 or f(ξ11n−r/2): as
far as A is concerned, one could indeed replace the element µ−1 and f(µ−1)
of such matrices with zeros. The only reason why we keep these element
is to render γE the covariance matrix of a minimal uncertainty state. In
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other words, the elements of δ and β proportional to µ−1 or f(µ−1) are only
introduced to purify the corresponding element of the submatrix α, which is
in itself hence a covariance matrix of a mixed Gaussian state.

Suppose then that µ has (say) the first r′/2 eigenvalues equal to 1, i.e.,
µ1 = µ2 = · · · = µr′/2 = 1 while for j ∈ {r′/2 + 1, · · · , r/2} we have that
µj ∈ (0, 1). In this case the corresponding sub-matrix of α associated with
those elements represent a pure Gaussian state, specifically the vacuum state.
Accordingly, there is no need to add further modes to purify them. Taking
this into account, one can hence reduce the number of environmental modes
`pure that allows one to represent Φ in term of a pure state ρE from k to

`pure = k/2 + (k/2− r′/2) = k − r′/2. (3.213)

Indeed, we need the k/2 modes of α plus k/2 − r′/2 additional modes of
β to purify those of α which are not in a pure state yet. An easy way to
characterize the parameter r′ is to observe that, according to Eq. (3.203), it
corresponds to the number of eigenvalues having modulus 1 of the matrix of
OΣ′OT , i.e.,

r′ = k − rank[112n − Σ′(Σ′)T ] = k − rank[112n − Σ′(Σ′)T ]

= k − rank[Y − Σ Y ª1 ΣT ] , (3.214)

where Y ª1 denotes the Moore-Penrose inverse of Y [119]. Here we notice
that for r′ = r = 2n we get `pure = n. This should correspond to the
channels (3.201) of class (i) for which one can construct a unitary dilation
with pure input states. Indeed, according to Eq. (3.214), when r′ = 2n the
matrix Y − Σ Y −1 ΣT must be zero, leading to the identity (3.201). The
explicit expressions for corresponding values of γE and s2 are obtained in the
following way. We choose the environmental symplectic form to be σE

2` =
σk ⊕ σk−r′ as above. A unitary dilation with `pure = k − r′/2 environmental
modes in a pure state is obtained by having s2 = Cs′2 with s′2 as in Eq. (3.210).
In this case, however, A is a rectangular matrix k×2(k/2− r′/2) of the form

A =




0
0 0
0 0
0 11(k−r)/2

0 0
0 0
0 11(k−r)/2

0




} r′/2
} (r − r′)/2
} k/2− r/2
} r′/2
} (r − r′)/2
} k/2− r/2

. (3.215)
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Similarly, the covariance matrix γE can be still expressed as in Eq. (3.188).
In this case, yet, α is a k × k matrix of block form

α =




11r′/2 0 0
0 µ−1

o 0
0 0 ξ11(k−r)/2

0

0
11r′/2 0 0

0 µ−1
o 0

0 0 ξ11(k−r)/2




} r′/2
} (r − r′)/2
} (k − r)/2
} r′/2
} (r − r′)/2
} (k − r)/2,

where ξ = 5/4 and µo is the (r−r′)/2×(r−r′)/2 diagonal matrix formed by
the elements of µ which are strictly smaller than 1. β is the (k−r′)× (k−r′)
matrix

β =




µ−1
o 0
0 ξ11(k−r)/2

0

0
µ−1

o 0
0 ξ11(k−r)/2




} (r − r′)/2
} (k − r)/2
} (r − r′)/2
} (k − r)/2,

and

δ =




0
0 0

f(µ−1
o ) 0
0 f(ξ11(k−r)/2)

0 0
f(µ−1

o ) 0
0 f(ξ11(k−r)/2)

0




} r′/2
} (r − r′)/2
} (k − r)/2
} r′/2
} (r − r′)/2
} (k − r)/2,

with f defined above.
By looking at the structure of this covariance matrix, one realizes that it

is composed by three independent pieces. The first one describes a collection
of r′/2 vacuum states. The second one, in turn, describes (r− r′)/2 thermal
states characterized by the matrices µ−1

o which have been purified by adding
further (r−r′)/2 modes. The third one, finally, reflects a collection of 2(k/2−
r/2) = k−r modes prepared in a pure state formed by k/2−r/2 independent
pairs of modes which are entangled.

Now, taking into account that r′ 6 r = rank[Σ], a further reduction
in the number of modes ` can be obtained by dropping the requirement of
γE being a minimal uncertainty covariance matrix. Indeed, an alternative
unitary representation of Φ can be constructed with only

` = k/2 + (k/2− r/2) = k − r/2 , (3.216)
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environmental modes. In fact, choosing the symplectic form σE
2` = k ⊕ σk−r,

the matrix s′2 can be still expressed as in Eq. (3.210). but with A being a
rectangular matrix k × (k − r) of the form

A =




0
0

11(k−r)/2

0
11(k−r)/2

0




} r/2
} (k − r)/2
} r/2
} (k − r)/2,

. (3.217)

Similarly, γE has the block form (3.188), where α is still the k× k matrix as
above, while β and δ are, respectively, the following (k − r) × (k − r) and
k × (k − r) real matrices:

β =

[
ξ11(k−r)/2 0

0 ξ11(k−r)/2

] } (k − r)/2
} (k − r)/2,

(3.218)

δ =




0 0
0 f(ξ11(k−r)/2)
0 0

f(ξ11(k−r)/2) 0




} r/2
} (k − r)/2
} r/2
} (k − r)/2,

(3.219)

with ξ and f as above. This covariance matrix now consists of two in-
dependent parts: the first one describes a collection of r/2 thermal states
described by the matrices µ−1. The second instead reflects a collection of
2(k/2 − r/2) = k − r modes prepared in a pure state formed by k/2 − r/2
independent couples of modes which are entangled. ¥

3.4.3 Minimal noise channels

In a very analogous fashion to the extremal covariance matrices correspond-
ing to pure Gaussian states as in Eq. (3.44), one can introduce the concept
of a minimal noise channel. In this section we review the concept of such
minimal noise channels [104] and provide criteria to characterize them [54].
Given X,Y ∈ R2n×2n satisfying the inequality (3.47), any other Y ′ = Y +∆Y
with ∆Y > 0 will also satisfy such condition, i.e.,

Y ′ > Y > i(σ2n −XT σ2nX) . (3.220)
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Figure 3.15: The noise associated with a generic BGC can be conceived of as
originating from two sources. The first contribution may be regarded as true
quantum noise associated with a minimal noise channel E0. The other one
may be identified with an additive classical noise Ψ reflecting appropriate
random displacements in phase space.

Furthermore, due to the compositions rules (3.54), the BGC E ′ associated
with the matrices X, Y ′ can be described as the composition

E ′ = Ψ ◦ E , (3.221)

between the channel E associated with the matrices X,Y , and the channel
Ψ described by the matrices X = 11n and Y = ∆Y . The latter belongs
to a special case of BGC that includes the so called additive classical noise
channels [53, 45, 59] – see Fig. 3.15, Sec. 3.3.3 for n = 1 and Sec. 3.4.4 for
n > 1.

For any X ∈ R2n×2n, one can then ask how much noise Y it is necessary
to add in order to obtain a map satisfying the condition (3.47). This gives
rise to the notion of minimal noise [104], as the extremal solutions Y of
Eq. (3.47) for a given X. The corresponding minimal noise channels are the
natural analogue of the Gaussian pure state and allows one to represent any
other BGC as in Eq. (3.221) with a proper choice of the additive classical
noise map Ψ.

Let us start considering the case of a generic channel E ′ of class (i) de-
scribed by matrices X and Y ′. According to Theorem 3 it admits unitary
dilation with ` = n modes described by some covariance matrix γ′E satisfying
the condition

Y ′ = s2 γ′E sT
2 , (3.222)

for some proper 2n × 2n real matrix s2. According to Eq. (3.44) γE can be
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written as

γ′E = γE + ∆ , (3.223)

with ∆ > 0 and γE minimal uncertainty state. Therefore writing Y =
s2γEsT

2 and ∆Y = s2∆sT
2 we can express E ′ as in (3.221), where now E is

the BGC associated with the minimal noise environmental state γE. Most
importantly, since the decomposition (3.223) is optimal for γ′E, the channel E
is an extremal solution of Eq. (3.47). We stress that by construction E is still
a channel of class (i): in fact it has the same Σ as E ′, while Y is still strictly
positive since γE > 0 and s2 is invertible – see Eq. (3.222). We can then
use the results of Sec. 3.4.2 to claim that E must satisfy the equality (3.201).
This leads us to establish three equivalent necessary and sufficient conditions
for minimal noise channels of class (i):

(m1) Y = ΣY −1ΣT , (3.224)

(m2) Det[Y ] = Det[Σ] , (3.225)

(m3) r = r′ , (3.226)

with r and r′ as in Eq. (3.212). Since for class (i) we have that r = 2n, the
minimal noise condition m3 simply requires the eigenvalues of the matrix µ
of Eq. (3.203) to be equal to unity. Similarly, minimal noise channels in case
(ii) and (iii) can be characterized.

Theorem 5 (Minimal noise condition) A Gaussian Bosonic channel char-
acterized by the matrices Y and X ∈ R2n×2n is a minimal noise channel if
and only if, given Σ = σ2n −XT σ2nX, one has

Y = ΣY ª1ΣT . (3.227)

Proof: The complete positivity condition (3.47) of a generic BGC is a posi-
tive semi-definite constraint for the symplectic form Σ, corresponding to the
constraint γ−iσ2n > 0 in case of covariance matrices of states of n modes. In
general, r = rank[Σ] is not maximal, i.e., not equal to 2n. When identifying
the minimal solutions of the inequality (3.47), without loss of generality we
can look for the minimal solutions of

Y ′ − iΣ′ > 0, (3.228)
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where here

Σ′ =




0 µ
−µ 0

0


 , (3.229)

with µ > 0 being diagonal of rank r/2 (where Y ′ = OY OT and Σ′ = OΣOT

with O ∈ O(2n,R) orthogonal). The minimal solutions of inequality (3.228)
are then given by Y ′ = SST ⊕ 0, where S is a r × r matrix satisfying

S

[
0 µ
−µ 0

]
ST =

[
0 µ
−µ 0

]
, (3.230)

so a symplectic matrix with respect to the modified symplectic form, so an
element of {M ∈ Gl(r,R) : M = (µ1/2⊕µ1/2)S(µ−1/2⊕µ−1/2), S ∈ Sp(r,R)}.
From this, it follows that the minimal solutions of (3.228) are exactly given
by the solutions of Y ′ = Σ′(Y ′)ª1(Σ′)T , from which the statement of the
theorem follows. ¥

3.4.4 Additive classical noise channel

In this section we focus on the maps Ψ which enter in the decomposi-
tion (3.221). They are characterized by having X = 112n and Y > 0. Note
that with this choice the condition (3.47) is trivially satisfied. This is the
classical noise channel that has frequently been considered in the literature
(for a review, see, e.g., Ref. [59]). For completeness of the presentation, we
briefly discuss this class of multi-mode BGC [54].

If the matrix Y is strictly positive, the channel Ψ is the multi-mode gener-
alization of the single mode additive classical noise channel, associated to the
canonical form B2 in Sec. 3.3.3 [53, 45, 59]. Indeed, one can show that these
maps are the (Gaussian) unitary equivalent to a collection of n single mode
additive classical noise maps. To see this, let us apply symplectic transfor-
mations (S1 and S2) before and after the channel Ψ. Following Eq. (3.55)
this leads to {11n, Y } 7→ {S1S2, ST

2 Y S2}. Now, since Y > 0, according to
Williamson’s theorem (see Appendix A) [115], we can find a S2 ∈ Sp(2n,R)
such that ST

2 Y S2 is diagonal diag(λ1, · · · , λn, λ1, · · · , λn) with λi > 0. We
can then take S1 = S−1

2 to have S1S2 = 112n. For Y > 0 but not Y > 0,
the maps Ψ that enter the decomposition Eq. (3.221), however, include also
channels which are not unitarily equivalent to a collection of B2 maps. An
explicit example of this situation is constructed in Sec. 3.4.8.
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3.4.5 Canonical form

Analogously to the one-mode case in Sec. 3.3 [53, 48, 56], any BGC E , de-
scribed by the transformation Eq. (3.49), can be simplified through unitarily
equivalence, by applying unitary canonical transformations before and after
the action of the channel, which induce transformations of the form (3.55)
[54]. Specifically, given a n-mode Gaussian channel E described by matrix X
and Y , we can transform it into a new n-mode Gaussian channel Ec described
by the matrices

Xc = S1XS2 , Yc = ST
2 Y S2 , (3.231)

with S1,2 ∈ Sp(2n,R). As already discussed in the introductory Sec. 3.2,
from an information theoretical perspective E and Ec are equivalent in the
sense that, for instance, their unconstrained quantum capacities coincide.
We can then simplify the analysis of n-mode Gaussian channels by properly
choosing S1 and S2 to induce a parametrization of the interaction part (i.e.,
X) of the evolution. The resulting canonical form follows from the general-
ization of the Williamson theorem [115] presented in Ref. [57] (see Appendix
A for more details). According to this result, for every non-singular matrix
X there exist matrices S1,2 ∈ Sp(2n,R) such that

Xc = S1XS2 =

[
11n 0
0 JT

]
, (3.232)

with JT being a n × n block-diagonal matrix in the real Jordan form of
Xσ2nXT σT

2n [119]. This can be developed a little further by constructing
a canonical decomposition for the symplectic matrix S associated with the
unitary dilation (3.56) of the channel.

For the sake of simplicity in the following we will focus on the case of
generic quantum channels E which have non-singular X ∈ Gl(2n,R) and be-
long to the class (i) of Theorem 3 (i.e., which have r = rank[Σ] = 2n). Under
these conditions X must admit a canonical decomposition of the form (3.232)
in which all the eigenvalues of J are different from 1. In fact one has

Σ = σ2n −XT σ2nX = S−T
2

[
σ2n −XT

c σ2nXc

]
S−1

2 = S−T
2 Σc S−1

2 , (3.233)

with Σc being the skew-symmetric matrix associated with the channel Ec,
i.e.,

Σc :=

[
0 11n − J

JT − 11n 0

]
. (3.234)
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Since rank[Σc] = rank[Σ] = 2n, it follows that J cannot have eigenvalues
equal to 1. Similarly, it is not difficult to see that if X has a canonical
form as in Eq. (3.232) with all the eigenvalues of J being different from 1,
then E and Ec are of class (i). However, a special case in which X = 112n is
investigated in detail in Sec. 3.4.8.

Consider then a unitary dilation (3.56) of the channel Ec constructed
with a not necessarily pure Gaussian state ρE of ` = n environmental modes.
According to the above considerations, such a dilation always exists. Let S ∈
Sp(4n,R) be the 4n × 4n real symplectic transformation (3.156) associated
with the corresponding unitary U . Assuming s1 = XT

c , an explicit expression
for this dilation can be obtained by writing

s4 =

[
11n 0
0 J ′

]
, sj =

[
Fj 0
0 Gj

]
, (3.235)

where, for j = 2, 3, Fj, Gj are n × n real matrices. Imposing Eqs. (3.157),
one obtains the following relations

JT + F2G
T
2 = 11n , J ′T + F3G

T
3 = 11n ,

GT
3 + F2J

′T = 0 , GT
2 + F3J

T = 0 , (3.236)

whose solution gives an S ∈ Sp(4n,R) of the form

S =




11n 0 (11n − JT )G−T 0
0 J 0 G

−GT J−T 0 11n 0
0 G−1J(J − 11n) 0 G−1JG


 , (3.237)

with G being an arbitrary matrix G ∈ Gl(n,R). As a consequence of this
fact, and because the eigenvalues of J are assumed to be different from 1, s2,
s3 and s4 are also non-singular. This is important because it shows that in
choosing S as in the canonical form (3.237) we are not restricting generality:
the value of s2 can always be absorbed into the definition of the covariance
matrix γE of ρE by writing (see also Sec. 3.4.7)

γE = s−1
2 Yc s−T

2 . (3.238)

Taking this into account, we can conclude that Eq. (3.237) provides an ex-
plicit demonstration of Lemma 2 for channels of class (i) with non-singular
X.
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Since Ec is fully determined by Xc and Yc, the above expressions show
that the action of Ec on the input state does not depend on the choice of G.
As a matter of fact, the latter can be seen as a Gaussian unitary operation
UG characterized by the n-modes symplectic transformation Sp(2n,R),

∆G =

[
GT 0
0 G−1

]
, (3.239)

applied to final state of the environment after the interaction with the input,
i.e., ẼG = UGẼUT

G , where Ẽ is the weak complementary map for G = 11n,
and ẼG is the weak complementary map in presence of G 6= 11n – see the
next section for details. Since the relevant properties of a channel (e.g.,
weak degradability in Sec. 2.3 [52, 53]) do not depend on local unitary
transformations to the input/output states, without loss of generality, we
can consider G = −J and the canonical form for S ∈ Sp(4n,R) assumes the
following simple expression

S =




11n 0 11n − J−T 0
0 J 0 −J

11n 0 11n 0
0 11n − J 0 J


 . (3.240)

The possibility of constructing different, but unitarily equivalent, canonical
forms for S is discussed in Sec. 3.4.7.

3.4.6 Weak-degradability

Among other properties, the unitary dilations introduced so far are useful to
define complementary or weak complementary channels of a given BGC E , de-
fined in Sec. 2.3, i.e. Ẽ(ρ) := TrS[U(ρ⊗ρE)U †], where ρ, ρE and U are defined
as in Eq. (3.56), but the partial trace is now taken over the system modes.
Specifically, let us recall that, if the state ρE we employed in constructing
the unitary dilation of Eq. (3.56) is pure, then the map Ẽ is said to be the
complementary of E and, up to partial isometry, it is unique [38, 93, 92, 80].
Otherwise it is called weak complementary [52, 53]. Since in Eq. (3.56) the
state ρE is Gaussian and U is a unitary Gaussian transformation, one can
verify that Ẽ is also BGC11. Expressing the Gaussian unitary transformation

11In general, however, it will not map the n input modes into n output modes. Instead,
it will transform them into ` modes, with ` being the number of modes assumed in the
unitary dilation (3.56).
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U in terms of its symplectic matrix S of Eq. (3.156) the action of Ẽ is fully
characterized by the following mapping of the covariance matrices γ of ρ, i.e.,

Ẽ : γ 7−→ s3γsT
3 + s4γEsT

4 , (3.241)

which is counterpart of the transformations (3.48) and (3.158) that char-
acterize E . The channel Ẽ is then described by the matrices X̃ = sT

3 and
Ỹ = s4γEsT

4 which, according to the symplectic properties (3.157), satisfy
the condition

Ỹ > iΣ̃ with Σ̃ := σE
2` − X̃T σ2nX̃ . (3.242)

As shown in Sec. 2.3, the relations between E and its weak complementary
Ẽ contain useful information about the channel E itself. For instance, recall
that we say that the channel E is weakly degradable (WD) while Ẽ is anti-
degradable (AD), if Eq. (2.52) holds. In the following, we will use the
compact notation WD/AD to refer to weakly and anti- degradable channels,
respectively. A complete weak-degradability analysis of one-mode Bosonic
Gaussian channels has been provided in Sec. 3.3 [52, 53]. Here we generalize
those results to n > 1 [54].

A criterion for weak degradability

We review a general criterion for degradability of BGCs which was in-
troduced in Ref. [55], adapting it to include also weak degradability [54].
Before entering the details of our derivation, let us point out that tensor-
ing weakly degradable (anti-degradable) one-mode Gaussian channels with
weakly degradable (anti-degradable) one-mode Gaussian channels yield multi-
mode Gaussian channel which are weakly degradable (anti-degradable). For
instance, E⊗n is weakly degradable (or anti-degradable) if E satisfies the
same property. This can be easily verified. In the general case, however,
it is worth noticing that generic multi-mode Gaussian channels are neither
WD nor AD (e.g., the two-mode Gaussian channel which acts on the first
mode as a beam-splitter transformation with transmissivity k2

1 < 1/2 and on
the second as a beam-splitter transformation with transmissivity k2

2 > 1/2).
In this respect the weak-degradability property of one-mode Gaussian maps
(studied in Sec. 3.3) turns out to be rather remarkable. Consider in fact
a WD single-mode Gaussian channel E having no zero quantum capacity
Q > 0 (e.g., a beam-splitter channel with transmissivity > 1/2). Define then
the two mode channel E ⊗ Ẽ with Ẽ being its weak complementary. This
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is Gaussian since both E and Ẽ are Gaussian. The claim is that E ⊗ Ẽ is
neither WD nor AD. Indeed, its weak complementary can be identified with
the map Ẽ ⊗E . Consequently, since E ⊗ Ẽ and Ẽ ⊗E differ by a permutation,
they must have the same quantum capacity Q′. Therefore if one of the two
is WD than both of them must also be AD. In this case Q′ should be zero
which is clearly not possible given that Q′ > Q. In fact, one can use E ⊗ Ẽ
to reliably transfer quantum information by encoding it into the inputs of E .
In this respect the possibility (shown in Sec. 3.3) of classifying (almost) all
single-mode Gaussian maps in terms of weak degradability property turns
to be rather a remarkable property. We now turn to investigating the weak
degradability properties of multi-mode Bosonic Gaussian channels deriving a
criterion that will be applied in Sec. 3.5.1 for studying in detail the two-mode
channel case [54].

Consider a n-mode Bosonic Gaussian channel E characterized the unitary
dilation (3.56) and its weak complementary Ẽ . Let {X, Y }, {X̃, Ỹ } be the
matrices which define such channels. For the sake of simplicity we will assume
X and X̃ to be non-singular, i.e. X, X̃ ∈ Gl(2n,R). Examples of such maps
are for instance the channels of class (i) with X non-singular described in
Sec. 3.4.5. Adopting in fact the canonical form (3.240) for S we have that

X =

[
11n 0
0 JT

]
, X̃ =

[
11n 0
0 11n − JT

]
(3.243)

with all the eigenvalues of J being different from 1.
Suppose now that E is weakly degradable with T being the connecting

CPT map which satisfies the weak degradability condition (2.52). As in Sec.
3.3 for single mode [52, 53], we will focus on the case in which T is BGC and
described by matrices {XT , YT }. Under these hypothesis the identity (2.52)
can be simplified by using the composition rules for BGCs given in Eq. (3.54).
Accordingly, one must have

XT = X−1X̃ ,

YT = Ỹ −XT
T Y XT . (3.244)

These definitions must be compatible with the requirement that T should be
a CPT map which transforms the n system modes into the ` environmental
modes, i.e.,

YT > i
(
σE

2` −XT
T σ2nXT

)
. (3.245)
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Combining the expressions above, one finds the following weak-degradability
condition for n-mode Bosonic Gaussian channels [55], i.e.

Ỹ − X̃T X−T (Y + iσ2n)X−1X̃ + iσE
2` > 0 . (3.246)

In order to obtain the anti-degradability condition (2.53), it is sufficient to
swap {X, Y } with {X̃, Ỹ } and the system commutation matrix σ2n with σE

2`,
in Eq. (3.246), i.e.,

Y −XT X̃−T (Ỹ + iσE
2`)X̃

−1X + iσ2n > 0 . (3.247)

Equations (3.246) and (3.247) are strictly related. Indeed, since

Y −XT X̃−T (Ỹ + iσE
2`)X̃

−1X + iσ2n (3.248)

= −XT X̃−T
(
Ỹ − X̃T X−T (Y + iσ2n)X−1X̃ + iσE

2`

)
X̃−1X ,

equation (3.247) corresponds to reverse the sign of the inequality (3.246), i.e.

Ỹ − X̃T X−T (Y + iσ2n)X−1X̃ + iσE
2` 6 0 . (3.249)

Hence to determine if E is a weakly degradable or anti-degradable channel,
it is then sufficient to study the positivity of the Hermitian matrix

W := Ỹ − X̃T X−T (Y + iσ2n)X−1X̃ + iσE
2` . (3.250)

Note that for n = 1 the condition in Eq. (3.246) reduces more simply to
Det(X) − 1/2 > 0 (analogously, Eq. (3.247) reduces to Det(X) − 1/2 6 0
for the anti-degradability), recovering the results for one-mode BGCs in Sec.
3.3.4.

In the case in which ` = n this can be simplified by reminding that an
Hermitian 2n× 2n matrix W partitioned as

W =

[
W1 W2

W †
2 W3

]
(3.251)

with Wi being n× n matrices is semi-positive definite if and only if

W1 > 0 and W3 −W †
2W−1

1 W2 > 0 , (3.252)
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the right hand side being the Schur complement of W (see, e.g., page 472 in
Ref. [119]). Using this result and the canonical form (3.240), Eq. (3.246) can
be written as in Eq. (3.252) with

W1 = (11n − J−T )−1Y1(11n − J−1)−1 − Y1 (3.253)

W2 = i(J−T − 211n)− Y2(J
−T − 11n)− (11n − J−T )−1Y2

W3 = Y3 − (J−1 − 11n)Y3(J
−T − 11n) ,

and

Y =

[
Y1 Y2

Y T
2 Y3

]
. (3.254)

For the anti-degradability condition (3.247) simply replace [>] with [6] in
Eq. (3.252).

3.4.7 Equivalent unitary dilations

Let

S =

[
s1 s2

s3 s4

]
(3.255)

and γE define a unitary dilation for a Bosonic Gaussian channel E charac-
terized by matrices X and Y , as in Theorem 3. Then a full class of unitary
dilations

S ′ =
[

s′1 s2

s′3 s′4

]
(3.256)

can be obtained by taking γ′E = V γEV T and

s′1 = s1 , s′2 = s2V s′3 = Ws3 , s′4 = Ws4V , (3.257)

with V ∈ Sp(2`,R) and W ∈ Sp(2n,R) being symplectic transformations of
` and n modes respectively [54]. With this choice in fact γ′E is still a covari-
ance matrix while the conditions (3.157) and (3.158) are automatically sat-
isfied. From a physical point of view, the symplectic transformations V and
W correspond to unitary local operations applied to the environmental input
and output states, respectively, by virtue of the metaplectic representation.
Consequently, the weak complementary channels Ẽ and Ẽ ′ associated with
these two representations are unitarily equivalent and the weak-degradability
properties one can determine for E will be the same when studied for E ′ (as
shown in Sec. 2.3).
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Conversely, let us suppose to have two unitary dilations of E , realized with
` = n environmental modes and characterized by the symplectic matrices S
and S ′ as in Eq. (3.255) and (3.256), respectively, with si and s′i being 2n×2n
square matrices. Then it is possible to show that they must be related as in
Eq. (3.257) under the hypothesis that s2 and s3 are non-singular. First of
all, since Eq. (3.158) must be satisfied for all the input covariance matrices
γ, we have s1 = XT = s′1. Define then V = s−1

2 s′2 and W = s′3s
−1
3 . By using

the first of Eq. (3.157) and exploiting the non-singularity of s2 one has

s2 V σE
2` V T sT

2 = s2 σ2n sT
2 =⇒ V σ2n V T = σ2n , (3.258)

which implies that V is a symplectic matrix (we are assuming σE
2` = σ2n).

Moreover, from the second condition in Eqs. (3.157) for S and S ′, we obtain

s2σsT
4 W T = s2V σs′T4 , =⇒ s′4 = Ws4V , (3.259)

because s2 is non-singular and V is symplectic. By considering the third
condition (3.157) one then has

W (s3σ2ns
T
3 + s4σ2nsT

4 )W T = Wσ2nW
T = σ2n (3.260)

which prove that W is a symplectic. Finally, let us observe that the proof
above does not use the non-singularity of s3. Indeed, one can relax this
hypothesis and assume more simply that there exists a W such that s′3 =
Ws3; from Eqs. (3.157) W has to still be a symplectic matrix but s3 and s′3
may be singular.

As an application of these equivalent unitary dilation results, we can find
an alternative canonical form to the one in Sec. 3.4.5 with the same s1 and
s4 but with s2 and s3 of the following anti-diagonal block form

sj =

[
0 Fj

Gj 0

]
(3.261)

where, for j = 2, 3, Fj, Gj are n × n real matrices. Imposing Eqs. (3.157),
one obtains the following relations

JT − F2G
T
2 = 11n , J ′T − F3G

T
3 = 11n, (3.262)

F2 − F T
3 = 0 , JGT

3 −G2J
′T = 0 ,
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the solution of which provides the following unitary dilation,

S =




11n 0 0 −(11n − JT )G−T
2

0 J G2 0
0 −G−1

2 (11n − J) 11n 0
GT

2 0 0 GT
2 JT G−T

2


 , (3.263)

where again G2 is an arbitrary (non-singular) matrix and the eigenvalues of
J are assumed to be different from 1. This solution is unitarily equivalent to
the one in Eq. (3.237) by applying V = −σ2n and

W =

[
0 G−1

2 J−1G2

−GT
2 JT G−T

2 0

]
(3.264)

as above.

3.4.8 The ideal-like quantum channel

Here we consider a quantum channel with X = 112n but Y > 0 with rank less
than 2n, which can be described in terms of only n additional (environmental)
modes [54]. We call it ideal-like quantum channel. Accordingly, the canonical
unitary transformation U of Eq. (3.56) will be uniquely determined by a
4n× 4n real matrix S ∈ Sp(4n,R) of block form in Eq. (3.156), where si are
2n× 2n real matrices. Particularly, s1 = s4 = 112n,

s3 =

[
F3 0
0 G3

]
, s2 =

[ −GT
3 0

0 −F T
3

]
, (3.265)

with F3 and G3 being n × n real matrices such that F3G
T
3 = GT

3 F3 = 0, in
order to satisfy the symplectic conditions in Eqs. (3.157). Taking advantage
of the freedom in the choice of the unitary dilation shown in Sec. 3.4.7, the
matrix S can be put in the form of Eq. (3.156) in which s′1 = s′4 = 112n,

s′2 =

[
0 0
0 11n

]
, s′3 =

[ −11n 0
0 0

]
, (3.266)

where F3 is assumed non-singular. In this respect, one uses V, W ∈ Sp(2n,R)
(of Sec. 3.4.7) of the following form

V =

[ −F3 0
0 −F−T

3

]
, (3.267)
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and W = V −1. Similarly, one can proceed, if G3 is non-singular, and ob-
tains a similar structure for S as above. As concerns the weak-degradability
properties, if one assumes the initial environmental input state in a thermal
state, e.g. γE = diag(2N + 1, 2M + 1, 2N + 1, 2M + 1), the eigenvalues of
Ỹ − X̃T X−T (Y + iσ)X−1X̃ + iσ are {2M, 2(M + 1), 2N, 2(N + 1)}, which
are always positive for any N > 0 and M > 0; hence, this channel with γE

as above is always weakly degradable.
Finally, one may consider another ideal-like channel with X = 112n and

Y = [(1− σz)/2]⊗n, i.e. EX,Y =
⊗n

i=1 B1i, where the single-mode B1 channel
is defined in Sec. 3.3.3 [53] as X = 112 and Y = (1 − σz)/2. Trivially, this
multi-mode channel is always WD (like B1) and is able to transfer a quantum
state without decoherence with the maximum quantum capacity (like for the
single-mode case).

3.5 Two-mode Bosonic Gaussian channels

Now we consider a particular case of n-mode Bosonic Gaussian channel anal-
ysis above, namely, the case of n = 2 [54]. This is by no means such a special
case as one might at first be tempted to think since any n-mode channel
can always be reduced to single-mode and two-mode parts [57]. For two-
mode channels the interaction part and the noise term of a generic two-mode
Bosonic Gaussian channel, X and Y , respectively, are 4 × 4 real matrices.
Particularly, we will focus on two-mode channels E which have non-singular
X and belong to the class (i) of Theorem 3 (i.e., which have r = rank[Σ] = 4),
like in Sec. 3.4.5. These maps can be grasped in terms of a unitary dilation
of the form (3.240) coupling the two system Bosonic modes with two addi-
tional (environmental) modes, where J is a 2× 2 real Jordan block. In order
to characterize this large class of two-mode BGCs, one has to examine only
three possible forms of J :

• Class A: this corresponds to taking a diagonalizable Jordan block, that
is,

J := J0 =

[
a 0
0 b

]
. (3.268)

where a and b are real nonzero numbers. It represents the trivial case
of a two-mode Bosonic Gaussian channel, whose interaction term does
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not couple the two modes. Actually, we call it of class A1 if a 6= b and
of class A2 otherwise.

• Class B: this is to take J as a non-diagonalizable matrix with a nonzero
real eigenvalue a with double algebraic multiplicity (but with geometric
multiplicity equal to one), i.e.

J := J1 =

[
a 1
0 a

]
. (3.269)

In this case the Jordan block is called defective [119]. Here, a noisy
interaction between the Bosonic system and the environment, coupling
the two system modes, is switched on.

• Class C: the real Jordan block J has complex eigenvalues, i.e.

J := J2 =

[
a b
−b a

]
, (3.270)

with b 6= 0; the eigenvalues of J are a±ib. Again, the two system modes
are coupled by the noisy interaction with the environment through the
presence of the element b.

In order to explicit the form of Y = s2γEsT
2 , with s2 being defined as

in Eq. (3.240), we consider a generic two-mode covariance matrix in the so-
called standard form [120] for the environmental initial state γE, i.e.

γE =

[
Γ1 0
0 Γ2

]
, (3.271)

where

Γ1,2 :=

[
x z−,+

z−,+ y

]
, (3.272)

and x, y, z+,− are real number satisfying x + y > 0, xy − z2
− > 1 and

x2y2 − y2 − x2 + (z−z+ − 1)2 − xy(z2
− + z2

+) > 0 because of the uncertainty
principle. More generally, one can apply a generic two-mode (symplectic)
squeezing operator V (ε) to the environmental input state, i.e.,

γ′E = V (ε)γEV (ε)T , (3.273)



3.5 Two-mode Bosonic Gaussian channels 149

where

V (ε) =

[
R−T 0

0 R

]
, R =

[
c + hs −qs
−qs c− hs

]
, (3.274)

and c = cosh(2r), s = sinh(2r), h = cos(2φ), q = sin(2φ) and ε = re2iφ being
the squeezing parameter [120]. Finally, it is interesting to study how the
canonical forms of two-mode BGCs compose under the product. A simple
calculation shows that the following rules apply

◦ A B C
A A A1/B A1/B/C
B A1/B A2/B A1/B/C
C A1/B/C A1/B/C A/C

.

In this table, for instance, the element on row 1 and column 1 represents
the class (i.e., A) associated to the composition of two channels of the same
class A. Note that the canonical form of the products with a “coupled”
channel (i.e., with B or C) is often not uniquely defined. For instance,
composing two class B channels, with

(J1)i =

[
ai 1
0 ai

]
, (3.275)

for i = 1, 2, will give us either a class A2 channel (if a1 + a2 = 0) or a class
B channel (if a1 + a2 6= 0). Composition rules analogous to those reported
above have been analyzed in detail for the one-mode case in Sec. 3.3.3. In
the following we will study the weak-degradability properties of these three
classes of two-mode Gaussian channels.

3.5.1 Weak-degradability properties

The weak-degradability conditions in Eqs. (3.252) become

Γ1 − (112 − J−T )Γ1(112 − J−1) > 0 (3.276)

and

JΓ2J
T − (112 − J)Γ2(112 − JT ) (3.277)

−(J−1 − 2112)
[
Γ1 − (112 − J−T )Γ1(112 − J−1)

]−1
(J−T − 2112) > 0 .
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In the same way, the anti-degradability is obtained when both these quan-
tities are non-positive. As concerns the environmental initial state of the
unitary dilation, one can consider a generic two-mode state as in Eq. (3.273).
On one hand, we find that, if [J,R] = 0, this two-mode squeezing transfor-
mation V (ε) can be simply “absorbed” in local symplectic operations to the
output states and then it does not affect the weak-degradability properties.
On the other hand, if [J,R] 6= 0, we find numerically that the introduction of
correlations between the two environmental modes contrasts with the pres-
ence of (anti-) weak-degradability features. Therefore, one can consider the
particular case in which the environment is initially in a symmetric state γE

as in Eq. (3.271) with x = y = 2N + 1 and z− = z+ = 0 where N > 0. In
this case γE = (2N + 1)112 corresponds to a thermal state of two uncoupled
environmental modes with the same photon average number N and it is pos-
sible to see the results above easily through analytical details. In fact, we
study analytically the positivity condition in Eq. (3.246) in the three possible
forms of the real Jordan block Ji [54].

In the uncoupled case J0 as in Eq. (3.268), substituting in Eq. (3.246),
we find that these two-mode Bosonic Gaussian channels are WD if a, b > 1/2
and AD for a, b ≤ 1/2 (any N > 0). In other words, in the case of two
uncoupled modes, the weak-degradability properties can be derived from the
results for one-mode Bosonic Gaussian channels: tensoring two WD (AD)
one-mode Gaussian channels with WD (AD) one-mode Gaussian channels
yield two-mode Gaussian channels which are WD (AD).

In the case of defective J , i.e., J1 as in Eq. (3.269), corresponding to noisy
interaction coupling the two system modes, substituting in Eq. (3.246), we
find that, on one hand, these two-mode Bosonic Gaussian channels are WD
if a > 1 and

N > N1 :=
1

2

[
−1 +

1

2

|2a− 1|√
a(a− 1)

]
. (3.278)

On the other hand, it is AD if a < 0 and N > N1 (see Fig. 3.17). Note
that the defective Jordan blocks are not usually stable with respect to per-
turbations [57]. Indeed, we find numerically that, applying proper two-
mode squeezing transformations to the environmental input, these weak-
degradability conditions reduce to the decoupled case ones. In Fig. 3.16 we
consider, for simplicity, a symmetric environmental initial state γ′E as in Eq.
(3.273) with x = y, z− = 0 and ε = r, and we plot the relation between x, z+
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and the minimum value of r such that J := J1 reduces to J := J0 correspond-
ing to the decoupled case. One realizes that a squeezing parameter r close to
1 is enough to make the interaction not coupling the two system modes, car-
rying quantum information. Moreover, let us point out that this squeezing
threshold (r) increases slightly with the presence of correlations (z+) while
decreases when increasing the level of noise (x) in the initial environmental
state γ′E.

Figure 3.16: Relation between the parameters x, z+ and the minimum value
of r in the initial environmental state such that the two-mode channel with
X = 112 ⊕ J1 reduces to the decoupled case X ′ = 112 ⊕ J0 with the same
interaction parameter a for the two system modes.

Finally, in the case of real Jordan block with complex eigenvalues, i.e.,
J2 as in Eq. (3.270), the corresponding two-mode Bosonic Gaussian channels
are WD if a > 1/2 and

N > N2 :=
1

2

[
−1 +

√
1 +

4b2

(1− 2a)2

]
. (3.279)

while they are AD if a < 1/2 and N > N2 (see Fig. 3.17). In both of these
cases (real and complex eigenvalues), in which the interaction term cou-
ples the two Bosonic modes, there is the (apparently) counter-intuitive fact
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Figure 3.17: In continuous line we report N1 as function of a in the case of
J1. For N > N1 the map is WD if a > 1 and AD if a < 0. In dashed line
we plot N2 as function of b when a = 0 in the case of J2. For N ≥ N2 the
channel is (AD) WD if a > 1/2 (a < 1/2).

that above a certain environmental noise threshold the weak-degradability
features appear, while for one-mode Bosonic Gaussian channels they do not
depend on the initial state of the environment. Actually, one would expect at
most that, when the level of the environmental noise increases, the coherence
progressively decreases until to be destroyed. It would mean that it becomes
more and more difficult to recover the environment (system) output from the
system (environment) output after the noisy evolution. However, the things
go the other way around when multi-mode Bosonic Gaussian channels are
considered.

3.5.2 Channels with null quantum capacity

Analogously to Sec. 3.3.5 [53], where the one-mode case is investigated,
one can enlarge (other than the AD maps) the class of two-mode BGCs
with Q = 0, composing a generic channel with an AD one [54]. First of all,
consider a channel E as in Sec. 3.4.3, but being AD (not necessarily minimal
noise), then the maps E ′, defined in Eq. (3.221), have zero quantum capacity,
i.e., they cannot be used to transfer quantum information. For instance, one
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can choose γE = (2Nc +1)11n, i.e., the environmental initial state of the map
E is a multi-mode thermal state with Nc being the average photon number
for each mode, such that E is AD or simply with zero capacity. Therefore,
for any γ′E > γE = (2Nc + 1)11n, as in Eq. (3.223), the map E ′ of Eq. (3.221)
has Q = 0. Particularly for n = 2, using these observations and choosing
Nc equal to either N1 (and a < 0) or N2 (and a < 1/2) as in Eqs. (3.278)
and (3.279), one obtains that for X = 112 ⊕ J1,2 and Y ′ = s2γ

′
EsT

2 [with
s2 as in Eq. (3.240)] the resulting channel E ′ has always zero capacity. In
this way, one extends considerably the set of two-modes maps with zero
capacity, other than the very particular cases of two-mode environmental
thermal states studied above and shown in Fig. 3.17. For instance, two-
mode squeezing can be applied to the thermal state γE including not only
states with N > Nc but also with not trivial two-mode correlations such that
γ′E > (2Nc +1)112. Therefore, just considering this last simple inequality one
includes so a larger set of maps that have zero quantum capacity.

Moreover, we observe that, according to composition rules above, the
combination E = EII ◦ EI of two channels EI and EII of class A2 and C,
respectively, with Jordan blocks JI as in Eq. (3.268) with aI = bI and JII as
in Eq. (3.270) with aII and bII 6= 0, gives J = aIJII which is in the class C.
Now, since we have N1 > 0, N2 > 0 and assuming aI 6 1/2, the channel EI

is AD and the resulting channel E must have Q = 0. Varying the parameters
but keeping the product aIaII = a and aIbII = b fixed, the parameter N can
assume any value satisfying the inequality

N > 1

4

[(
5(1− 4a + 8a2 + 8b2)

b2 + (a− 1)2

)1/2

− 2

]
. (3.280)

Notice that aI has been chosen equal to 1/2 and EI corresponds to two un-
coupled beam-splitter maps with transmissivity 1/2 (AD). We can therefore
conclude that all channels of the form C with N as in Eq. (3.280) have zero
quantum capacity – see Fig. 3.18.

Consider now the composition E = EII ◦ EI of two channels EI and EII

of class C and A2 (i.e., in the opposite order wrt above), respectively, with
Jordan blocks JI as in Eq. (3.270) with aI and bI 6= 0 and JII as in Eq.
(3.268) with aII = bII , giving J = aIIJI which is in the class C. As before,
since we have N1 > 0, N2 > 0 and assuming again aII 6 1/2, the channel
E2 is AD and the resulting channel has Q = 0. Varying the parameters but
keeping the product aIaII = a and bIaII = b fixed, the parameter N can
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Figure 3.18: In continuous line we plot N2 as in Eq. (3.279) versus b, with
a = 1 in J2 of Eq. (3.270). For N ≥ N2 the channel is WD (AD) if a > 1/2
(a < 1/2). The dashed line refers to the bound in Eq. (3.280), while the
dashed-dot line to the one in Eq. (3.281); above these bounds the class C
map is WD but with Q = 0. Note that Eq. (3.281) is an improvement with
respect to the constraint of Eq. (3.280). Similar bounds can be obtained in
the case a < 1/2, enlarging the group of AD maps with other channels with
Q = 0.

assume any value satisfying the inequality

N > 1

4

[(
(1 + 4a2 + 4b2)(1− 4a + 8a2 + 8b2)

4(b2 + (a− 1)2)(a2 + b2)

)1/2

− 2

]
, (3.281)

where again aII is chosen equal to 1/2. Again we can conclude that all class
C channels with N as in Eq. (3.281) have zero quantum capacity. However,
notice that the constraint in Eq. (3.281) is an improvement with respect to
the constraint of Eq. (3.280) – see Fig. 3.18.



Chapter 4

Qubit channels

Many models and applications of quantum computing and communication
are based on the processing and the transmission of individual qubits. The
study of qubit quantum channels, i.e. channels in which the information
carriers are single two-level systems (e.g., the polarization state of a single
photon), thus plays a key role in quantum information theory.

At a mathematical level, the qubit channels are completely positive trace-
preserving transformations which act on the state of a single two-level quan-
tum system (qubit). Because of the small size of the Hilbert space, a sim-
ple (canonical) parametrization of these channels has been obtained in Ref.
[36, 37] and some additivity issues [38, 39, 40] and several classical and quan-
tum capacities [41, 38, 42, 39, 43, 44] have been successfully solved (see also
the review in Ref. [3]). Here, we investigate the properties of qubit channels
along the same lines followed for Bosonic Gaussian channels (described in
Chapter 3) by introducing for the former a characteristic function represen-
tation [44]. To this aim we adapt the formalism introduced by Cahill and
Glauber in Ref. [121] to represent the density operators of Fermions in the
case of two-level systems. In this context, the channels are represented in
terms of Green functions. Interestingly enough, this allows us to define a set
of Gaussian channels for qubit that share analogous properties with their
continuous variable counterpart [44].

The chapter is organized as follows. In Sec. 4.1 we introduce displacement
operator and characteristic function for a qubit. We need to recall the notion
of Grassmann variables and to use them to generalize the definition of coher-
ent states for finite dimensional systems. We then present a Green function
representation for qubit channels (Sec. 4.2) and some examples and canonical
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forms are described in Sec. 4.3. The set of qubit Gaussian channels is so de-
fined in Sec. 4.4 and their degradability properties are discussed [44]. In Sec.
4.5 we will apply these results on some examples of qubit quantum channels,
whose weak-degradability features are considered. Finally, from a different
point of view, in Sec. 4.6 we briefly examine an example of memory (i.e.,
correlated noise) qubit quantum channels [65]. We find that the optimal (i.e.,
with maximum output purity) input states of the channel (roughly speaking,
more robust against the decoherence) depend on the correlation parameter
and show a sort of ‘phase transition’ behavior. Particularly, we optimize
analytically and numerically all purities (measured using the p-norm, for
any p) of the output states and show that, above a certain threshold of the
correlation parameter, the optimal value is achieved by the maximally en-
tangled input state, while below by partially entangled input states whose
entanglement increases monotonically with the “memory” factor.

4.1 Representation of a qubit

Various proposals for defining a (discrete) phase space for finite dimensional
systems have been discussed so far by introducing generalized position and
momentum operators (see, for instance, Ref. [127] and references therein).
Here we will not follow this line: instead we invoke the analogies between
a qubit and a single Fermionic mode to adapt the results of Ref. [121]. A
similar approach was developed in Ref. [128] to solve non-Markovian master
equations of a two-level atom interacting with an external field.

The characteristic function formalism, presented in the previous chapters
for Bosonic systems, can be generalized to describe Fermionic systems too
[121] and, here, adapted to qubit. The main difference in this case is related
to the fact that now the complex variables µ and µ∗, appearing as argument
of the characteristic functions, are replaced by a couple of conjugate Grass-
mann variables ξ and ξ∗ [122, 123, 124, 125] whose properties are reviewed
in Appendix B. This is intrinsically related to the fact that the annihilation
and creation operators of a Fermion obey anti-commutation rules instead of
commutation rules [126] valid for Bosonic systems. We will not review the
analysis of Ref. [121] since in the next section, when discussing the qubit
case, we will rederive most of the results obtained in the Fermionic case.

The starting point of our analysis [44] is to observe that the lowering
and raising operators of the qubit [i.e. σ+ ≡ |1〉〈0| and σ− ≡ (σ+)†] satisfy
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anti-commutation rules similar1 to that of a Fermionic mode, i.e.

{σ−, σ+} = |0〉〈0|+ |1〉〈1| ≡ 11 ,

{σ−, σ−} = {σ+, σ+} = 0 . (4.1)

Identifying the qubit state |0〉 with the Fermionic vacuum we can therefore
treat σ+ and σ− as Fermionic creation and annihilation operators, respec-
tively. Following [121] we introduce then a couple of conjugate Grassmann
variables ξ and ξ∗ (see Appendix B) and impose standard anti-correlation
with the annihilation and creator operators of the system, i.e.

{ξ, σ±} = {ξ∗, σ±} = 0 . (4.2)

It is worth noting that this implies that the projectors |0〉〈0| = σ−σ+ and
|1〉〈1| = σ+σ− as well as the Pauli matrix σz ≡ |0〉〈0| − |1〉〈1| commute with
ξ and ξ∗. Note that this parallelism with Fermions is valid only for one qubit
and cannot be easily generalized to many qubits. In the following we will
also require that

ξ |j〉 = (−1)j|j〉 ξ ,

ξ∗ |j〉 = (−1)j|j〉 ξ∗ , (4.3)

for j = 0, 1. This is not strictly necessary but it is consistent with Eq. (4.2)
and enables us to simplify the calculations. For instance, given any collection
of qubit operators Θ1, Θ2, · · · , Θn+1 and the Grassmann numbers ξ1, ξ2, · · · ,
ξn we can use Eq. (4.3) to verify that the following relation applies

Tr[Θ1ξ1Θ2ξ2 · · ·ΘnξnΘn+1] = ξ1ξ2 · · · ξn Tr[Θ1σzΘ2σz · · ·ΘnσzΘn+1] (4.4)

(an analogous expression holds also when replacing all, or part of, the ξis
with their complex conjugates).

The above definitions give us the possibility of operating with “hybrid”
mathematical objects obtained by multiplying Grassmann variables and qubit
operators. In this context we find it useful to define a generalized adjoint
operation for these hybrid operators by arbitrarily imposing the conditions

(Θ1ξ1Θ2ξ2 · · ·ΘnξnΘn+1)
† = Θ†

n+1 ξ∗nΘ†
n · · · ξ∗2 Θ†

2 ξ∗1 Θ†
1 , (4.5)

with ξi and Θi as in Eq. (4.4).

1This point is explained better in Sec. 4.1.2.
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Equation (4.4) shows that the cyclicity of the trace needs to be modified
when involving Grassmann terms. If we need to move only qubit operators,
then the standard rule applies, i.e.

Tr[Θ1ξ1 · · ·ΘnξnΘn+1] = Tr[Θn+1Θ1ξ1 · · ·Θnξn] = Tr[ξ1 · · ·ΘnξnΘn+1Θ1] .

(4.6)

On the contrary, if we move also Grassmann variables, by exploiting the
anti-commutation rules of the ξis, we get

Tr[Θ1ξ1Θ2ξ2 · · ·ΘnξnΘn+1] = (−1)n−1Tr[ξnΘn+1Θ1ξ1 · · ·Θn]

= (−1)n−1Tr[Θ2ξ2 · · ·ΘnξnΘn+1Θ1ξ1] .

Finally in conjunction with Eq. (4.5), Eq. (4.4) gives
(
Tr[Θ1ξ1Θ2ξ2 · · ·ΘnξnΘn+1]

)∗
= Tr[Θ†

n+1 ξ∗nΘ†
n · · · ξ∗2 Θ†

2 ξ∗1 Θ†
1] .

4.1.1 Qubit characteristic function

Qubit displacement operators can now be defined in analogy with [121] as

D(ξ) ≡ exp (σ+ξ − ξ∗σ−) = 11 + σ+ξ − ξ∗σ− − σzξ
∗ξ/2 ,

where in the second equality we used Eq. (B.34) in Appendix B. As in
the Bosonic case, they satisfy the identity D†(ξ) = D(−ξ). Moreover, the
application of D(ξ) to the vacuum originates eigenvectors of the annihilation
operator of the system (i.e. σ−). These are the coherent states of our qubit,
i.e.

|ξ〉 = D(ξ)|0〉 =

(
1− ξ∗ξ

2

)
|0〉 − ξ|1〉 , (4.7)

whose norm is unity. These vectors are eigenvectors of σ− in Grassmann
sense (i.e., their eigenvalues are Grassmann variables; see Ref. [121] for more
details). What is interesting for us is the fact that D(ξ) can be used to define
a characteristic function for the operators of the system as in Eq. (3.23), i.e.

χ(ξ) ≡ Tr[ΘD(ξ)] . (4.8)

In particular, consider an operator Θ which is characterized by the matrix

Θ ≡
(

θ00 θ01

θ10 θ11

)
, (4.9)
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when expressed in the computational basis {|0〉, |1〉}. In this case, using the
anti-commutation rules of Eq. (4.2) and the identity (4.4), we get

χ(ξ) = Tr[Θ] + (θ00 − θ11)
ξξ∗

2
+ θ01ξ − θ10ξ

∗. (4.10)

It is worth noticing that with respect to the analysis of Ref. [121] the
characteristic functions analyzed here contain an extra term which is linear
in ξ and ξ∗. In the Fermionic case analyzed by Cahill and Glauber the only
allowed physical states are classical mixtures of |0〉〈0| and |1〉〈1|. Conse-
quently the off-diagonal terms associated with θ01 and θ10 do not need to
be considered. When analyzing qubit systems, instead, quantum superposi-
tions among |0〉 and |1〉 are allowed and we need to include also the linear
contributions. See Sec. 4.1.2 for more details about this subtle discussion.

As in the Bosonic case, Eq. (4.8) can be inverted. In this case, however,
Eq. (3.22) is replaced by

Θ =

∫
d2ξ χ(ξ) Ẽ(−ξ) , (4.11)

with Ẽ(ξ) 6= D(ξ) defined by

Ẽ(ξ) ≡ σz − ξ∗ξ/2 + σ+ξ − ξ∗σ− . (4.12)

The easiest way to verify this is by direct substitution of Eqs. (4.10) and
(4.12) into Eq. (4.11) and by employing the integration rules (B.16).

Let us recall that a density operators can be described by a 2× 2 matrix
as follows

ρ ≡
(

p γ
γ∗ 1− p

)
(4.13)

with p being a real number in the range [0, 1] and γ complex (see Sec. 1.1). To
represent a density operator the characteristic function, i.e. χ(ξ) ≡ exp[γξ−
γ∗ξ∗+(2p− 1)ξξ∗/2], needs to satisfy certain physical requirements. First of
all, the Hermitianity of ρ and the normalization condition Tr[ρ] = 1 imply,
respectively,

χ(µ) = [χ(−µ)]∗ , (4.14)

χ(0) = 1 , (4.15)
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where complex conjugation is defined as in Eq. (B.8) in Appendix B [to verify
this simply use Eq. (4.10) with Θ = ρ]. The positivity of ρ imposes, instead,
the following inequality to hold

∣∣∣∣
∫

d2ξ χ(ξ)ξ

∣∣∣∣
2

+

[∫
d2ξ χ(ξ)

]2

6 1

4
. (4.16)

This follows from the positivity condition |γ|2 6 p(1− p) and by the identity

γ =

∫
d2ξ χ(ξ) ξ∗ ,

p =

∫
d2ξ χ(ξ) + 1/2 .

Using similar arguments one can verify that Eqs. (4.14)-(4.16) are also suffi-
cient conditions for χ(ξ) being a characteristic function of a density operator
ρ, in a analogous way as for Bosonic systems in Sec. 3.1.

4.1.2 Qubit as Fermion?

The qubit characteristic function in Eq. (4.10) contains an extra term linear
in ξ and ξ∗, which does not appear in the analysis of Ref. [121] for Fermions2.
Basically, when considering the Fermionic case, the only allowed physical
states are classical mixtures of |0〉〈0| and |1〉〈1|. Indeed, remind that any
physical state |ψ〉 satisfies a global symmetry, called U(1), i.e. it is invariant
under transformations represented by the group of complex numbers with
norm 1 under multiplication (circle group). In particular, a physical state
needs to be invariant, apart from a global phase, when subjected to a rotation
U of angle 2π about any axis n̂, i.e.

U(n̂, 2π)|ψ〉 = eiθ |ψ〉. (4.17)

Moreover, it is well known that Fermions carry half-odd-integer spin. This
implies that, under such 2π rotations, a state of one Fermion or of any odd
number of Fermions changes by the phase factor −1, while states with no
Fermions or only even number of Fermions are, instead, invariant. Therefore,
the physical states are represented only by linear combinations of states with

2A brief excursus on some Fermionic channels is shown in Appendix C.
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either odd or even number of Fermions; otherwise, they do not exist in nature.
For instance, the state

1√
2

(|0〉+ |1〉) (4.18)

is nonphysical because under a 2π rotation it changes into a different state,
i.e.

U(n̂, 2π)
1√
2

(|0〉+ |1〉) =
1√
2

(|0〉 − |1〉) 6= eiθ 1√
2

(|0〉+ |1〉) . (4.19)

In terms of density operator, this corresponds to the fact that the off-diagonal
terms of the matrix ρ in Eq. (4.13) are not present (i.e., γ = 0) when
considering physical Fermionic states.

This restriction does not hold, of course, when one considers qubits. In
this case, quantum superpositions among |0〉 and |1〉 are naturally allowed
and experimentally implemented and, therefore, the linear contributions (i.e.,
γ 6= 0) of the Grassmann characteristic function in Eq. (4.10) have to be
included in the description of a generic qubit state.

4.2 Green function of a qubit channel

Let us now consider the effect of a qubit quantum channel E acting on a
operator Θ of the system. We will derive a Green function representation of
the qubit channels following the same lines as in Sec. 3.2 for Bosonic channels
[44]. To do so we first evaluate the characteristic function χ′(ξ) associated
with AΘB with A and B being arbitrary qubit operators. This is

χ′(ξ) = Tr[AΘBD(ξ)] =

∫
d2ζ Tr[A

(
χ(ζ)Ẽ(−ζ)

)
BD(ξ)] , (4.20)

where we used Eq. (4.11) with χ(ξ) being the characteristic function of Θ
(from now on ζ and ξ should be considered entries of the same Grassmann
set). Our goal is to find a function G(ζ, ξ) which gives

χ′(ξ) =

∫
d2ζ χ(ζ) G(ζ, ξ) , (4.21)

for all χ(ξ). Notice that if ξ were a commuting variable (e.g., a complex
variable) the problem could be solved by simply moving χ(ξ) out of the trace
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operation of Eq. (4.20) yielding G(ζ, ξ) = Tr[AẼ(−ζ)BD(ξ)]. In the case
under consideration, however, the situation is complicated by the fact that
for moving out of trace the variables ξ or ξ∗ we need to insert σzs as in
Eq. (4.4). Taking into account this fact, the solution becomes

G(ζ, ξ) = Tr[AσzD(−ζ)BD(ξ)] , (4.22)

as can be easily verified by direct integration of the Eqs. (4.20) and (4.21)
for the most general characteristic function (4.10).

The Green function (4.21) associated with a CPT map E can then be
obtained [44] by using an operator sum representation [1, 14, 3] of such
channel and exploiting the linearity of the trace. Indeed, writing E(Θ) =∑

k MkΘM †
k with {Mk}k being Kraus operators of E , we get

G(ζ, ξ) =
∑

k

Tr[MkσzD(−ζ)M †
kD(ξ)] = Tr

[
E
(
σzD(−ζ)

)
D(ξ)

]
. (4.23)

Using Eq. (4.6) this can also be written as

G(ζ, ξ) = Tr
[
σzD(−ζ)EH

(
D(ξ)

)]
, (4.24)

with EH being the Heisenberg representation of the map E , defined in Sec.
2.2.5. Equation (4.24) shows that, as in the Bosonic case, a complete de-
scription of the channel is obtained by applying the dual map to the dis-
placement operator — see Eq. (3.52). Exploiting the normalization condition∑

k M †
kMk = 11 we note that for ξ = 0 the above expression yields

G(ζ, 0) = Tr[σzD(−ζ)] = ζζ∗ , (4.25)

which corresponds to the Grassmann delta function δ(2)(ζ) defined in Eq.
(B.19), in agreement with the requirement of channel being trace preserving
— see Eqs. (4.10) and (4.21).

4.2.1 Composition rules

Let E1 and E2 be two different qubit channels with Green functions G1(ζ, ξ)
and G2(ζ, ξ), respectively, such that

χ′(ξ) =

∫
d2ζ χ(ζ) G1(ζ, ξ) , (4.26)

χ′(ς) =

∫
d2ξ′ χ(ξ′) G2(γ, ς) . (4.27)
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Now we want to analyze the Green function, G12(ζ, ξ), of the composite map
E2 ◦ E1, in which we first operate with E1 and then with E2, i.e.

χ′(ξ) =

∫
d2ζ χ(ζ) G1(ζ, ξ) , (4.28)

χ′′(ς) =

∫
d2ξ′ χ′(ξ′) G2(ξ

′, ς) . (4.29)

Our goal is to find a function G12(ζ, ξ) which gives

χ′′(ς) =

∫
d2ζ χ(ζ) G12(ζ, ς) . (4.30)

Simply composing the two transformations of the characteristic function of
the two maps, one has

χ′′(ς) =

∫
d2γ

∫
d2ζ χ(ζ) G1(ζ, γ) G2(γ, ς)

=

∫
d2ζ χ(ζ)

∫
d2γ G1(ζ, γ) G2(γ, ς) ,

(4.31)

and then the Green function G12(ζ, ξ) can be expressed in terms of the fol-
lowing Grassmann convolution integral

G12(ζ, ξ) =

∫
d2ξ′ G1(ζ, ξ′) G2(ξ

′, ξ), (4.32)

with ζ, ξ and ξ′ Grassmann numbers.

4.3 Canonical representation

As a particular case of Green function consider the identity map I which
leaves all operators invariant, i.e. I(Θ) = Θ. According to our definition we
get

G(ζ, ξ) = Tr[σzD(−ζ)D(ξ)] = (ζ − ξ)(ζ∗ − ξ∗) , (4.33)

which, as expected, corresponds to the delta δ(2)(ζ − ξ) of Eq. (B.19).
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The most generic qubit quantum channel E : C2×2 → C2×2 can be repre-

sented [36] in the Bloch picture by a unique 4×4 matrix T, i.e. T =

(
1 0
~t T

)

where T is a 3×3 matrix (0 and ~t are row and column vectors, respectively),
so that

E(ρ) = E
(

11 + ~r·~σ
2

)
=

11 + (~t + T~r) · ~σ
2

, (4.34)

where ~σ = {σx, σy, σz} is a vector containing the Pauli matrices and ~r is the
Bloch vector describing the input state (see Sec. 1.1). The map E is unital
if and only if ~t = 0. Thus, any unital quantum map E acting on density
matrices on C2×2 can be written in the form

E(ρ) = E
(

11 + ~r·~σ
2

)
=

11 + (T~r) · ~σ
2

, (4.35)

where T is a real 3 × 3 matrix. Using the singular value decomposition, we
can write [36]

T = RS , (4.36)

where R is a rotation and S is self-adjoint, and define the map ES by

ES(ρ) = E
(

11 + ~r·~σ
2

)
=

11 + (S~r) · ~σ
2

. (4.37)

The rotation R defines a unitary operator U such that for any state ρ

E(ρ) = U
[
ES

(
ρ
)]

U † . (4.38)

Since a unitary transformation leaves the spectrum unchanged, this last is
the same for E and ES. Moreover, since S is self-adjoint it can be diagonalized
by a change of basis and has eigenvalues (λ1, λ2, λ3). The image of the set of
pure state density matrices ρ = 1

2
[11 + ~r · ~σ] (with |~r| = 1) under the action

of ES is the ellipsoid

(
x1

λ1

)2

+

(
x2

λ2

)2

+

(
x3

λ3

)2

= 1, (4.39)

and the image under the action of E is obtained by a further rotation of the
ellipsoid, corresponding to the operator U in (4.38) [36].
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Similar reasoning applies when E is non-unital. The map E can be written
in the form E(ρ) = UED(V ρV †)U † where U, V are unitary, D is diagonal and
ED is represented by the matrix

T =




1 0 0 0
t′1 λ1 0 0
t′2 0 λ1 0
t′3 0 0 λ3


 (4.40)

where ~t′ = (t′1, t′2, t′3) is a rotated vector of ~t. In this case, the image of the
set of pure state density matrices ρ = 1

2
[11 + ~r · ~σ] (with |~r| = 1) under the

action of ED is the translated ellipsoid

(
x1 − t′1

λ1

)2

+

(
x2 − t′2

λ2

)2

+

(
x3 − t′3

λ3

)2

= 1, (4.41)

and again the image under E is a rotation of this (see Ref. [36] for more
details).

Complete Positivity Conditions

The requirement for E to be a (CPT) quantum channel imposes a number
of constraints on the matrix T. In Ref. [36] the authors give explicit formu-
las for the matrix elements of T, that imply constraints on the eigenvalues
(λ1, λ2, λ3) described in the previous section. Let Tjk denote the elements
of T, where j, k = 0, 1, 2, 3 and T00 = 1. Then, the points with coordi-
nates (T11, T22, T33) must lie inside a tetrahedron with corners at (1, 1, 1),
(1,−1,−1), (−1, 1,−1), (−1,−1, 1) (see Ref. [36]). These conditions are
equivalent to four linear inequalities which can be written compactly as

|T11 ± T22| ≤ |1± T33|. (4.42)

In the special case where E is unital, (4.42) implies that the eigenvalues
(which are necessarily real) satisfy

|λ1 ± λ2| ≤ |1± λ3|. (4.43)

In fact, for unital E the condition (4.43) is a necessary and sufficient condition
for the numbers (λ1, λ2, λ3) to arise as eigenvalues of the self-adjoint part of
T [129].
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Green function

Therefore, the canonical (diagonal) form of the qubit quantum operations
is represented by T = diag(λ1, λ2, λ3), with the real coefficients λ1,2,3 and
t1,2,3 that need to satisfy certain conditions [36, 37] to guarantee the complete
positivity of the map. The action of a generic linear map, represented by

T =




1 0 0 0
t1 λ1 0 0
t2 0 λ1 0
t3 0 0 λ3


 , (4.44)

on a single qubit density matrix ρ in Eq. (4.13), has then the form

E(ρ) = E
(

p γ
γ∗ 1− p

)
(4.45)

=
1
2

(
1 + t3 + λ3(2p− 1) t1 − it2 + λ1(γ + γ∗) + λ2(γ − γ∗)

t1 + it2 + λ1(γ + γ∗)− λ2(γ − γ∗) 1− t3 − λ3(2p− 1)

)
.

In the Green function language such canonical form corresponds to have

G(ζ, ξ) = δ(2)

(
ζ − λ2 + λ1

2
ξ − λ2 − λ1

2
ξ∗

)
exp

[
−t3

2
ξ∗ξ

]

+ (λ3 − λ1λ2)ξξ
∗ +

t1 − it2
2

ζζ∗ξ − t1 + it2
2

ζζ∗ξ∗ .

Hence, the output characteristic function is

χ′(ξ) = 1− 1

2
[t3 + λ3(|α|2 − |β|2)]ξ∗ξ +

1

2
[t1 − it2 + λ1(γ + γ∗)

+ λ2(γ − γ∗)]ξ − 1

2
[t1 + it2 + λ1(γ + γ∗)− λ2(γ − γ∗)]ξ∗ .

4.4 Gaussian channels for qubits

In analogy with the Bosonic case, in this section we introduce the definition
of qubit Gaussian channels [44]. We start noticing that in order to define
these channels it does not make sense to focus on maps which transform
Gaussian characteristic functions into Gaussian characteristic functions. In-
deed, thanks to Eq. (B.34) in Appendix B, all characteristic functions of a
qubit can be written in a Gaussian form. The characteristic function of the
state (4.13) can be written as χ(ξ) ≡ exp[γξ − γ∗ξ∗ + (2p− 1)ξξ∗/2].
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Therefore, following Eq. (3.53) we say that a qubit map is Gaussian if its
Green function has the form

G(ζ, ξ) = δ(2)(ζ − aξ − bξ∗) exp[−cξ∗ξ] , (4.46)

with a and b complex and c real numbers, respectively, and with the expo-
nential defined as in Eq. (B.34). The fact that c must be real can be derived
by imposing the Hermitianity constraint in Eq. (4.14) to the output charac-
teristic function (4.21). A trivial example is provided by the identity map I
whose Green function (4.33) is of the form (4.46) for b = c = 0 and a = 1.

Generic mixtures of Gaussian channels do not necessarily have the form
(4.46). Therefore the set of Gaussian channels is not convex. However, it
has semi-group structure with respect to the channel composition rule ◦.
Indeed, given two Gaussian channels E1 and E2 characterized by parameters
(a1, b1, c1) and (a2, b2, c2), respectively, from Eq. (4.32) it is easy to verify
that the Green function of E2 ◦ E1 is again of the form (4.46) with

a = a1a2 + b1b
∗
2 ,

b = a1b2 + b1a
∗
2 ,

c = c1(|a2|2 − |b2|2) + c2 . (4.47)

Both the semi-group property and the non-convexity property hold also in
the Bosonic case.

4.4.1 Canonical form for Gaussian channels

From Eq. (4.46) it is easy to verify that within the parametrization [36, 37]
we can get Gaussian maps (4.46) by choosing

λ3 = λ1λ2 , (4.48)

t1 = t2 = 0 . (4.49)

This in fact yields Gaussian Green functions with a = (λ2 + λ1)/2, b =
(λ2 − λ1)/2 and c = t3/2. We can then use [37] to show that the correspond-
ing transformation is CPT if and only if the following inequalities hold,




|λk| 6 1 for k = 1, 2;

|t3| 6
√

(1− λ2
1)(1− λ2

2) .

(4.50)
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This enables us to parametrize the whole set of Gaussian channels in
terms of three real parameters only. First of all, as in Refs. [42, 37], we can
use a trigonometric parametrization to express λ1,2 in terms of the angles θ,
φ in [0, 2π[ as follows

λ1 = cos(θ − φ) , λ2 = cos(θ + φ) . (4.51)

Then we can parametrize t3 by introducing the positive quantity q ∈ [0, 1] to
write

t3 = (2q − 1)
cos(2θ)− cos(2φ)

2
. (4.52)

Replacing all this into Eq. (4.46) yields the following canonical form for the
Green function of a qubit Gaussian channel, i.e.

G(ζ, ξ) = δ(2) (ζ − ξ cos θ cos φ + ξ∗ sin θ sin φ)

× exp

[
(2q − 1)

cos(2θ)− cos(2φ)

4
ξξ∗

]
. (4.53)

We will see that the maps of this form have the peculiar property that they
can always be described in terms of a unitary interaction of the form (2.49)
with a single (not necessarily pure) qubit environment. For this reason we
call them “qubit-qubit” channels. Let us remark that so we have found
that all qubit Gaussian channels are necessarily qubit-qubit [44]. It is worth
stressing that once again a similar property holds for the Bosonic case: there
(almost) all the one-mode Bosonic Gaussian maps are in fact describable in
terms of a single mode environment (see Sec. 3.3.3) [52, 53].

4.4.2 Qubit-qubit maps: Pure environment case

An important subclass of qubit-qubit channels in Eq. (4.53) is obtained for
q = 1 and θ and φ generic, i.e.

G(ζ, ξ) = δ(2) (ζ − ξ cos θ cos φ + ξ∗ sin θ sin φ)

× exp

[
cos(2θ)− cos(2φ)

4
ξξ∗

]
. (4.54)

According to Eq. (4.50) this corresponds to having |t3| =
√

(1− λ2
1)(1− λ2

2).
As shown in Ref. [37] any CPT map which can be described in terms of an
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interaction with a single qubit environment originally prepared in a pure state
can be expressed in this form by proper unitary rotation of the input and the
output state. This implies that the maps (4.54) admit a Stinespring dilation
with a two-dimensional (qubit) environment E (see Sec. 2.2.2). Without loss
of generality, we can assume an initial state of the environment of the form
ρE ≡ |0〉E〈0|. Following Ref. [1], one can then choose the unitary coupling
U to have the following block structure

U =

(
[A0] [−σxA1σx]
[A1] [σxA0σx]

)
, (4.55)

with

A0 =

(
cos θ 0

0 cos φ

)
, A1 =

(
0 sin φ

sin θ 0

)
, (4.56)

being a Kraus set for the channel [the matrix (4.55) is expressed in the basis
{|00〉, |10〉, |01〉, |11〉} with |jk〉 ≡ |j〉 ⊗ |k〉E for j, k = 0, 1].

The output density matrix is

Equbit(ρ) = Equbit

(
p γ
γ∗ 1− p

)
(4.57)

=

(
p cos2 θ + (1− p) sin2 φ γ cos θ cos φ + γ∗ sin θ sin φ

γ∗ cos θ cos φ + γ sin θ sin φ p sin2 θ + (1− p) cos2 φ

)
,

whose characteristic function is given by

χ′(ξ) = 1− 1

2
[p cos(2θ)− (1− p) cos(2φ)]ξ∗ξ (4.58)

+ [γ cos θ cos φ + γ∗ sin θ sin φ]ξ − [γ∗ cos θ cos φ + γ sin θ sin φ]ξ∗

= χ (ξ cos θ cos φ− ξ∗ sin θ sin φ)

[
1 +

cos(2θ)− cos(2φ)

4
ξξ∗

]
.

In the Bloch representation the Bloch vector is transformed as (rx, ry, rz) →
(

cos(θ − φ) rx, cos(θ + φ) ry,
cos(2θ)− cos(2φ)

2
+

cos(2θ) + cos(2φ)

2
rz

)
.

In general, the output states live in a deformed and shifted Bloch sphere.
It reduces to a line if and only if cos(2θ) = − cos(2φ). Indeed, cos(2θ) =
− cos(2φ) is satisfied by i) θ = π/2−φ and by ii) θ = π/2+φ. In the former
case, one has

(rx, ry, rz) → (sin(2φ) rx, 0,− cos(2φ)) (4.59)
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and the output states are along a line in the plane y = 0. This line reduces to
the two poles of Bloch sphere for φ = 0, π/2. For φ = π/4 the map projects
the Bloch vector into the x̂-axis, i.e. (rx, ry, rz) → (rx, 0, 0). For the other
values, the output states belong to a segment (parallel to x̂-axis) in the plane
y = 0, contracted by a factor of sin(2φ). In the latter case ii), one has

(rx, ry, rz) → (0, sin(2φ) ry,− cos(2φ)) (4.60)

and similar results as in the case i) but in the plane x = 0. Moreover, for
θ = φ this represents a bit flip or dephasing channel [38] and for θ = 0 an
amplitude damping channel [41] (see Sec. 4.5).

The complementary channel Ẽ [38, 93, 92] can now be computed as in
Eq. (2.50). Since it represents a qubit channel — it connects two two-
dimensional Hilbert spaces (the input Hilbert space with the environmental
one) — we can use Eq. (4.23) to evaluate its Green function obtaining

G̃(ζ, ξ) = δ(2) (ζ − ξ cos θ sin φ + ξ∗ sin θ cos φ)

× exp

[
cos(2θ) + cos(2φ)

4
ξξ∗

]
. (4.61)

It is still of the (pure-environment qubit-qubit) Gaussian form (4.54) and can
be expressed in terms of the original Green function G(ζ, ξ) of E by simply
shifting φ by −π/2 and by changing sign to θ, i.e.

G̃(ζ, ξ) = G(ζ, ξ)
∣∣∣θ→−θ
φ→φ−π/2

. (4.62)

The output density matrix, Ẽ(ρ) = TrS[U(ρ⊗ |0〉〈0|)U †], is

Ẽ(ρ) = Ẽ
(

p γ
γ∗ (1− p)

)
(4.63)

=
1

2

(
p cos2 θ + (1− p) cos2 φ γ cos θ sin φ + γ∗ sin θ cos φ

γ∗ cos θ sin φ + γ sin θ cos φ p sin2 θ + (1− p) sin2 φ

)
,

whose characteristic function is given by

χ̃′(ξ) = χ (ξ cos θ sin φ− ξ∗ sin θ cos φ)

[
1 +

cos(2θ) + cos(2φ)

4
ξξ∗

]
. (4.64)

The corresponding Kraus operators are

Ã0 =

(
cos θ 0

0 sin φ

)
, Ã1 =

(
0 cos φ

sin θ 0

)
, (4.65)



4.4 Gaussian channels for qubits 171

and Ẽ(ρ) =
∑

k ÃkρÃ†
k.

In the general framework of the qubit channels in Eq. (4.44), these qubit-
qubit maps are obtained by using the following parameters:

t̃1 = t̃2 = 0 , t̃3 =
cos(2θ) + cos(2φ)

2
, (4.66)

λ̃1 = sin(φ− θ) , λ̃2 = sin(θ + φ) , λ̃3 =
cos(2θ)− cos(2φ)

2
. (4.67)

The effect of a complementary qubit-qubit quantum channel in the Bloch
representation is the Bloch vector transformation (rx, ry, rz) →
(

sin(φ− θ) rx, sin(θ + φ) ry,
cos(2θ) + cos(2φ)

2
+

cos(2θ)− cos(2φ)

2
rz

)
.

Degradability properties

In Ref. [42] it has been shown that qubit-qubit channels with pure environ-
ment are degradable for cos(2θ)/ cos(2φ) > 0, and anti-degradable otherwise.
Here we will rederive this same result in the Green function formalism as a
consequence of the Gaussianity of these maps, pointing out an interesting
parallelism with their Bosonic counterpart [44]. Moreover, this formalism
allows us to find explicitly the intermediate map and to extend these results
to environments initially in a mixed state.

In analogy with the previous chapters [52, 53, 54], we look for the interme-
diate map T that should connect E with Ẽ , in the class of qubit-qubit chan-
nels (with pure environment). Rewriting the degradability condition (2.52)
in terms of the compositions rules (4.32), we can then recast the problem as
follows

G̃(ζ, ξ) =

∫
d2ξ′ G(ζ, ξ′) Gx(ξ

′, ξ) , (4.68)

where Gx(ζ, ξ) is the Green function (4.54) of the map T characterized by the
parameters θx and φx. By using Eq. (4.47) we find that, for cos(2θ)/ cos(2φ) >
0, θx, φx do exist such that Eq. (4.68) is satisfied. Specifically such parameters
are defined by the relations

cos(2θx) =
cos(2θ)− cos(2φ) + 2 cos(2θ) cos(2φ)

cos(2θ) + cos(2φ)
, (4.69)

cos(2φx) =
cos(2θ)− cos(2φ)− 2 cos(2θ) cos(2φ)

cos(2θ) + cos(2φ)
.
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The case cos(2θ)/ cos(2φ) 6 0 can be treated analogously to show that the
corresponding channels are anti-degradable. In fact, in the Green function
formalism the anti-degradability condition (2.53) becomes

G(ζ, ξ) =

∫
d2ξ′ G̃(ζ, ξ′) Ḡx(ξ

′, ξ) , (4.70)

where Ḡx(ζ, ξ) is the Green function of the connecting map T . We find that
for cos(2θ)/ cos(2φ) 6 0, Eq. (4.70) is satisfied by choosing Ḡx(ζ, ξ) in the
subclass of qubit-qubit channels with pure environment – i.e. Eq. (4.54) –
with θx and φx determined by the expressions (4.69) after replacing (θ, φ)
with (−θ, φ− π/2).

More directly this result can be established by using the correspondence
in Eq. (4.62) and the fact that the complementary channels of degradable
maps are anti-degradable. Consider in fact a (pure environment) qubit-qubit
channel E with cos(2θ)/ cos(2φ) 6 0. According to Eq. (4.62) we know
that its complementary Ẽ is still a (pure environment) qubit-qubit channel
characterized by the parameters (θ′, φ′) = (−θ, φ − π/2). Now it is easy
to verify that cos(2θ′)/ cos(2φ′) = − cos(2θ)/ cos(2φ) > 0. Therefore from
Eqs. (4.68) and (4.69) we can conclude that Ẽ is degradable while E is anti-
degradable.

Note that, in the special case cos(2θ) = cos(2φ) = 0, the degradabil-
ity relations are satisfied. Therefore, in this case the qubit-qubit channels
with pure environment are both degradable and anti-degradable, with null
quantum capacity.

Quantum capacity

Let us restrict ourselves to show only that the quantum capacity of degrad-
able qubit-qubit channels with an environment initially in a pure state, cal-
culated in Refs. [41, 42], is explicitly given by

Q(T ) = max
p∈[0,1]

h
(
p cos2 θ + (1− p) sin2 φ

)− h
(
p sin2 θ + (1− p) sin2 φ

)
,

where h(x) = −x log2 x− (1− x) log2(1− x) is the binary entropy function.
In Figs. 4.1 and 4.2 the quantum capacity has been plotted in a two and
three dimensional graphical representation, respectively.
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Figure 4.1: Quantum capacity Q in the region cos(2θ)/ cos(2φ) > 0 as func-
tion of cos(2θ) and cos(2φ).

Figure 4.2: Quantum capacity Q in the region cos(2θ)/ cos(2φ) > 0 as
function of cos(2φ) for cos(2θ) = 0, 1/4, 1/2, 3/4, 1, respectively from be-
low. For cos(2θ) = 0 the channel is anti-degradable and Q is zero. For
cos(2θ) = cos(2φ) = 1 the channel is degradable and, even, Q = 1.

4.4.3 Qubit-qubit maps: Mixed environment case

Now let us consider the Gaussian channels (4.53) for q 6= 1 [44]. They
can be represented in terms of a physical representation (2.49) with U as in
Eq. (4.55) and with E being a single qubit environment initially prepared in
the mixed state,

ρE ≡ q|0〉E〈0|+ (1− q)|1〉E〈1| . (4.71)
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To verify this, we observe that with the above prescriptions Eq. (2.49) gives

E(ρ) = TrE[U (ρ⊗ (q|0〉E〈0|+ (1− q)|1〉E〈1|)) U †]

= qE0(ρ) + (1− q)E1(ρ) , (4.72)

with E0 ≡ TrE[U(ρ ⊗ |0〉E〈0|)U †] being the (pure environment) qubit-qubit
channel of Sec. 4.4.2 associated with the operator U and with E1(ρ) ≡
σxE0(σxρσx)σx. From the properties of σx it follows that a Kraus set for
E1 is given by the matrices (4.56) by exchanging θ and φ. Consequently
the Green function of this channel is given by G(ζ, ξ)|θ↔φ with G(ζ, ξ) as
in Eq. (4.54). Using this fact and the linear dependence of Eq. (4.23) with
respect to E we can now evaluate the Green function of the map (4.72) as
follows

G(ζ, ξ) = q δ(2) (ζ − ξ cos θ cos φ + ξ∗ sin θ sin φ)

× exp

[
cos(2θ)− cos(2φ)

4
ξξ∗

]

+ (1− q) δ(2) (ζ − ξ cos φ cos θ + ξ∗ sin φ sin θ)

× exp

[
cos(2φ)− cos(2θ)

4
ξξ∗

]
. (4.73)

Equation (4.73) can finally be casted into the form (4.53) thanks to the
identity

q ex ξξ∗ + (1− q) e−x ξξ∗ = 1 + (2q − 1) x ξξ∗

= e(2q−1) x ξξ∗ , (4.74)

which holds for all x complex — see Eq. (B.34). The above is an example
of a convex combination of Gaussian channels (i.e. E0 and E1) which is still
Gaussian.

Note that, in the Kraus representation, one has then

E(ρ) = B0ρB†
0 + B1ρB†

2 + B2ρB†
2 + B3ρB†

3 (4.75)

where

B0 =
√

pA0 =
√

q

(
cos θ 0

0 cos φ

)
, B1 =

√
pA1 =

√
q

(
0 sin φ

sin θ 0

)
,

(4.76)
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and

B2 =
√

1− q σxA0σx , B3 =
√

1− q σxA1σx . (4.77)

Besides, it is easy to prove that
∑3

k=0 B†
kBk = 11. The output density matrix

is

E(ρ) = E
(

p γ
γ∗ (1− p)

)
(4.78)

=

(
C γ cos θ cos φ + γ∗ sin θ sin φ

γ∗ cos θ cos φ + γ sin θ sin φ 1− C

)
,

with

C = p(q cos2 θ + (1− q) cos2 φ) + (1− p)(q sin2 φ + (1− q) sin2 θ).

Its characteristic function is given by

χ′(ξ) = χ (ξ cos θ cos φ− ξ∗ sin θ sin φ)

[
1 + (2p− 1)

cos(2θ)− cos(2φ)

4
ξξ∗

]
.

A natural question is then whether or not the weakly complementary
channel (2.50) associated with Eq. (4.72) is also Gaussian. To see this we
first use the linearity of trace to express the complementary Ẽ as a convex
combination of the weakly complementaries of E0 and E1, i.e. Ẽ = q Ẽ0 +(1−
q) Ẽ1. Then we invoke the linearity of Eq. (4.23) and use Eq. (4.61) to write

G̃(ζ, ξ) = q δ(2) (ζ − ξ cos θ sin φ + ξ∗ sin θ cos φ)

× exp

[
cos(2θ) + cos(2φ)

4
ξξ∗

]

+ (1− q) δ(2) (ζ + ξ sin φ cos θ − ξ∗ cos φ sin θ)

× exp

[
−cos(2φ) + cos(2θ)

4
ξξ∗

]
. (4.79)

This is of the form (4.53) only for q = 0, 1. Therefore, in general the weakly
complementaries of qubit-qubit maps with mixed environment are not Gaus-
sian even though they can be expressed as a convex combination of Gaussian
channels (i.e., Ẽ0 and Ẽ1). This can be pushed a little further by observing
that for generic choices of θ, φ and q, the weakly complementaries (4.79) are
not even unitarily equivalent to a Gaussian qubit channel.
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It is worth observing that in the canonical form (4.34) the weakly com-
plementaries (4.79) are characterized by λ1 = (2q − 1) sin(θ + φ), λ2 =
(2q − 1) sin(φ − θ), λ3 = [cos(2θ) − cos(2φ)]/2, t1 = t2 = 0 and t3 =
(2q − 1)/2[cos(2θ) + cos(2φ)]/2. Since λ1λ2 6= λ3, this is an indirect way
of verifying that these maps are not Gaussian (4.53). However, the canon-
ical form [37] is uniquely determined only up to unitary transformations
acting on the input and on the output of the map. Applying such unitary
transformations one can permute the λs. After such permutations, one can
have, for instance, λ1 = [cos(2θ) − cos(2φ)]/2, λ2 = (2q − 1) sin(θ + φ),
λ3 = (2q − 1) sin(φ − θ). Now λ1λ2 = λ3 can be satisfied for some partic-
ular values of θ and φ, i.e. θ = φ, θ + φ = π/2, 3π/2, 5π/2, 7π/2, and
θ = φ±π. In these cases we can say that the weakly complementaries (4.79)
are unitarily equivalent to a Gaussian channel.

Finally, we show that the output density matrix is given by

E(ρ) = E
(

p γ
γ∗ (1− p)

)
=

(
C̃ D̃

D̃∗ 1− C̃

)
, (4.80)

with

C̃ = p(q cos2 θ + (1− q) sin2 φ) + (1− p)(q cos2 φ + (1− q) sin2 θ) ,

D̃ = (2q − 1) (γ cos θ sin φ + γ∗ sin θ cos φ) ,

and the characteristic function of the output state is

χ̃′(ξ) = [χe(f) + (2p− 1)χo(f)]

[
1 + (2p− 1)

cos(2θ) + cos(2φ)

4
ξξ∗

]
, (4.81)

where χe(ξ) and χo(ξ) are, respectively, the even and the odd characteristic
functions of the input state (see Appendix B).

Weak-degradability properties

Let us analyze the weak-degradability properties of the qubit-qubit channels
with mixed environment [44].

As in Sec. 4.4.2 we prove that the maps E of Eq. (4.53) are weakly degrad-
able for cos(2θ)/ cos(2φ) > 0. In this regime in fact one can easily check that
Eq. (4.68) can still be solved with Gx(ζ, ξ) of the form (4.79) replacing θ and
φ with −θx and φx + π/2 where θx, φx satisfy the relations (4.69).
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Proving anti-degradability for cos(2θ)/ cos(2φ) 6 0 is not simple because,
in general, Ẽ is not in a Gaussian form — see Eq. (4.79). However, in this case
we show that these channels cannot be used to transfer quantum information
since their quantum capacity Q [87, 88, 89] is null. To see this we notice that
for cos(2θ)/ cos(2φ) 6 0, E is a mixture (4.72) of two channels (i.e. E0 and
E1) which are both anti-degradable and have hence null quantum capacity,
i.e.

Q(E0) = Q(E1) = 0 . (4.82)

Under these conditions it is easy to verify that also E must have a null Q.
Indeed, let us consider a new CPT map,

E ′(ρ) = q E0(ρ)⊗ |0〉B〈0|+ (1− q) E1(ρ)⊗ |1〉B〈1| ,

where B is an ancillary system. We can now verify that the E is isomorphic
to E ◦ E ′ with E(. . .) = TrB[. . .] ⊗ |0〉B〈0| being a CPT map which replaces
all states of B with a fix given output |0〉B. Expressing Q in terms of the
output coherent information [91] of the channel and using the quantum data
processing inequality [1] we can verify that

Q(E) 6 Q(E ′) . (4.83)

Besides, by using the basic properties of von Neumann entropy [1, 14] we can
express the coherent information of E ′ as

J(ρ, E ′) = qJ(ρ, E0) + (1− q)J(ρ, E1) . (4.84)

Putting all this together we get

Q(E ′) = lim
N→∞

max
ρ

J(ρ, E ′⊗N
)/N 6 qQ(E0) + (1− q)Q(E1) = 0 , (4.85)

and hence Q(E) = 0.
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4.5 Degradability of some qubit channels

In the following we will show some examples of qubit quantum channels
[1, 14] and we will analyze their weak-degradability properties [130]. We
recall that not all qubit channels are Gaussian but only those describable
trough a noisy interaction between one qubit (for the system) and one qubit
(for the environment).

4.5.1 Bit flip or dephasing channel

The bit flip or dephasing channel flips the state |0〉 to |1〉 (and vice versa)
with probability 1− s. Its Kraus operators [1, 14] are:

A0 =
√

s 11 =
√

s

(
1 0
0 1

)
, (4.86)

A1 =
√

1− s σx =
√

1− s

(
0 1
1 0

)
. (4.87)

In Fig. 4.3 the effect of the bit flip channel is illustrated. It implies a
contraction of the Bloch sphere and the Bloch vector can only ever decrease.
Particularly, we note that Trρ2 = 1

2
(1 + |~r|2), where |~r| is the norm of the

Bloch vector. The characteristic function of a generic input density operator
in Eq. (4.13) is

χ(ξ) = 1− 1

2
(2p− 1)ξ∗ξ + γξ − γ∗ξ∗ . (4.88)

After the noise evolution of the bit flip or dephasing channel, the density
matrix of the output quantum state is:

E(ρ) =

(
sp + (1− s)(1− p) qγ + (1− s)γ∗

sγ∗ + (1− s)γ s(1− p) + (1− s)p

)
, (4.89)

whose characteristic function is

χ′(ξ) = 1− 1

2
(2s− 1)(2p− 1)ξ∗ξ + [sγ + (1− s)γ∗]ξ − [sγ∗ + (1− s)γ]ξ∗

= χ(s ξ − (1− s) ξ∗) . (4.90)

Note that this map can be obtained from the canonical form in Eq. (4.44)
by putting

t1 = t2 = t3 = 0 (unital map) (4.91)

λ1 = 1 , λ2 = λ3 = 2s− 1 , (4.92)
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Figure 4.3: The effect of the bit flip channel on the Bloch sphere, for s = 0.3.
The sphere on the left represents the set of all pure states, and the deformed
sphere on the right represents the states after going through the channel.
Note that the states on the x̂ axis are left alone, while the ŷ − ẑ plane is
uniformly contracted by a factor of 1− 2s [1].

and so it is a qubit-qubit map with pure environment (q=1). Indeed, |t3| =√
(1− λ2

1)(1− λ2
2) = 0. The relative Gaussian Green function is:

G(ζ, ξ) = δ(2) (ζ − sξ − (s− 1)ξ∗) . (4.93)

Observing that cos(2θ) = λ3+t3
2

= s− 1/2 and cos(2φ) = λ3−t3
2

= s− 1/2,
cos(2θ)/ cos(2φ) = 1 > 0 and the bit flip channel is always degradable for
any value of s.

4.5.2 Phase flip channel

The phase flip channel changes the phase of the state |1〉 with probability
1 − s; for instance, 1

2
(|0〉 + |1〉) is mapped to 1

2
(|0〉 − |1〉) with probability

1− s and with probability s it remains unchanged.
Its Kraus operators are [1, 14]:

A0 =
√

s 11 =
√

s

(
1 0
0 1

)
, (4.94)

A1 =
√

1− s σz =
√

1− s

(
1 0
0 −1

)
. (4.95)
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In the special case of s = 1
2

this channel corresponds to a measurement of the
qubit in the basis {|0〉, |1〉}, with the result of the measurement unknown;
indeed, E(ρ) = P0ρP0 + P1ρP1, where P0 = |0〉〈0| and P1 = |1〉〈1| are two
projectors on the computational basis {|0〉, |1〉}.

In Fig. 4.4 the effect of the phase flip channel is illustrated. Geometrically,
it implies that the Bloch vector is projected along the ẑ axis and its x and y
components are lost, i.e. (rx, ry, rz) → (0, 0, rz), where ri are the components
of the Bloch vector.

Figure 4.4: The effect of the phase flip channel on the Bloch sphere, for
s = 0.3. Note that the states on the ẑ axis are left alone, while the x̂ − ŷ
plane is uniformly contracted by a factor of 1− 2s [1].

Starting from a generic input density operator, like in the previous section,
after the noise evolution of the phase flip channel, the density matrix of the
output state [with ρ as in Eq. (4.13)] is:

E(ρ) =

(
p (2s− 1)γ

(2s− 1)γ∗ (1− p)

)
, (4.96)

whose characteristic function is

χ′(ξ) = 1− 1

2
(2p− 1)ξ∗ξ + (2s− 1)γξ − (2s− 1)γ∗ξ∗

= χe(ξ) + χo((2s− 1)ξ) , (4.97)

where χe(ξ) and χo(ξ) are, respectively, the even and the odd characteristic
functions of the input state (see Appendix B). This channel has the following
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(canonical) parameters in Eq. (4.44)

t1 = t2 = t3 = 0 (unital map) (4.98)

λ3 = 1 , λ1 = λ2 = 2s− 1 , (4.99)

and the relative Green function is not Gaussian, i.e.

G(ζ, ξ) = δ(2) (ζ − (2s− 1)ξ) + 4s(1− s)ξξ∗ .

Since the canonical form [37] is uniquely determined only up to unitary trans-
formations, one can permute the λs and so the phase flip channel is unitarily
equivalent to a bit-flip channel. Therefore, the phase flip channel is not a
Gaussian channel but it is unitarily equivalent to a (degradable) Gaussian
map.

4.5.3 Bit-phase flip channel

The bit-phase flip channel is a combination of a bit flip and a phase flip
channels [1, 14]. Its operation elements are:

A0 =
√

s 11 =
√

s

(
1 0
0 1

)
, (4.100)

A1 =
√

1− s σy =
√

1− s

(
0 −i
i 0

)
. (4.101)

The geometric action of the bit-flip channel is shown in Fig. 4.5. Note that
σy = iσxσz and so the phase-flip channels includes both of the effects of the
bit flip and the phase flip maps. The output density matrix has the following
expression [with ρ as in Eq. (4.13)]

E(ρ) =

(
sp + (1− s)(1− p) sγ − (1− s)γ∗

sγ∗ − (1− s)γ s(1− p) + (1− s)p

)
, (4.102)

whose characteristic function is

χ′(ξ) = 1− 1

2
(2s− 1)(2p− 1)ξ∗ξ + [sγ − (1− s)γ∗]ξ − [sγ∗ − (1− s)γ]ξ∗

= χ(s ξ + (1− s) ξ∗). (4.103)
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Figure 4.5: The effect of the bit-phase flip channel on the Bloch sphere, for
s = 0.3. Note that the states on the ŷ axis are left alone, while the x̂ − ẑ
plane is uniformly contracted by a factor of 1− 2s [1].

The phase-flip channel is obtained with the following parameters in Eq.
(4.44)

t1 = t2 = t3 = 0 , (unital map) (4.104)

λ2 = 1 , λ1 = λ3 = 2s− 1 , (4.105)

and so it is a qubit-qubit map with pure environment (q=1). Indeed, |t3| =√
(1− λ2

1)(1− λ2
2) = 0. The Green function is so Gaussian, i.e.

G(ζ, ξ) = δ(2) (ζ − sξ − (1− s)ξ∗) .

Observing that cos(2θ) = λ3+t3
2

= s− 1/2 and cos(2φ) = λ3−t3
2

= s− 1/2,
cos(2θ)/ cos(2φ) = 1 > 0 and the bit-phase flip channel is always degradable
for any value of s.

4.5.4 Depolarizing channel

The depolarizing channel represents an important kind of noise evolution,
in which the qubit is depolarized (i.e. replaced by the completely mixed
state, 11/2) with probability s and it is left untouched with probability 1− s.
Therefore, the state of the quantum system after this noise evolution is

E(ρ) = s
11
2

+ (1− s)ρ (4.106)
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where ρ is defined in Eq. (4.13). Observing that for an arbitrary density
operator ρ the following relation holds

11
2

=
ρ + σxρσx + σyρσy + σzρσz

4
, (4.107)

one obtains the following four operation elements for the Kraus representa-
tion in Eq. (2.13) [1, 14]:

A0 =

√
1− 3

4
s 11 =

√
1− 3

4
s

(
1 0
0 1

)
, (4.108)

A1 =

√
s

2
σx =

√
s

2

(
0 1
1 0

)
, (4.109)

A2 =

√
s

2
σy =

√
s

2

(
0 −i
i 0

)
, (4.110)

A3 =

√
s

2
σz =

√
s

2

(
1 0
0 −1

)
. (4.111)

Let us note that it is possible to generalize the depolarizing channel to quan-

tum systems of any dimension d, according to the map E(ρ) = s11
d

+(1−s)ρ.

Figure 4.6: The effect of the depolarizing channel on the Bloch sphere, for
s = 0.5. Notice how the entire sphere contracts uniformly as a function of s
[1].

In Fig. 4.6 the geometric effect of the depolarizing channel is shown;
increasing the probability s the Bloch sphere contracts uniformly. The output
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density matrix is

E(ρ) =

(
(1− s)p + s/2 (1− s)γ

(1− s)γ∗ (1− s)(1− p) + s/2

)
, (4.112)

whose characteristic function is

χ′(ξ) = 1− 1

2
(1− s)(2p− 1)ξ∗ξ + (1− s)γξ − (1− s)γ∗ξ∗

= χe(
√

1− s ξ) + χo((1− s) ξ). (4.113)

In the canonical representation in Eq. (4.44) the depolarizing channel is
characterized by these parameters

t1 = t2 = t3 = 0 , (unital map) (4.114)

λ1 = λ2 = λ3 = 1− s , (4.115)

and, since the Green function is not Gaussian, i.e.

G(ζ, ξ) = δ(2) (ζ − (1− s)ξ) + s(1− s)ξξ∗ ,

we are not able to discuss its degradability properties in our formalism.

4.5.5 Amplitude damping or beam-splitter channel

Let us consider now a typical process of noise evolution in which a quan-
tum system losses its energy. This physical scenario is well described by a
quantum operation, known as amplitude damping or beam-splitter channel.
Suppose to have the state of a photon in an interferometer or cavity when it
is subject to scattering and attenuation. We can model the scattering of a
photon from this mode by thinking a beam-splitter, e.g. a partially silvered
mirror, in the path of the photon. This quantum channel can be described
by the following Kraus operators [1, 14]:

A0 =

(
1 0
0
√

n

)
, (4.116)

A1 =

(
0
√

1− n
0 0

)
, (4.117)
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where 1 − n can be thought of as the probability of losing a photon. After
the noise evolution of the amplitude damping channel, the density matrix of
the output state is [with ρ as in Eq. (4.13)]:

E(ρ) =

(
p + (1− n)(1− p)

√
nγ√

nγ∗ n(1− p)

)
, (4.118)

whose characteristic function is

χ′(ξ) = 1− 1

2
[1− 2n(1− p)]ξ∗ξ +

√
nγξ −√nγ∗ξ∗

= χ(
√

nξ)

(
1 +

1− n

2
ξξ∗

)
, (4.119)

where χ(ξ) is the input characteristic function.
By considering the canonical form in Eq. (4.44) the amplitude damping

or beam-splitter channel is given by

t1 = t2 = 0 , t3 = 1− n (not unital map) (4.120)

λ1 = λ2 =
√

n , λ3 = n . (4.121)

Since |t3| =
√

(1− λ2
1)(1− λ2

2) = 1 − n, it is a qubit-qubit map with pure
environment (q=1). The Gaussian Green function has the form

G(ζ, ξ) = δ(2)
(
ζ −√nξ

)
exp

[
−1− n

2
ξ∗ξ

]
.

Since cos(2θ) = λ3+t3
2

= 1/2, cos(2φ) = 2n−1
2

and cos(2θ)/ cos(2φ) = 1
2n−1

,
the amplitude damping or beam-splitter channel is degradable for n ≥ 1/2
and anti-degradable for n ≤ 1/2. Let us stress that one obtains exactly the
same results as the ones for the Bosonic beam-splitter, studied in Sec. 3.3.

In Fig. 4.7 we report the effect of amplitude damping in the Bloch rep-
resentation as the Bloch vector transformation

(rx, ry, rz) → (
√

n rx,
√

n ry, (1− n) + nrz) . (4.122)

If one replaces 1−n with a time-varying function like 1−e−t/τ (where t is time
and τ is a characteristic time scale that characterizes the speed of damping,
e.g. in a quantum memory), the effect is a flow on the Bloch sphere, which
moves every point in the unit ball towards a fixed point at the north pole,
where there is |0〉.
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Figure 4.7: The effect of the amplitude damping channel on the Bloch sphere,
for n = 0.2. Note how the entire sphere contracts shrinking towards the north
pole, the |0〉 state [1].

The amplitude damping or beam-splitter channel can also be written [41]
as a unitary transformation, Uab, of the annihilation operators of the system
(one qubit), a, and of the environment (one qubit) b,

U †
abaUab = a′ =

√
na +

√
1− n[a, a†]b , (4.123)

U †
abbUab = b′ =

√
nb−√1− n[b, b†]a , (4.124)

where n is the damping coefficient. It is a canonical transformation and
{a′, a′†} = 1, {b′, b′†} = 1, [a′, b′] = 0, and [a′, b′†] = 0, since {a, a†} = 1,
{b, b†} = 1, [a, b] = 0, and [a, b†] = 0. Note that the commutation rela-
tions [., .] = 0 are due to the fact that the two qubits are considered to be
distinguishable. This transformation can be described as a coupling with
environment prepared in an initial mixed state σb, that is

E(ρa) = Trb[Uab(ρa ⊗ σb)U
†
ab] , (4.125)

where Trb[. . .] is the partial trace over the environment B. Therefore, the
output characteristic function for the mode a is (like in the Bosonic case)

χ′a(ξ) = χa(
√

nξ)χb(
√

1− nξ) , (4.126)

where χb(ξ) is the characteristic function of the environment in the initial
state |0〉. The same transformation of the characteristic function is performed
by the Fermionic beam-splitter channel (see Sec. C.1 in Appendix C).
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An important characteristic of the amplitude damping channel is that
only the ground state |0〉 is left invariant under the action of the map, since
we are modelling the environment in the initial state |0〉, as if it were at zero
temperature. In the following section we will consider the corresponding
noise evolution at finite temperature.

4.5.6 Generalized amplitude damping channel

Here we describe the effect of dissipation due to the presence of an external
environment at finite temperature. This quantum operation, called gener-
alized amplitude damping channel, can be described by the following Kraus
operators (s 6= 1) [1, 14]:

A0 =
√

s

(
1 0
0
√

n

)
, (4.127)

A1 =
√

s

(
0
√

1− n
0 0

)
, (4.128)

A2 =
√

1− s

( √
n 0

0 1

)
, (4.129)

A3 =
√

1− s

(
0 0√

1− n 0

)
, (4.130)

and the stationary state is

ρ∞ =

(
s 0
0 1− s

)
. (4.131)

After the noise evolution associated to the generalized amplitude damping
channel, the output density matrix is

E(ρ) =
(

[n + s(1− n)]p + s(1− n)(1− p)
√

nγ√
nγ∗ (1− s)(1− n)p + [1− s(1− n)](1− p)

)
,

whose characteristic function is

χ′(ξ) = 1− 1

2
{[1− 2(1− n)(1− s)]p− (1− 2(1− n)s)(1− p)}ξ∗ξ +

√
nγξ

− √
nγ∗ξ∗ = χ(

√
nξ)

[
1 + (1− n)

(
s− 1

2

)
ξξ∗

]
, (4.132)
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where χ(ξ) is the input characteristic function and ρ is defined in Eq. (4.13).
The effect of this map in the Bloch representation is

(rx, ry, rz) → (
√

n rx,
√

n ry, (1− n)(2s− 1) + nrz) . (4.133)

The only difference with the amplitude damping channel is the fix point of
the flow, that is a mixed state along the ẑ axis at the point (2s− 1).

The generalized amplitude damping channel corresponds to the following
particular parameters in Eq. (4.44),

t1 = t2 = 0 t3 = (1− n)(2s− 1) (not unital map) (4.134)

λ1 = λ2 =
√

n , λ3 = n . (4.135)

Since |t3| = (2s− 1)(1− n) ≤
√

(1− λ2
1)(1− λ2

2) = 1− n, it is a qubit-qubit
map with mixed environment (q 6= 1). The Gaussian Green function has the
form

G(ζ, ξ) = δ(2)
(
ζ −√nξ

)
exp

[
−(2s− 1)

(1− n)

2
ξ∗ξ

]
.

It is a qubit-qubit map with mixed environment (q ≡ s 6= 1) and is weakly
degradable for n ≥ 1/2 and with null quantum capacity for n ≤ 1/2.

4.5.7 Phase damping channel

The phase damping channel describes the loss of quantum information with-
out loss of energy. It is a typical quantum mechanical noise evolution regard-
ing the loss of the coherence, when, for example, a photon scatters randomly
as it travels through a waveguide, or how electronic states in an atom are
perturbed upon interacting with distant electrical charge. Actually, the de-
coherence manifests itself with a loss of the information about the relative
quantum phase between the energy eigenstates of a quantum system dur-
ing the time evolution. This uniquely quantum mechanical process can be
described by the following Kraus operators [1, 14]:

A0 =

(
1 0
0
√

1− s

)
, (4.136)

A1 =

(
0 0
0
√

s

)
, (4.137)
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where s is the probability that, for instance, a photon or an electron from the
system has been scattered (without loss of energy). It is exactly equivalent
to the phase flip channel and so it can be visualized on the Bloch sphere as

(rx, ry, rz) → (
√

1− s rx,
√

1− s ry, rz) , (4.138)

with the effect of the shrinking the sphere into ellipsoids. As a function of
time, i.e.

√
1− s = e−t/τ , the phase damping can be seen as a relaxation

process (e.g., in a quantum memory), in which the damping increases and
all points of the Bloch sphere flow towards the ẑ axis, in which the states
remain invariant.

4.6 Memory qubit channels

Throughout this thesis work, we have considered only the so-called stan-
dard memoryless channels, in which successive uses of the communication
line are affected by the same noise [79]. Here, we will briefly analyze an
example of correlated noise channels describing, instead, situations where
consecutive channel uses suffer from the action of correlated noise source
and which cannot be written as a simple tensor product of quantum chan-
nels. This phenomenon is quite common in physical situations, when the
noise source exhibits, for instance, time-dependent statistical properties.
Recently, there has been some interest in studying the behavior of these
channels with correlations since such channels might be regarded as a small
first step in studying the much more complex issue of channels with mem-
ory [131, 132, 133, 134, 135, 136, 137, 138]. They can describe multiple access
channels and can be also related to critical quantum many-body physics [139].
In Ref. [132] the effect of correlated noise was analyzed showing specific ex-
amples for which there is a critical value µc below which the optimal input
state (i.e., that suffers less noise) is a product state and above which the
optimal input is maximally entangled.

In this section, we consider a very simple class of channels which exhibit
quite different behavior [65]. We analyze the behaviour of a class of two-qubit
correlated noise channels where, with probability 1 − µ, the qubits suffer
only from uncorrelated tensor product noise, while with probability µ they
experience correlated noise. This situation can be modelled by a completely
positive, trace preserving (CPT) map which transforms any bound operator
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Θ of the joint system H1 ⊗H2 according to the transformation

E(Θ) = (1− µ)(Ψ⊗Ψ)(Θ) + µ Γcorr Tr[Θ] (4.139)

with Γcorr being a density matrix of the joint system H1 ⊗H2 and where Ψ
represents a quantum channel acting on the a single qubit. In the following
Γcorr is simply a maximally entangled state. We find that the entanglement
of the optimal input state increases with µ until it reaches a critical µc, after
which the optimal input is always achieved with a maximally entangled state.
Below µc, the optimal input is never maximally entangled.

Although one is ultimately interested in the effect of correlations on the
capacities [79] of the channel, here we focus only on the maximal `p-norms
achievable at the output of the channel. Given p > 1, the `p-norm of a state
ρ is given by the expression

‖ρ‖p ≡ (Tr[ρp])1/p . (4.140)

These quantities are related to Rényi [140] and Tsallis entropies [141] (i.e.,
Sp(ρ) ≡ log[Tr[ρp]]/(1 − p) and Tp(ρ) ≡ [1 − Tr[ρp]]/(p − 1) respectively),
and provide us with a measure of the purity of ρ. Indeed values of ‖ρ‖p close
to one are indicative that ρ is close to a pure state. On the contrary small
value of ‖ρ‖p are associated with highly mixed states. The `p-norm ‖E‖p

of a CPT map E is now defined as the maximum value of ‖E(ρ)‖p which
can be achieved by varying the input states ρ. Exploiting the convexity of
Eq. (4.140) and the linearity of E this can be formally written as

‖E‖p ≡ max
ψ

‖E(|ψ〉〈ψ|)‖p , (4.141)

where the maximization is performed over all possible pure input states |ψ〉.
The quantities (4.141) have been extensively studied in the literature [39, 43,
47, 92, 142, 143, 144, 145, 146] to characterize the noise introduced by the
map. The underlining idea is that inputs, whose outputs are close to pure
states, are the least corrupted3. This allows one to introduce the concept of
optimal inputs states of order p, as those vectors |ψ(p)

opt〉 which saturate the

maximization (4.141), i.e. ‖E(|ψ(p)
opt〉〈ψ(p)

opt|)‖p = ‖E‖p. For channels with some
covariance properties [147], one can make an explicit connection between the

3It should be notice, however, that a channel which produces pure outputs can still be
extremely noisy.
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classical capacity [84, 85] and the optimal output purity as measured by the
minimal output von Neumann entropy.

The rest of this chapter is organized as follows. In Sec. 4.6.1 we introduce
the family of two-qubit correlated channels and study a covariance property
that will be useful to determine their optimal input states by allowing a
convenient parametrization of the input states in Sec. 4.6.2 [65]. In Sec.
4.6.3 we study analytically the p = 2 purity of the output states for a specific
class of correlated two-qubit channels (4.139), and we generalize these results
for p 6= 2 by performing numerical optimizations of the corresponding norms.
In Sec. 4.6.4 we discuss these results in relation to majorization and trumping
concepts.

4.6.1 The model

Consider a two-qubit channel Eµ,~λ which, with probability µ, maps the input
density matrices ρ of the system into the maximally entangled state |β0〉 ≡(|00〉 + |11〉)/√2, while, with probability 1 − µ, Eµ,~λ operates on the two
qubits independently, applying to each of them the unital transformation Ψ~λ

defined by the relations

Ψ~λ(σk) = λkσk , (4.142)

where for k = 1, 2, 3, σk is the k-th Pauli4 operator and λk are real coefficients.
This is,

Eµ,~λ(ρ) = (1− µ)
(
Ψ~λ ⊗Ψ~λ

)
(ρ) + µ |β0〉 〈β0| , (4.143)

which, by linearity and considering that Tr[ρ] = 1, defines a correlated chan-
nel of the form (4.139). The remaining of this section will concentrate on the
case where the λk are identical (i.e. λk = λ for k = 1, 2, 3 and λ ∈ [0, 1]) and
will use the symbols Ψλ and Eµ,λ to represent the resulting channels (4.142)
and (4.143). For such a choice Eq. (4.142) describes a depolarizing channel
(as in Sec. 4.5.4) [43] which is known to be covariant under generic unitary
transformations U , i.e. Ψλ(UρU †) = UΨλ(ρ)U †. Exploiting this property
and the identity

|β0〉 = (U ⊗ σ2Uσ2)|β0〉 , (4.144)

4From now on, for simplicity, we will use the notation {σ1, σ2, σ3} for the Pauli operators
with respect to {σx, σy, σz} used in the rest of this thesis.
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with σ2 being the second Pauli matrix, one can easily verify that the corre-
lated channel Eµ,λ is covariant with respect to local unitary transformation
of the form

WU ≡ U ⊗ σ2Uσ2 . (4.145)

Namely, for all two-qubits input ρ and for all single qubit unitary operator
U one has

Eµ,λ

(
WU(ρ)W †

U

)
= WU (Eµ,λ(ρ)) W †

U . (4.146)

This property is remarkable: it implies that, given a generic density matrix ρ,
the set Cρ composed by states of the form WU(ρ)W †

U are transformed by the
channel (4.143) into output states which differ only by local unitary transfor-
mations. On one hand, the unitarity of WU ensures that all the members of
Cρ have identical output `p-norms (4.140). On the other hand, the locality
of WU not only ensures that all states in Cρ have the same entanglement
structure of ρ, but also that all corresponding outputs will have the same
entanglement structure of Eµ,λ(ρ).

4.6.2 Canonical form

To fully exploit the covariance property (4.146) we first notice that the
for k = 1, 2, 3 the vectors |βk〉 ≡ (11 ⊗ σk)|β0〉 together with |β0〉 form an
orthonormal basis for the two qubits system (indeed they form a Bell set).
Hence, apart from a global phase, any pure state can be expressed as follows

|ψ〉 =
3∑

k=0

ak|βk〉 = a0|β0〉+ (11⊗ σ~a)|β0〉 , (4.147)

with a0 ∈ [0, 1] and with a1,2,3 being complex amplitudes satisfying the nor-
malization condition

∑3
k=1 |ak|2 = 1−a2

0 (here we defined ~a = (a1, a2, a3) and
σ~a =

∑3
k=1 akσk). We also notice that, apart from a global phase, the most

generic unitary transformation of the form (4.145) can written as follows

WU =
(

cos θ11 + i sin θ σ~n

)
⊗

(
cos θ11 + i sin θσ~n′

)
, (4.148)
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with ~n = (n1, n2, n3) being a normalized real vector and ~n′ = (−n1, n2,−n3).
We then get5

WU |ψ〉 = a0|β0〉+ (11⊗ σT (~a))|β0〉 , (4.149)

with T ≡ T~n,θ being the linear transformation defined by the expression

T~n,θ(~a) ≡ cos2 θ ~a− 2 sin θ cos θ (~n′ × ~a) (4.150)

+(~n′ · ~a) sin2 θ ~n′ − sin2 θ (~n′ × ~a)× ~n′ .

Equation (4.150) describes a rotation by 2θ along the axis ~n′. This can be

used to show that for any complex vector ~a = ~α + i~β there exists a suitable
choice of ~n and θ which allows us to write

T~n,θ(~a) = (|~α| cos χ + i|~β|, 0, |~α| sin χ) , (4.151)

with |~α||~β| cos χ = ~β · ~α and sin χ > 0 — see below for details. Consequently
from Eq. (4.149) it follows that for any input state |ψ〉 there exists a suitable
choice of T (i.e. a suitable choice of U) which gives

WU |ψ〉 = |a0, ϕ, φ〉 ≡ a0|β0〉+
√

1− a2
0

(
cos ϕ|β3〉+ eiφ sin ϕ|β1〉

)
, (4.152)

where cos ϕ = |~α| sin χ, and φ = arctan[|~β|/(|~α| cos χ)]. We call |a0, ϕ, φ〉
the canonical form associated with the input state |ψ〉6. As mentioned in
the previous section, since all WU are local transformations, the vectors |ψ〉
and |a0, ϕ, φ〉 share the same entanglement properties. Furthermore the co-
variance property of Eq. (4.146) ensures that the output `p-norms associated
with |ψ〉 and with the vector on the right-hand-side of Eq. (4.152) coincide.
Thus instead of maximizing ‖Eµ,λ(ψ)‖p over the whole set of pure inputs
states |ψ〉 as in Eq. (4.141), we can focus only on canonical inputs of the
form (4.152), i.e.

‖Eµ,λ‖p = max
a0,ϕ,φ

‖Eµ,λ( |a0, ϕ, φ〉 〈a0, ϕ, φ|)‖p . (4.153)

5Given any complex vector ~m and ~n one has σ(~n)σ(~n) = (~n·~m) 11+i σ(~n×~m) with · and
× being, respectively, the scalar and the vector product. Moreover, from the invariance
of |β0〉 under the unitary WU of Eq. (4.145) it follows that σ(~n) ⊗ σ(~n′)|β0〉 = −|β0〉
for all real normalized vectors ~n = (n1, n2, n3) and ~n′ = (−n1, n2,−n3). This yields
σ(~n)⊗11|β0〉 = −11⊗σ(~n′)|β0〉 and σ(~n)⊗σ(~n′)|β0〉 = −(~m ·~n′) |β0〉− i 11⊗σ(~m×~n′)|β0〉.

6It is worth noticing that the canonical decomposition of Eq. (4.152) is not uniquely
defined. Indeed one can show that with a different choice of the transformation T of
Eq. (4.151) it possible to express the pure vectors |ψ〉 as a superposition of |β0〉 plus any
other couples of orthogonal Bell states |β1,2,3〉.



194 Qubit channels

Derivation of Eq. (4.151)

Let us first verify that the transformations T of Eq. (4.150) represent a
generic rotation of R3. To show this it is sufficient to introduce normalized
vectors ~n′′ and ~n′′′ which, together with ~n′, form an oriented orthonormal set
{~n′, ~n′′, ~n′′′} of vectors of R3. Consider now a generic vector ~m ∈ R3 and
decompose it within such basis, i.e.

~m = c1 ~n′ + c2 ~n′′ + c3 ~n′′′ ,

with c1,2,3 being real. Replacing the above expression in Eq. (4.150) gives

T~n,θ(~m) = c1 ~n′ + ( cos 2θ c2 + sin 2θ c3 ) ~n′′

+ ( cos 2θ c3 − sin 2θ c2 ) ~n′′′ (4.154)

which explicitly shows that T~n,θ is a rotation by 2θ along the axis ~n′.
Equation (4.151) can now be derived by decomposing ~a into its real and

imaginary part, i.e. ~a = ~α + i~β with ~α and ~β being real 3-dim vectors. The
transformation T~n,θ which satisfies Eq. (4.151) can then be constructed by
employing the algebra of rotation to write T~n,θ = T~n2,θ2 ◦T~n1,θ1 with “◦” being
the composition rule associated with Eq. (4.154) and with T~n1,θ1 and T~n2,θ2

defined as follows. The transformation T~n1,θ1 is obtained by choosing ~n1 and

θ1 such that the map T~n1,θ1 rotates ~β into the x̂ axis, i.e.

T~n1,θ1(
~β) = (|~β|, 0, 0) . (4.155)

This gives us

T~n1,θ1(~a) = T~n1,θ1(~α) + i(|~β|, 0, 0) , (4.156)

with T~n1,θ1(~α) being a vector of R3. The transformation T~n2,θ2 is now defined
by choosing ~n2 = x̂ and θ2 such that it rotates T~n1,θ1(~α) into the x̂, ẑ place.

With this choice the vector (|~β|, 0, 0) is left invariant by T~n2,θ2 and T~n1,θ1(~a)
is transformed as in Eq. (4.151).

4.6.3 Optimal output purity

Here we study the output `p-norm for the channel Eµ,λ [65]. For the case
` = 2 we solve analytically the optimization problem showing the existence
of a threshold

µc ≡ 1− λ2

2− λ2
, (4.157)
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for the probability µ. In the presence of a strong correlated noise (i.e. µ >
µc) we see that the maximum of ‖Eµ,λ(ψ)‖2 is obtained by the maximally
entangled state |β0〉. Vice-versa below threshold, i.e. µ < µc, we show that
the entanglement of the input states which achieve the maximum values of
‖Eµ,λ(ψ)‖2 decreases with µ. These results will then be generalized in the
case of arbitrary p by showing (numerically) that the same threshold and the
same optimal input states of the case p = 2 hold also for all p 6= 2.

Before presenting these results however we give a simple argument to show
that, for all p, the state |β0〉 is the one whose output achieves the maximum
values for `p if one restrict the focus on the set of maximally entangled input
states. To verify this let us recall that any maximally entangled state |β〉 can
be written as |β〉 = (U ⊗V )|β0〉 where U and V are unitary transformations.
Form the covariance property of Ψλ it then follows that

Eµ,λ( |β〉 〈β|) = Eµ,λ

(
(U ⊗ V ) |β0〉 〈β0| (U † ⊗ V †)

)
(4.158)

= (U ⊗ V )
[
(1− µ)(Ψλ ⊗Ψλ)( |β0〉 〈β0|) + µ |β̂

〉〈
β̂|

]
(U † ⊗ V †)

= (U ⊗ V )
[

1
4
(1− µ)(1− λ2)11 + (1− µ)λ2 |β0〉 〈β0| + µ |β̂

〉〈
β̂|

]
(U † ⊗ V †)

where |β̂〉 = (U † ⊗ V †)|β0〉 is again maximally entangled. If |β̂〉 6= |β0〉 the
operator Eµ,λ( |β〉 〈β|) has three distinct eigenvalues (one double degenerate).

Vice-versa if |β̂〉 = |β0〉 the operator Eµ,λ( |β〉 〈β|) has only two distinct eigen-
values (one three times degenerate). One can easily verify that in this case
the resulting density matrix majorizes all the other operators of Eq. (4.158).
The claim then follows by noticing that such an output configuration can be
achievable for instance by choosing U = V = 11, i.e. by having |β〉 = |β0〉.

Optimizing ‖Eµ,λ(ψ)‖2

In the following we will determine the optimal input states |ψ(2)
opt〉 which solve

the maximization in Eq. (4.153) for the `p-norm of order p = 2. To do so
we observe that, for any input state |ψ〉, the first contribution of (4.143) is
proportional to

(
Ψλ ⊗Ψλ

)
(|ψ〉〈ψ|) = λ2|ψ〉〈ψ| + (1− λ)211/4 (4.159)

+ (1− λ)λ(111 ⊗ ρ2 + ρ1 ⊗ 112)/2 ,
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where ρ1 ≡ Tr2[|ψ〉〈ψ|] and ρ2 ≡ Tr1[|ψ〉〈ψ|] are the reduced density matrices
of |ψ〉 associated with the qubits 1 and 2, respectively (see Sec. 1.1). Re-
placing this in Eq. (4.143) the output p = 2 purity of |ψ〉 can be computed
by exploiting the following identities:

〈ψ|(ρ1 ⊗ 112)|ψ〉 = Tr1[ρ
2
1] ,

〈ψ|(111 ⊗ ρ2)|ψ〉 = Tr2[ρ
2
2] ,

Tr1[ρ
2
1] = Tr2[ρ

2
2] ,

〈β0|(ρ1 ⊗ 112)|β0〉 = 〈β0|(111 ⊗ ρ2)|β0〉 = 1/2 .

This yields

‖Eµ,λ(|ψ〉〈ψ|)‖2 =
√

Tr[Eµ,λ(|ψ〉〈ψ|)2] =
√

A |〈ψ|β0〉|2 + B Tr1[ρ2
1] + C (4.160)

with A, B and C being positive quantities defined as

A = 2µ(1− µ)λ2 ,

B = (1− µ)2(1− λ2)λ2 , (4.161)

C = µ2 + (1− µ)2[(λ2 + (1− λ)2/2)2 + (1− λ)3λ] + µ(1− µ)(1− λ2)/2 .

To maximize Eq. (4.160) one would be tempted to have both |〈ψ|β0〉|2 and
Tr1[ρ1]

2 as bigger as possible. This is, however, is impossible since the first
quantity measures how “close” |ψ〉 is to the maximally entangled state |β0〉
which, in turns, has minimum purity for the reduced density matrix com-
ponents. Consequently high values of |〈ψ|β0〉|2 corresponds to low value of
Tr1[ρ1]

2 and vice-versa. To find the maximum of (4.160), it is thus useful
write the input state as in Eq. (4.147). In this case we get ρ1 = (111 +~ω ·~σ)/2
and Tr1[ρ

2
1] = (1 + |~ω|2)/2, where ~ω is a three dimensional real vector of

components

ω1 = 2 <[a0a
∗
2 − a1a

∗
3] ,

ω2 = 2 =[a0a
∗
3 − a1a

∗
2] , (4.162)

ω3 = 2 <[a0a
∗
1 + a2a

∗
3] .

Observing that one has also 〈β0|ψ〉 = a0 this allows us to write

‖Eµ,λ(|ψ〉〈ψ|)‖2 =
√

A a2
0 + B (|~ω|2 + 1)/2 + C . (4.163)
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Thanks to the covariance properties analyzed in the previous section the
maximization of this expression can be performed by focusing on the in-
puts of the form (4.152) which have a3 = 0, a1 =

√
1− a2

0 cos ϕ, and

a2 =
√

1− a2
0 sin ϕeiφ. Under these conditions we have

|~ω|2 = 4(1− a2
0)

{
a2

0 + sin2 ϕ sin2 φ
[
(1− 2 a2

0)− (1− a2
0) sin2 ϕ

]}
,

which for any given a0 can be maximized with respect to ϕ ∈ [0, π] and
φ ∈ [0, 2π).

For a0 > 1/
√

2, the quantity
[
(1 − 2 a2

0) − (1 − a2
0) sin2 ϕ

]
is always

negative. Therefore |~ω|2 is always smaller than 4(1−a2
0)a

2
0. By simply looking

at Eq. (4.164) we see that such maximum is achievable by setting either ϕ = 0
and φ generic, or φ = 0 and ϕ generic, yielding |~ω|2max = 4a2

0(1− a2
0).

On the contrary, for a0 6 1/
√

2 the maximum value of |~ω|2 can be deter-
mined by studying the function

F (x, y) ≡ (1− 2a2
0)yx− (1− a2

0)yx2 , (4.164)

for x, y ∈ [0, 1]. A simple analysis reveals that it achieves its maximum for

x =
1−2a2

0

2(1−a2
0)

and y = 1. Therefore, if a0 < 1/
√

2 the maximum is 1 and it is

obtained for φ = π/2 and sin2 ϕ =
1−2a2

0

2(1−a2
0)

. Replacing this into Eq. (4.164)

one can easily verify that this corresponds to have |~ω|2max = 1.
Replacing all these results in Eq. (4.163) gives

max
ϕ,φ

‖Eµ,λ(|a0, ϕ, φ〉〈a0, ϕ, φ|‖2 =
√

A a2
0 + B [h(a2

0) + 1]/2 + C , (4.165)

where

h(x) ≡
{

1 for x ∈ [0, 1/2]
4x(1− x) for x ∈]1/2, 1].

(4.166)

Equation (4.165) can then easily optimized with respect to a0. In partic-
ular one verifies that there are two independent regimes identified by the
parameter

A

2B
=

µ

1− µ

1

1− λ2
−→ µ = µc =

1− λ2

2− λ2
. (4.167)

Indeed if µ > µc (i.e. A/(2B) > 1) then Eq. (4.165) has maximum value√
A + B/2 + C which is achieved for a0 = 1. On the contrary for µ 6 µc
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Figure 4.8: Plot of the `p-norm of order p = 2 for the channel Eµ,λ. The
continuous curve represents the threshold condition (4.157). For µ = 1 and
λ = 1 the norm is maximal: in the former case the channel sends every input
state into |β0〉; in the latter case instead it transforms the inputs |ψ〉 into a
mixture of |ψ〉 and |β0〉 so that choosing |ψ〉 = |β0〉 one gets a pure output.

(i.e. A/(2B) 6 1) the maximum is {B
2

[
1 +

(
1 + A

2B

)2]
+ C}1/2, and it is

achieved for

a0 =

√
1 + A/(2B)

2
=

√
1− (1− µ)λ2

2(1− µ)(1− λ2)
. (4.168)

Putting all these together we then arrive at the following result – see also
Fig. 4.8:

‖Eµ,λ‖2 =





√
A + B/2 + C for µ > µc

√
B
2

[
1 +

(
1 + A

2B

)2]
+ C for µ 6 µc.

(4.169)

The corresponding optimal input states can similarly be determined. In
particular, since above threshold (i.e. µ > µc) the optimization of Eq. (4.165)
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Figure 4.9: Entanglement (4.171) of the optimal input states |ψ(2)
opt〉 which

maximize the `2-norm for the map Eµ,λ. For values of µ above the thresh-

old (4.157), |ψ(2)
opt〉 is maximally entangled, while for µ below the threshold

the entanglement of |ψ(2)
opt〉 continuously decreases.

requires a0 = 1, from Eq. (4.152) it follows that the optimal input state |ψ(2)
opt〉

is unique and equal to the maximally entangled state |β0〉. On the contrary

below threshold (i.e. µ 6 µc) the optimal state |ψ(2)
opt〉 can be determined

by noticing that the quantity in the left hand side of Eq. (4.168) is always
greater than 1/

√
2. Consequently the optimal input state must have the

following canonical form

|ψ(2)
opt〉 = a0|β0〉+

√
1− a2

0

[
cos ϕ|β3〉+ sin ϕ|β1〉

]
, (4.170)

with a0 as in Eq. (4.168) and ϕ generic. These vectors become increasingly
entangled as the correlation parameter µ increases from 0 to µc. To verify
this for instance we can evaluate the linear entropy E of their reduced density
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matrix. Considering also the case for µ > µc we get,

E = 2(1− Tr[ρ2
1]) =





1 for µ > µc

[
µ

(1−µ)(1−λ2)

]2

for µ 6 µc .

(4.171)

In Fig. 4.9 we report this quantity as a function of µ and λ. The pecu-
liar behavior of the channel Eµ,λ can be contrasted with that of the shifted
depolarizing channel

E(ρ) ≡ (1− µ)
[
(1− τ)ρ + τ 11/d

]
+ µ|φ〉〈φ| , (4.172)

with 0 < τ < 1. It is always optimized by the input |φ〉〈φ| regardless of
whether |φ〉 is a product or maximally entangled [146]. Introducing a corre-
lation into a product of depolarizing channels by shifting with a maximally
entangled state yields quite different behavior than introducing it into a de-
polarizing channel in higher dimensions.

Optimal `p-norm for p 6= 2

In general, it is not easy to perform an exact analytical analysis of the output
p-norms for p 6= 2. However, extensive numerical studies of optimization
were carried out using the parametrization in Eq. (4.152) and the equivalent
Rényi entropy [148], for over 2000 pairs of randomly chosen value of µ and
λ. In all cases, we found that the input states which are optimal for p = 2
are also optimal for p > 1, i.e. |ψ(p)

opt〉 = |ψ(2)
opt〉. In Figs. 4.10-4.11, we show

typical numerical results of our findings by comparing the minimal Rényi
output entropies for randomly chosen inputs with that of optimal inputs for
p = 2, which lie on the bottom curve. In all cases the output Rényi entropy
was larger than the expected minimum. Indeed, the minimal Rényi output
entropy is monotonically related to the `p-norm of the channel through the
identity,

Sp(Eµ,λ) ≡ min
ψ

log Tr[(Eµ,λ(|ψ〉〈ψ|)p]

1− p
=

log ‖Eµ,λ‖p
p

1− p
.
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Figure 4.10: Scatter plots of the output Rényi entropy Sp[Eβ0,µ,λ( |ψ〉 〈ψ|)]
as a function of p for randomly chosen inputs compared to that for the
conjectured optimal input, in the case of λ = 1

2
, µ = 1

4
< µc = 3

7
below

threshold. The horizontal line corresponds to the maximum possible Rényi
entropy of log 4.

Figure 4.11: Scatter plots of the output Rényi entropy Sp[Eβ0,µ,λ( |ψ〉 〈ψ|)]
as a function of p for randomly chosen inputs compared to that for the
conjectured optimal input, in the case of λ = 1

3
, µ = 1

2
> µc = 8

17
above

threshold. The horizontal line corresponds to the maximum possible Rényi
entropy of log 4.
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4.6.4 Majorization

Finally, we conclude this section about memory qubit channels with some
observations on majorization and trumping properties applied to the optimal
input states above [65]. First to proceed, let us define the notion of majoriza-
tion in a general context [149]. There are three alternative equivalent useful
definitions of majorization. The first one is given in terms of a set of inequal-
ities between partial sums of the two distributions. In other terms, given two
normalized probability distributions, described by the vectors ~x, ~y ∈ R+n,
the distribution ~y is said to majorize distribution ~x, i.e. ~x ≺ ~y, if and only if

k∑
i=1

xi ≤
k∑

i=1

yi k = 1, 2, . . . , n− 1 , (4.173)

where the components of the two probability vectors have been sorted in
decreasing order. The second one is that ~x ≺ ~y if and only if there exist a set
of permutation matrices Pk and probabilities pk ≥ 0, with

∑
k pk = 1, such

that
~x =

∑

k

pkPk~y . (4.174)

So, loosely speaking, it means that the probability distribution ~x is more
disordered than probability distribution ~y. Indeed, it defines a partial order
in the space of probability distributions. The third equivalent definition of
majorization is that ~y majorizes ~x if and only if there is a doubly stochastic
matrix D such that

~x = D~y , (4.175)

where a double stochastic matrix is defined as a matrix with nonnegative
entries and in which each row and column adds up to unity. A powerful
relation between majorization and any convex function f over the set of
probability distributions states that

~x ≺ ~y ⇒ f (~x) ≤ f (~y) . (4.176)

It implies that, for instance, if ~x ≺ ~y, one has H (~x) ≥ H (~y), where H(~t)
is the Shannon entropy H(~t) ≡ −∑N

i=1 ti log2 ti of a probability distribution
~t ∈ Rn. Therefore, majorization is a stronger notion of order for probabil-
ity distributions with respect to the one imposed by the entropy H(~t). In
quantum information science, the notion of majorization is easily extended
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to quantum states considering that the spectrum of a density matrix repre-
sents a normalized probability distribution. In other words, for two density
operators ρ and σ with spectrums ~ρ and ~σ, one says that ρ ≺ σ if and only if
~ρ ≺ ~σ; it implies that S(ρ) > S(σ) with S being the von Neumann entropy.

After this brief introduction, since the family of states (4.170) optimizes
the output purity for any value of p (i.e., minimizes the output von Neu-
mann entropy), one could expect that the corresponding output family ma-
jorizes all other possible output states. Actually this is not true. As an
illustration of this we report two counterexamples of output states that are
not majorized by the output states corresponding to the family (4.170).
As a first example consider the two-qubit channel Eµ,λ with parameters
λ = 1/3 and µ = 1/2. In this case µ > µc and therefore the optimal
input state is |β0〉, whose output eigenvalues take in this case the explicit
values (0, 667, 0.111, 0.111, 0.111). By numerical analysis it turns out that
the input product state of the form (4.152) with a0 = 0, ϕ = π/4 and
φ = π/2 yields an output state with eigenvalues (0.611, 0.222, 0.111, 0.056)
which trivially is not majorized by (0, 667, 0.111, 0.111, 0.111). As a sec-
ond example, in the regime µ ≤ µc, consider λ = 1/2 and µ = 1/4. In
this case the eigenvalue of output state associated with the optimal input
state (4.170) is given by the set of values (0.596, 0.141, 0.141, 0.123). On the
other hand, the same product state introduced above has an output state
with eigenvalues (0.422, 0.391, 0.141, 0.047) which, again, is not majorized by
(0.596, 0.141, 0.141, 0.123). Therefore we can conclude that there is no family
of input states that gives output states majorizing all other output states of
the qubit quantum channel with small correlations, analyzed in this section.

However, one can suppose that there exist a weak majorization between
the optimal output states and the other output [119, 150], e.g. the so-called
“trumping” relation [151, 152]. This concept, introduced in connection with
the phenomenon known as entanglement catalysis [153], plays an important
role in quantum information theory. If there is a vector ~z such that ~x⊗ ~z ≺
~y⊗~z, then one says that the vector ~y trumps ~x and writes ~x ≺T ~y. Moreover,
it follows that ‖~x‖p ≤ ‖~y‖p for all p > 1. Even if some analytical and
numerical arguments seem to show that this conjecture holds, however, it is
not easy in general to prove it between the optimal output states and the
other outputs.
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Quantum communication is one of the most prominent applications of the
new rapidly developing field of quantum information theory. It consists in
the transmission of (classical or quantum) information between two commu-
nicating parties, encoding it in a quantum system (e.g., photons) and sending
it through a quantum channel (e.g., an optical fiber). In this context, an im-
portant research area is represented by the analysis of quantum channels,
described as open quantum systems, and then by the quantitative evalua-
tions of the fundamental limits of their capacity of transmitting quantum
information from one place to another in the space [1, 3].

The results in this thesis regard two specific classes of channels, namely
the Bosonic Gaussian channels and the qubit channels. We introduce a new
property of quantum channels (i.e., weak-degradability) by exploiting a more
“physical” picture of the noisy evolution (i.e., interaction with a thermal-
like environment) and by generalizing the degradability definition given by
Devetak and Shor [38]. In particular, it implies that their quantum capacity
Q is null (i.e. they cannot be used to transfer quantum information) for anti-
degradable channels, while it is allows us to establish the additivity of the
coherent information (and the single-letter formula for Q) for those weakly
degradable maps which admit unitary representation with pure environment.

Regarding the Bosonic channels, investigated in Chapter 3, we prove that
with the exception of the additive classical noise channel [56], all one-mode
Gaussian maps are either weakly degradable or anti-degradable. First of all,
we use the unitary equivalence of these maps with beam-splitter/amplifier
channels [52] and, then, we provide a full weak-degradability classification
of one-mode Gaussian channels [53] by exploiting the canonical form decom-
position of Ref. [56]. Within this context we identify those channels which
are anti-degradable. Besides, we explicitly compute the quantum channel
capacity of degradable Gaussian maps. By exploiting composition rules of



206 Conclusions and Outlook

Gaussian maps and the fact that anti-degradable channels cannot be used to
transfer quantum information, we are able to strengthen the bound for one-
mode Gaussian channels which have nonvanishing quantum capacity [53].

Therefore, we have presented a complete analysis of generic multi-mode
Bosonic Gaussian channels by proving a unitary dilation theorem and by
finding their canonical form [54]. This is a simple form that can be achieved
for any Gaussian quantum channel, as a convenient starting point for vari-
ous considerations. For instance, it allows us to simplify the analysis of their
weak-degradability properties. Minimal output entropies, or quantum and
classical information capacities and other difficult questions might be tackled
using the canonical form shown in this thesis. Moreover, we characterize the
minimal noise channel, involving only true quantum noise, and we show a
useful decomposition in terms of it and of the classical noise channel. Then,
we show an interesting characterization of the minimal required number of
environmental modes to be involved in the unitary dilation describing the
multi-mode channel [62]. Finally, we investigate in detail the particular case
of the two-mode scenario [54] that is relevant since any n-mode channel can
always be reduced to single-mode and two-mode parts [57]. In this case,
apart from the simple situation of a noisy system-environment interaction
which does not couple the two Bosonic modes, we have found the (maybe)
surprising fact that increasing the level of the environmental noise the coher-
ence is progressively destroyed but it becomes easier to recover the environ-
ment (system) output from the system (environment) output after the noisy
evolution, i.e. to recover the weak-degradability (anti-degradability) prop-
erty. These results could play a basic role in characterizing the efficiency of
continuous-variables quantum information processing, quantum communica-
tion and quantum key distribution protocols.

Regarding the qubit channels, examined in Chapter 4, we introduce a
characteristic function formalism in terms of generalized displacement op-
erators and Grassmann variables, along the same lines followed for Bosonic
Gaussian channels. We then present a Green function representation of the
quantum evolution that allows us to define the set of qubit Gaussian maps
[44]. In this context, we find that all Gaussian channels are qubit-qubit, i.e.
they can always be described in terms of a unitary interaction of a qubit
system with a single (not necessarily pure) qubit environment. Similarly, it
is known that in the Bosonic case (almost) all the one-mode Bosonic Gaus-
sian maps can be described in terms of a single mode environment. This
formalism turns out to be elegant and powerful and, in particular, it can
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be used to study the weak-degradability properties of qubit-qubit maps, for
both pure and mixed qubit environments, in terms of Green functions [44].
On one hand, in the case of pure environment, the qubit-qubit maps are
either degradable (i.e., single-letter formula for Q) or anti-degradable (i.e.,
Q = 0). Besides, the complementary maps are still qubit-qubit channels
and so Gaussian. It is interesting to note that an equivalent property holds
for one-mode Bosonic Gaussian channels. On the other hand, in the case
of mixed environment, we show that the qubit-qubit maps are either weakly
degradable or they are not able to transfer quantum information (i.e., Q=0).
However, in this case the weakly complementary maps do not belong to the
set of qubit-qubit channels and are not Gaussian. It is important to stress
that this Green function formalism shows clearly that the qubit Gaussian
maps share analogous properties with their continuous variable counterpart,
i.e. the Bosonic Gaussian channels.

Let us remark that the characteristic function approach, introduced in
this thesis, for qubit systems, can be generalized to d-level quantum systems
(qudit) in terms of generalized Grassmann variables [63, 64]. In other words,
one can think to describe d-level quantum systems using para-Grassmann
variables and generalized displacement operators and coherent states. In this
way, one can try to define a characteristic function, a Green representation of
qudit channels and to introduce the set of qudit Gaussian maps. One could
study the weak-degradability property for these channels and understand
how general the results in this thesis are. For example, one could answer
to the interesting questions if all qudit Gaussian channels are describable in
terms of unitary interaction between two qudits (like for Bosonic and qubit
channels) and if Gaussianity implies weak-degradability also for these maps.

Finally, we have introduced a class of memory (i.e., correlated noise over
many channel uses) two-qubit quantum channels with a peculiar property
[65]. Namely, for certain values of the channel parameters, above a ‘critical’
threshold, the optimal input states (defined as those inputs which maximize
the channel output purities of order p, measured using the p-norm) are always
maximally entangled. Vice-versa, in the remaining parameter region, the
optimal inputs do have decreasing entanglement properties (i.e., there is a
kind of ‘phase transition’ behavior). Such optimal input states have been
analytically derived in the case of p = 2. For p 6= 2 we have, instead,
performed a numerical analysis which confirms the same results. They are
interesting in order to characterize the noise properties of memory channels
and could be generalized to continuous variable systems.
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Recently, there is a continuously growing interest in studying the behav-
ior of memory quantum channels and, even, in relating them to the physics
of critical many-body quantum systems [139]. For instance, there it has
been shown that the non-analytic behavior of correlated noise channels can
be treated as an indicator of the presence of critical points in many-body
systems, playing the role of environment in the correlated noise evolution. It
is developing a very promising connection between quantum communication
and quantum many-body theory. Besides, it would enable us to use tech-
niques from many-body physics to better characterize the memory effects
in such channels and vice versa. Interestingly, the unitary dilation theorem
for multi-mode Bosonic Gaussian channels, proved in this thesis, may pave
the way to a full analysis of Bosonic Gaussian memory channels and, for
instance, to an interesting connection of their features (e.g., channel capac-
ity) with the appearance of long-range correlations in the ground state of a
quantum many-body system undergoing a quantum phase transition at zero
temperature.



Appendix A

Normal mode decomposition

In Chapter 3 the Williamson theorem has been referred to in relation to the
ordinary normal mode decomposition, as starting point for the generalization
for non-symmetric or locality constrained situations and, particularly, for
multi-mode Bosonic Gaussian channels. Here, first, we show a simple proof
of Williamson’s theorem presented in Ref. [154], and, then, we describe the
generalized normal mode decomposition investigated in Ref. [57].

A.1 Williamson theorem

Consider n quantum mechanical oscillators, that are characterized by a set
of momentum and position operators (P1, . . . , Pn, Q1, . . . , Qn) =: R which
obey the canonical commutation relations [Rk, Rl] = iσkl, where

σ =

(
0 11n

−11n 0

)
(A.1)

is the symplectic matrix. The symplectic group Sp(2n,R) is formed by all
real matrices S satisfying the condition

SσST = σ . (A.2)

This condition allows to preserve the commutation relations in a canoni-
cal/symplectic transformation Rk 7→

∑
l SklRk. It also implies that, for any

symplectic matrix S, one has Det[S] = 1.
The ordinary normal mode decomposition [115], i.e. the Williamson the-

orem (proved below), is basically based on the fact that for any positive
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definite matrix X ∈ R2n×2n, there is an S ∈ Sp(2n,R) such that

SXST = diag(ν1, . . . , νn, ν1, . . . , νn). (A.3)

For instance, if X represents a Hamiltonian H =
∑

kl XklRkRl, the νk are
the normal mode frequencies. If, instead, Xkl = 〈{Rk − 〈Rk〉, Rl − 〈Rl〉}+〉
is a covariance matrix, then (νk − 1)/2 is the mean occupation number
(phonons/photons) in the k’th normal mode.

Theorem 6 (Williamson theorem) Let X be a 2n-dimensional real sym-
metric positive definite matrix. Then there exists an S ∈ Sp(2n,R) such
that

SXST = D2 > 0 ,

D2 = diag(ν1, ν2, · · · , νn, ν1, ν2, · · · , νn). (A.4)

Proof: The most general S ∈ GL(2n,R) which solves SXST = D2 is
ST = X−1/2RD, where R ∈ O(2n). Now, we show that a X-dependent
choice of D and R can be made in a such way that the product X−1/2RD is an
element of Sp(2n,R), even if none of the factors D, R or X−1/2 is an element
of Sp(2n,R). Indeed, since σT = −σ, one has that M = X−1/2σX−1/2 is
antisymmetric. Hence, there exists [119] an R ∈ SO(2n) such that

RT X−1/2σX−1/2R =

(
0 Ω
−Ω 0

)
, Ω = diagonal > 0 . (A.5)

Now, we define a diagonal positive definite matrix

D =

(
Ω−1/2 0

0 Ω−1/2

)
. (A.6)

Hence,
DRT X−1/2σX−1/2RD = σ , (A.7)

and S is given by ST = X−1/2RD. Indeed, S satisfy the following properties:

SσST = σ ,

SXST = D2 = diagonal. (A.8)

The first equation says that S ∈ Sp(2n,R) and the second one says that
X is diagonalized by congruence through S. This completes the proof of the
Williamson theorem. ¥
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A.2 Generalized canonical form

In Ref. [57] a generalized canonical form is proved. At a mathematical
level, this result is a canonical matrix form with respect to real symplectic
equivalence transformations, i.e., a symplectic analogue of the singular value
decomposition. The statement is that, for any nonsingular matrix X ∈
R2n×2n there exist real symplectic transformations S1, S2 such that

S1XS2 =

(
11n 0
0 J

)
(A.9)

where

J =




J̄n1(λ1) 0
. . . 0

0 J̄np(λp)
Jnp+1(λp+1) 0

0
. . .

0 Jnk
(λk)




,

is a n× n block-diagonal matrix in the real Jordan canonical form [119] and
λi are the eigenvalues of XσXT σT . In the most general case, we can have not
necessarily distinct p complex conjugate pairs of the eigenvalues {λ1...p, λ̄1...p}
and k−p real eigenvalues λp+1...k. Note that 2(n1+. . .+np)+np+1+. . .+nk = n
and the factor 2 counts the multiplicity of the complex conjugate pairs of
eigenvalues. Moreover, each block is a real Jordan block corresponding to
either the complex conjugate pair of eigenvalues (J̄ni

(λi), i = 1, . . . p) or to
one of its real eigenvalues (Jnj

(λj), j = p + 1, . . . k) [119].

In the former case J̄ni
(λi) ∈ R2ni×2ni has the form

J̄ni
(λi) =




Λ 112 0

Λ
. . .
. . . 112

0 Λ


 , Λ =

(
a b
−b a

)
, λi = a + ib,

and it is called non-defective if J̄ni
(λi) = Λ.
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In the case of real eigenvalues Jnj
(λj) ∈ Rnj×nj has, instead, the form

Jnj
(λj) =




λj 1 0

λj
. . .
. . . 1

0 λj


 .

Let us show some basic properties of the matrix J [119]:

1) k + p is the number of linearly independent eigenvectors of J .

2) J is diagonalizable if and only if k + p = n.

3) The number of Jordan blocks corresponding to a given eigenvalue is
the geometric multiplicity of the eigenvalue, i.e. the dimension of the
associated eigenspace. Moreover, for each complex eigenvalue, there is
another eigenspace associated to the complex conjugate eigenvalue and
with the same dimension.

4) The sum of the orders of all the Jordan blocks corresponding to a given
eigenvalue is the algebraic multiplicity of the eigenvalue, i.e. the mul-
tiplicity in the characteristic polynomial. For the complex eigenvalues,
this number includes also the algebraic multiplicity of the complex con-
jugate. They must occur in conjugate pair with the same (algebraic
and geometric) multiplicity because the matrix is real.

Note that an entirely diagonal normal form, analogous to the usual normal
mode decomposition, cannot exist in general because real diagonal matrices
have only real invariants. Indeed, the remaining 2× 2 blocks are not diago-
nalizable because they correspond to complex λ’s. Let us point out that for
positive definite matrices X the canonical form in Eq. (A.9) and the usual
normal mode decomposition in Eq. (A.3) coincide up to a simple squeezing
transformation and the invariants are related via λk = ν2

k .



Appendix B

Grassmann algebra and
Fermionic coherent states

Here we review some properties of Grassmann calculus [121], used in the
Chapter 4 to describe qubit quantum channels. A system of Fermions can
be described by the creation a†n and annihilation am operators which satisfy
the anti-commutations relations

{an, a
†
m} = δnm , (B.1)

{an, am} = 0 , (B.2)

{a†n, a†m} = 0 , (B.3)

an|0〉 = 0 , (B.4)

in which |0〉 is the vacuum state.
Now we look at the problem to find the Fermionic coherent states, as

eigenstates of the annihilation operator, like in the Bosonic case (see Sec.
3.1). Actually, for Fermions the vacuum state is the only physically realizable
eigenstate of the annihilation operator. However, it is possible to define such
eigenstates in a formal way and to use the obtained coherent states in a
similar fashion and with similar properties like for Bosonic coherent states.
Moreover, differently from the Bosonic case in which the eigenvalues are
complex numbers, here the eigenvalues of the Fermionic annihilation operator
must be ‘strange’ anti-commuting numbers, since Fermionic variables anti-
commute, as noted by Schwinger [126]. Such numbers are called Grassmann
variables and they generate an algebra, called Grassmann algebra [122, 123,
124, 125].
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A Grassmann variable ξ spans over a set of objects (the Grassmann num-
bers) ξ1, ξ2, · · · , which anti-commute. Given any ξi and ξj elements of the
set, they satisfy the relation

ξiξj = −ξjξi , (B.5)

while obeying ordinary commutation relations with respect to the multiplica-
tion by a complex number. In particular Eq. (B.5) implies that a Grassmann
variable is 2-nilpotent, i.e. ξ2 = 0 (note that 0 is trivially included in the
Grassmann variable set). At a mathematical level, the above conditions can
be rigorously formalized by saying that Grassmann numbers are the gen-
erators of an algebra over the complex field which obey anti-commutation
relations.

Complex conjugation of ξ can be defined by introducing an extra Grass-
mann variable ξ∗ whose elements ξ∗1 , ξ∗2 , · · · , obey the same relation (B.5)
and anti-commute with all the ξis, i.e.

ξ∗i ξ
∗
j = −ξ∗j ξ

∗
i , (B.6)

ξ∗i ξj = −ξjξ
∗
i . (B.7)

To identify ξ∗i with the complex conjugate of ξi we finally require the relations

(ξ∗i )
∗ = ξi

(ξix)∗ = x∗ξ∗i , (B.8)

to be satisfied for any x complex number or product of the ξ1, ξ2, · · · and
ξ∗1 , ξ

∗
2 , · · · . From now on, we will use lower-case Greek letters to denote

Grassmann variables. One assumes that Grassmann variables anti-commute
with Fermionic operators

{ξi, aj} = 0 , (B.9)

and commute with Bosonic operators. Moreover, one makes the arbitrary
choice that hermitian conjugation reverses the order of all Fermionic quanti-
ties, both the operators and the Grassmann numbers; for instance,

(
a1β2a

†
3ξ
∗
4

)†
= ξ4a3β

∗
2a
†
1. (B.10)

In the following we show some rules of the Grassmann algebra and then we
present a formalism, introduced in Ref. [121], similar to what is well known
in quantum optics.
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Let us recall that the Bosonic coherent states, i.e. eigenstates of the
Bosonic annihilation operator, contain an intrinsically indefinite number of
quanta but, notwithstanding, they can be used as a basis for describing all
the electromagnetic field states. In other words, pure coherent states are
not physically attainable in Bosonic systems with fixed numbers of particles,
but they are useful to describe Boson fields in terms of suitably weighted
superpositions and mixtures of coherent states. The weight functions associ-
ated with these combinations may be treated as quasi-probability densities
in the spaces of coherent-state amplitudes. Particularly, the Wigner func-
tion [58, 155] and its Fourier transform, i.e. the characteristic function, play
an important role in representing the quantum states. So we will define
similar quasi-probability distributions for Fermions by using the Grassmann
algebra and some results in Ref. [121].

B.1 Functions, derivatives and integrals

First of all, we define the functions of Grassmann numbers. Since the square
of any Grassmann variable vanishes, the most general function f(ξ) of a single
anti-commuting variable ξ is linear in ξ and so can be written as follows

f(ξ) = u + ξt. (B.11)

Now we can define the derivative of a Grassmann function. Let us point out
that, since the anti-commutation relations between the Grassmann variables,
one can define a left derivative and a right derivative of a Grassmann function.
For instance, the left derivative of the function f(ξ) in Eq. (B.11) with
respect to the Grassmann variable ξ is

df(ξ)

dξ
= t. (B.12)

Moreover, if the variable t is anti-commuting, then we may also write the
function f(ξ) as

f(ξ) = u− tξ. (B.13)

In this last case, the left derivative is obtained following this procedure: we
first move ξ past t, picking up a minus sign, and then we obtain the form
(B.11) and its derivative gives the result (B.12). In a similar way we can
define the right derivative, that in this case is −t.
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Integration over ξ and ξ∗ can be defined by introducing the “differential”
dξ and dξ∗. These are assumed to obey the same anti-commutation relations
obeyed by the variables ξ and ξ∗, including Eq. (B.5) and Eqs. (4.2) and
(4.3) of Chapter 4. The integrals are then defined according to the Berezin
rules

∫
dξn =

∫
dξ∗n = 0 , (B.14)

∫
dξn ξm = δnm , (B.15)

∫
dξ∗n ξ∗m = δnm. (B.16)

This integration due to Berezin [122, 123, 124, 125] is exactly equivalent to
left differentiation. Indeed,

∫
dξf(ξ) =

∫
dξ(u + ξt) = t =

df(ξ)

dξ
. (B.17)

We shall typically be concerned with pairs of anti-commuting variables ξi

and ξ∗i , and for such pairs joint integration with respect to ξ and ξ∗ is finally
defined by identifying the double differential d2ξ as follows,

d2ξ ≡ dξ∗ dξ = −dξ dξ∗ . (B.18)

In this context one can identify an analogous of the Dirac delta function
δ(2)(µ− ν) in the complex plane. Such Grassmann delta is defined as

δ(2)(ξ − ζ) ≡
∫

d2κ exp [κ (ξ∗ − ζ∗)− (ξ − ζ) κ∗] = (ξ − ζ) (ξ∗ − ζ∗) , (B.19)

with ξ, ζ and κ Grassmann variables. Indeed, from Eq. (B.16) and from
Eq. (B.11) we have

∫
d2ξ δ(2)(ξ − ζ) f(ξ, ξ∗) = f(ζ, ζ∗) , (B.20)

for all f(ξ, ξ∗). Notice that the delta function (B.19) commutes with any
Grassmann numbers and satisfies the relation δ(2)(ξ − ζ) = δ(2)(ζ − ξ) =
−δ(2)(ξ∗ − ζ∗).
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A useful property is the following. Given the function f(ξ, ξ∗) one can
define its even and odd parts, i.e.

f±(ξ, ξ∗) ≡ f(ξ, ξ∗)± f(−ξ,−ξ∗)
2

. (B.21)

According to Eq. (B.11) they are of the form f+(ξ, ξ∗) = A + Cξ∗ξ and
f−(ξ, ξ∗) = B1 ξ + B2 ξ∗, respectively. Now given g(ξ, ξ∗) another function
we can write ∫

d2ξ f±(ξ, ξ∗)g∓(ξ, ξ∗) = 0

and thus∫
d2ξ f(ξ, ξ∗)g(ξ, ξ∗) =

∫
d2ξ f+(ξ, ξ∗)g+(ξ, ξ∗) +

∫
d2ξ f−(ξ, ξ∗)g−(ξ, ξ∗) .

Therefore, it is always possible to write down a generic function of Grassmann
variables as the sum of its even part and its odd one, that is

f(ξ) = f+(ξ) + f−(ξ) . (B.22)

Note that the even part of a Grassmann function commutes with Grassmann
variables while the odd one anti-commutes.

Suppose, for simplicity, to have a single Fermionic mode and to consider
the quantum states |0〉 and |1〉. We assume that

〈0|ξ|0〉 = ξ , (B.23)

〈1|ξ|1〉 = −ξ , (B.24)

〈0|ξ|1〉 = 0 , (B.25)

〈1|ξ|0〉 = 0 . (B.26)

In this way, one has consistently

〈1|ξa†|0〉 = 〈1| − a†ξ|0〉 = 〈1|ξ|1〉 = −〈0|ξ|0〉 = −ξ . (B.27)

So, it is easy to prove that

Tr [f−(ξ)] = 0 , (B.28)

Tr [f+(ξ)] = 2 f+(ξ) , (B.29)

Tr [f−(ξ)A] = f−(ξ)Tr [σzA] , (B.30)

Tr [f+(ξ)A] = f+(ξ)Tr [A] , (B.31)
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where A is a generic operator and σz being the third Pauli matrix, i.e.

σz =

(
1 0
0 −1

)
(B.32)

in the computational basis |0〉, |1〉 (eigenstates of σz). In general, we can
write

Tr [f(ξ)A] = Tr {[f+(ξ) + f−(ξ)] A} = f+(ξ)Tr [A] + f−(ξ)Tr [σzA] . (B.33)

Finally, note that the exponentials of Grassmann variables become

exp(B1ξ + B2ξ
∗ + Cξ∗ξ) ≡

∞∑
n=0

(B1ξ + B2ξ
∗ + Cξ∗ξ)n

n!
(B.34)

= 1 + B1ξ + B2ξ
∗ + Cξ∗ξ + B1ξB2ξ

∗/2 + B2ξ
∗B1ξ/2 .

This expression can be used to verify that (apart from a global multiplicative
term) any function (B.11) can be written as an exponential.

B.2 Displacement and coherent states

In analogy to the Bosonic formalism in Sec. 3.1, let us define (see Ref. [121])
the unitary displacement operator D(ξ) as the exponential

D(ξ) = exp

(∑
i

(
a†iξi − ξ∗i ai

))
. (B.35)

where ξ = {ξi} is a generic set of Grassmann variables.
We may rewrite the displacement operator as the product

D(ξ) =
∏

i

exp
(
a†iξi − ξ∗i ai

)
(B.36)

=
∏

i

[
1 + a†iξi − ξ∗i ai +

(
a†iai − 1

2

)
ξ∗i ξi

]
, (B.37)

where we use the useful property of Grassmann numbers, such that, if they
multiply Fermionic annihilation or creation operators, their anti-commutativity
cancels that of the operators; for instance the operators a†iξi and ξ∗j aj sim-
ply commute for i 6= j. Using the fact that the annihilation operator an
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commutes with all the operators a†iξi and ξ∗j aj when n 6= i, the displaced
annihilation operator can be calculated by ignoring all modes but the nth,
i.e.

D†(ξ)anD(ξ) =
∏

i

exp
(
ξ∗i ai − a†iξi

)
an

∏
j

exp
(
a†jξj − ξ∗j aj

)

= exp
(
ξ∗nan − a†nξn

)
an exp

(
a†nξn − ξ∗nan

)

=

(
1− a†nξn − 1

2
ξ∗nana

†
nξn

)
an

(
1 + a†nξn − 1

2
a†nξnξ∗nan

)

=

(
1− a†nξn − 1

2
ξ∗nξn

)
an

(
1 + a†nξn +

1

2
ξ∗nξn

)

= an − a†nξnan + ana†nξn = an + ξn. (B.38)

Similarly
D†(ξ)a†nD(ξ) = a†n + ξ∗n. (B.39)

For any set ξ = {ξi} of Grassmann numbers, we so naturally define [121]
the normalized coherent state |ξ〉 as the displaced vacuum state, i.e.

|ξ〉 = D(ξ)|0〉. (B.40)

By using the displacement relation (B.38), the coherent state is verified to
be an eigenstate of every annihilation operator an, i.e.

an|ξ〉 = anD(ξ)|0〉 = D(ξ) D†(ξ)anD(ξ)|0〉 = D(ξ) (an + ξn) |0〉
= D(ξ) ξn|0〉 = ξn D(ξ)|0〉 = ξn|ξ〉. (B.41)

Finally, the coherent state has the following expression

|ξ〉 = D(ξ)|0〉 = exp

(∑
i

(
a†iξi − 1

2
ξ∗i ξi

))
|0〉

=
∏

i

[
1 + a†iξi − ξ∗i ai +

(
a†iai − 1

2

)
ξ∗i ξi

]
|0〉

=
∏

i

(
1 + a†iξi − 1

2
ξ∗i ξi

)
|0〉 , (B.42)

where the product formula in Eq. (B.37) for the displacement operator has
been used. This formula takes a form closely analogous to the one for Bosonic
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coherent states. Let us stress that the only difference is that, in this formula
for Fermions, the creation operator a†i stands to the left of the Grassmann
number ξi. Besides, one can define the adjoint of the coherent state |ξ〉 as

〈ξ| = 〈0|D†(ξ) = 〈0| exp

(∑
i

(
ξ∗i ai − 1

2
ξ∗i ξi

))
, (B.43)

obeying the relation
〈ξ|a†n = 〈ξ|ξ∗n. (B.44)

Therefore, the inner product of two coherent states is the following

〈ξ|β〉 = exp

(∑
i

(
ξ∗i βi − 1

2
(ξ∗i ξi + β∗i βi)

))
, (B.45)

hence

〈β|ξ〉 〈ξ|β〉 = exp

[
−

∑
i

(β∗i − ξ∗i )(βi − ξi)

]
=

∏
i

[1− (β∗i − ξ∗i )(βi − ξi)] .

For a single Fermionic mode, the identity operator 11 and the traceless
operators a, a†, and 1

2
− a†a form a complete set of operators. By using the

expression (B.37) and the Grassmann calculus, each of these operators can
be written as an integral over the displacement operators [121]

11 =

∫
d2ξ ξξ∗ D(ξ) , (B.46)

a =

∫
d2ξ (−ξ) D(ξ) , (B.47)

a† =

∫
d2ξ ξ∗ D(ξ) , (B.48)

1

2
− a†a =

∫
d2ξ D(ξ) . (B.49)

It turns out that the displacement operators form a complete set of operators
for that mode. Actually, it is over-complete and this integral decomposition
can be easily generalized to the multi-mode case.

Finally, let us point out that some operators can be written as sums of
products of even or odd numbers of creation and annihilation operators. In
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the former case, they are called even, while in the latter they are said to
be odd. For instance, the number operator a†a is even, while the creation
and annihilation operators, a† and a, are odd. Even if most operators are
neither even nor odd, the operators of physical interest are either even or
odd. Particularly, one may define the even part of the displacement operator
of a single Fermionic mode, D+(ξ), as

D+(ξ) = 1 +

(
a†a− 1

2

)
ξ∗ξ , (B.50)

and D+(ξ) = D+(−ξ). In the same way, the odd part of the displacement
operator, D−(ξ) , is defined as

D−(ξ) = a†ξ − ξ∗a (B.51)

and D−(ξ) = −D−(−ξ).





Appendix C

Fermionic channels

Here we present a brief excursus about some Fermionic channels. The
only difference with respect to the qubit channels (analyzed in Chapter 4)
is that, now, the system and the environment are true Fermions and then
anti-commute. Remember that, in the case of qubit channels, the system
and the environment are single qubits describable as Fermionic systems by
using the Grassmann algebra, but the system and environmental qubits are
considered to be distinguishable, i.e. they commute. In the following we will
analyze the beam-splitter and the amplifier channels for Fermions.

C.1 Fermionic beam-splitter

The Fermionic beam-splitter channel is given by the following transformation

U †
abaUab = a′ =

√
na +

√
1− nb , (C.1)

U †
abbUab = b′ =

√
nb−√1− na ,

where a and b are, respectively, the annihilation operators of the one Fermionic
mode of the system and another one of the environment, n ∈ [0, 1] is the
attenuation coefficient or the transmissivity. Eq. (C.1) represents a canon-
ical transformation: indeed, {a′, a′†} = 1, {b′, b′†} = 1, {a′, b′} = 0, and
{a′, b′†} = 0, since {a, a†} = 1, {b, b†} = 1, {a, b} = 0, and {a, b†} = 0. Note
that here a and b are completely Fermionic operators, while in the ampli-
tude damping channel a and b (and also a′ and b′) satisfy independently the
anti-commutation relations but they commute between each other.
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This map E can be described as a coupling with environment prepared in
some mixed state σb, i.e.

E(ρa) = Trb[Uab(ρa ⊗ σb)U
†
ab] , (C.2)

where Trb[. . .] is the partial trace over the environment B, Uab is the unitary
operator in the composite Hilbert space Ha ⊗Hb. In the Heisenberg picture
(see Sec. 2.2.5) the Fermionic displacement operator for the mode a evolves
as

EH(Da(ξ)) = Da(
√

nξ)χb(
√

1− nξ) , (C.3)

where χb(ξ) is the characteristic function of the input density operator, σb, of
the environment (e.g., in a thermal state; see below) and ξ is the Grassmann
variable (see Appendix B). Therefore, the output characteristic function for
the mode a is

χ′a(ξ) = χa(
√

nξ)χb(
√

1− nξ) . (C.4)

Note that this transformation has exactly the same expression like in the
Bosonic case in Sec. 3.3.1. In particular, it implies the simple composition
rule for which two beam-splitter channels, with transmissivity n1 and n2, are
equivalent to a new beam-splitter with transmissivity n1n2.

The Fermionic beam-splitter is equivalent to the amplitude damping map
(Sec. 4.5), when the initial state of the environment is the vacuum state, i.e.
the thermal state with T = 0 (see below and also Ref. [41]). Indeed, if
σb = |0〉〈0|, Eq. (C.4) provides the same transformation of the amplitude
damping channel. In the same way, if the environment initial state is a
thermal state at finite temperature, as in Eq. (C.7) with

tanh

(
1

2kBT

)
=

n(q − 1/2)

1− n
(C.5)

or

T =
1

2kB

{
arctanh

[
n(q − 1/2)

1− n

]}−1

, (C.6)

with kB being the Boltzmann constant, we recover the same characteristic
functions transformation of the generalized amplitude damping channel.

The Fermionic thermal state can be described [similarly to the Bosonic
one in Eq. (3.27)] from the density operator τb, as follows

τb =
e
− a†a

kBT

Tr[e
− a†a

kBT ]
, (C.7)
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which, in the ‘computational basis’ (i.e., eigenstates of σz), can be written as

τb =




1

1+e
− 1

kBT
0

0 e
− 1

kBT

1+e
− 1

kBT


 . (C.8)

In the limit of zero temperature, i.e. T → 0,

τb =

(
1 0
0 0

)
, (C.9)

which naturally corresponds to the ground state, |0〉〈0|. In the limit of the
infinite temperature (i.e., maximal noise)

τb =
1

2
11 =

1

2

(
1 0
0 1

)
, (C.10)

which is the completely mixed state, of course. The characteristic function
of the thermal state, i.e. χ(ξ) = Tr[τbD(ξ)], is

χ(ξ) = 1− 1

2

1− e
− 1

kBT

1 + e
− 1

kBT

ξ∗ξ = 1 +
1

2
tanh

(
1

2kBT

)
ξξ∗ , (C.11)

and

χT→0(ξ) = 1 +
1

2
ξξ∗ , (C.12)

χT→∞(ξ) = 1 . (C.13)

C.2 Fermionic amplifier

The Fermionic amplifier channel can be obtained mathematically (i.e. phys-
ically one cannot create Fermions) as in the Bosonic case in Sec. 3.3.1,
according to the following canonical transformations

U †
abaUab = a′ =

√
ka +

√
k − 1b† , (C.14)

U †
abbUab = b′ =

√
k + 1a† +

√
kb , (C.15)

where a and b are, respectively, the annihilation operators of the one Fermionic
mode of the system and another one of the environment, and k is the
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gain parameter. Again U is a canonical transformation and {a′, a′†} = 1,
{b′, b′†} = 1, {a′, b′} = 0, and {a′, b′†} = 0, since {a, a†} = 1, {b, b†} = 1,
{a, b} = 0, and {a, b†} = 0. The quantum channel is, again, described
through a coupling with an environment as in Eq. (C.2). The action of the
dual channel on the Fermionic displacement operator for the mode a, Da(ξ),
is

EH(Da(ξ)) = Da(
√

kξ)χb(
√

k − 1ξ∗)[1 + (k − 1)ξ∗ξ] , (C.16)

where χb(ξ) is the characteristic function of the input density operator, σb, of
the environment. Therefore, the output characteristic function for the mode
a is

χ′a(ξ) = χa(
√

kξ)χb(
√

k − 1ξ∗)[1 + (k − 1)ξ∗ξ] . (C.17)

Note that the Fermionic amplifier channel has a similar transformation of
the Bosonic amplifier, apart from the last coefficient. However, again one
has that two amplifier channels, with amplification coefficient k1 and k2, are
equivalent to a new amplifier with gain parameter k1k2. Indeed, one has

χ′a(ξ) = χa(
√

k1ξ)χb(
√

k1 − 1ξ∗)[1 + (k1 − 1)ξ∗ξ]

χ′′a(ξ) = χ′a(
√

k2ξ)χb(
√

k2 − 1ξ∗)[1 + (k2 − 1)ξ∗ξ]

= χa(
√

k2k1ξ)χb(
√

k1 − 1
√

k2ξ
∗)χb(

√
k2 − 1ξ∗)[1 + k2(k1 − 1)ξ∗ξ]

[1 + (k2 − 1)ξ∗ξ] = χa(
√

k2k1ξ)χb(
√

k1k2 − 1ξ∗)[1 + (k2k1 − 1)ξ∗ξ],

which is an amplifier with gain k1k2.
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[140] K. Życzkowski, Open Syst. Inf. Dyn. 10, 297 (2003); C. Beck and F. Schlögl,
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