131 research outputs found

    Optimal Equivocation in Secrecy Systems a Special Case of Distortion-based Characterization

    Full text link
    Recent work characterizing the optimal performance of secrecy systems has made use of a distortion-like metric for partial secrecy as a replacement for the more traditional metric of equivocation. In this work we use the log-loss function to show that the optimal performance limits characterized by equivocation are, in fact, special cases of distortion-based counterparts. This observation illuminates why equivocation doesn't tell the whole story of secrecy. It also justifies the causal-disclosure framework for secrecy (past source symbols and actions revealed to the eavesdropper).Comment: Invited to ITA 2013, 3 pages, no figures, using IEEEtran.cl

    Secure Cascade Channel Synthesis

    Full text link
    We consider the problem of generating correlated random variables in a distributed fashion, where communication is constrained to a cascade network. The first node in the cascade observes an i.i.d. sequence XnX^n locally before initiating communication along the cascade. All nodes share bits of common randomness that are independent of XnX^n. We consider secure synthesis - random variables produced by the system appear to be appropriately correlated and i.i.d. even to an eavesdropper who is cognizant of the communication transmissions. We characterize the optimal tradeoff between the amount of common randomness used and the required rates of communication. We find that not only does common randomness help, its usage exceeds the communication rate requirements. The most efficient scheme is based on a superposition codebook, with the first node selecting messages for all downstream nodes. We also provide a fleeting view of related problems, demonstrating how the optimal rate region may shrink or expand.Comment: Submitted to IEEE Transactions on Information Theor

    Gaussian Secure Source Coding and Wyner's Common Information

    Full text link
    We study secure source-coding with causal disclosure, under the Gaussian distribution. The optimality of Gaussian auxiliary random variables is shown in various scenarios. We explicitly characterize the tradeoff between the rates of communication and secret key. This tradeoff is the result of a mutual information optimization under Markov constraints. As a corollary, we deduce a general formula for Wyner's Common Information in the Gaussian setting.Comment: ISIT 2015, 5 pages, uses IEEEtran.cl

    A Shannon Approach to Secure Multi-party Computations

    Full text link
    In secure multi-party computations (SMC), parties wish to compute a function on their private data without revealing more information about their data than what the function reveals. In this paper, we investigate two Shannon-type questions on this problem. We first consider the traditional one-shot model for SMC which does not assume a probabilistic prior on the data. In this model, private communication and randomness are the key enablers to secure computing, and we investigate a notion of randomness cost and capacity. We then move to a probabilistic model for the data, and propose a Shannon model for discrete memoryless SMC. In this model, correlations among data are the key enablers for secure computing, and we investigate a notion of dependency which permits the secure computation of a function. While the models and questions are general, this paper focuses on summation functions, and relies on polar code constructions

    Empirical and Strong Coordination via Soft Covering with Polar Codes

    Full text link
    We design polar codes for empirical coordination and strong coordination in two-node networks. Our constructions hinge on the fact that polar codes enable explicit low-complexity schemes for soft covering. We leverage this property to propose explicit and low-complexity coding schemes that achieve the capacity regions of both empirical coordination and strong coordination for sequences of actions taking value in an alphabet of prime cardinality. Our results improve previously known polar coding schemes, which (i) were restricted to uniform distributions and to actions obtained via binary symmetric channels for strong coordination, (ii) required a non-negligible amount of common randomness for empirical coordination, and (iii) assumed that the simulation of discrete memoryless channels could be perfectly implemented. As a by-product of our results, we obtain a polar coding scheme that achieves channel resolvability for an arbitrary discrete memoryless channel whose input alphabet has prime cardinality.Comment: 14 pages, two-column, 5 figures, accepted to IEEE Transactions on Information Theor

    Rate-Distortion Theory for Secrecy Systems

    Full text link
    Secrecy in communication systems is measured herein by the distortion that an adversary incurs. The transmitter and receiver share secret key, which they use to encrypt communication and ensure distortion at an adversary. A model is considered in which an adversary not only intercepts the communication from the transmitter to the receiver, but also potentially has side information. Specifically, the adversary may have causal or noncausal access to a signal that is correlated with the source sequence or the receiver's reconstruction sequence. The main contribution is the characterization of the optimal tradeoff among communication rate, secret key rate, distortion at the adversary, and distortion at the legitimate receiver. It is demonstrated that causal side information at the adversary plays a pivotal role in this tradeoff. It is also shown that measures of secrecy based on normalized equivocation are a special case of the framework.Comment: Update version, to appear in IEEE Transactions on Information Theor
    corecore