3,281 research outputs found

    Secure Numerical and Logical Multi Party Operations

    Full text link
    We derive algorithms for efficient secure numerical and logical operations using a recently introduced scheme for secure multi-party computation~\cite{sch15} in the semi-honest model ensuring statistical or perfect security. To derive our algorithms for trigonometric functions, we use basic mathematical laws in combination with properties of the additive encryption scheme in a novel way. For division and logarithm we use a new approach to compute a Taylor series at a fixed point for all numbers. All our logical operations such as comparisons and large fan-in AND gates are perfectly secure. Our empirical evaluation yields speed-ups of more than a factor of 100 for the evaluated operations compared to the state-of-the-art

    Asymmetric Multi-Party Computation

    Get PDF
    Current protocols for Multi-Party Computation (MPC) consider the setting where all parties have access to similar resources. For example, all parties have access to channels bounded by the same worst-case delay upper bound ?, and all channels have the same cost of communication. As a consequence, the overall protocol performance (resp. the communication cost) may be heavily affected by the slowest (resp. the most expensive) channel, even when most channels are fast (resp. cheap). Given the state of affairs, we initiate a systematic study of asymmetric MPC. In asymmetric MPC, the parties are divided into two categories: fast and slow parties, depending on whether they have access to high-end or low-end resources. We investigate two different models. In the first, we consider asymmetric communication delays: Fast parties are connected via channels with small delay ? among themselves, while channels connected to (at least) one slow party have a large delay ? ? ?. In the second model, we consider asymmetric communication costs: Fast parties benefit from channels with cheap communication, while channels connected to a slow party have an expensive communication. We provide a wide range of positive and negative results exploring the trade-offs between the achievable number of tolerated corruptions t and slow parties s, versus the round complexity and communication cost in each of the models. Among others, we achieve the following results. In the model with asymmetric communication delays, focusing on the information-theoretic (i-t) setting: - An i-t asymmetric MPC protocol with security with abort as long as t+s < n and t < n/2, in a constant number of slow rounds. - We show that achieving an i-t asymmetric MPC protocol for t+s = n and with number of slow rounds independent of the circuit size implies an i-t synchronous MPC protocol with round complexity independent of the circuit size, which is a major problem in the field of round-complexity of MPC. - We identify a new primitive, asymmetric broadcast, that allows to consistently distribute a value among the fast parties, and at a later time the same value to slow parties. We completely characterize the feasibility of asymmetric broadcast by showing that it is possible if and only if 2t + s < n. - An i-t asymmetric MPC protocol with guaranteed output delivery as long as t+s < n and t < n/2, in a number of slow rounds independent of the circuit size. In the model with asymmetric communication cost, we achieve an asymmetric MPC protocol for security with abort for t+s < n and t < n/2, based on one-way functions (OWF). The protocol communicates a number of bits over expensive channels that is independent of the circuit size. We conjecture that assuming OWF is needed and further provide a partial result in this direction

    Implementation of two-party protocols in the noisy-storage model

    Get PDF
    The noisy-storage model allows the implementation of secure two-party protocols under the sole assumption that no large-scale reliable quantum storage is available to the cheating party. No quantum storage is thereby required for the honest parties. Examples of such protocols include bit commitment, oblivious transfer and secure identification. Here, we provide a guideline for the practical implementation of such protocols. In particular, we analyze security in a practical setting where the honest parties themselves are unable to perform perfect operations and need to deal with practical problems such as errors during transmission and detector inefficiencies. We provide explicit security parameters for two different experimental setups using weak coherent, and parametric down conversion sources. In addition, we analyze a modification of the protocols based on decoy states.Comment: 41 pages, 33 figures, this is a companion paper to arXiv:0906.1030 considering practical aspects, v2: published version, title changed in accordance with PRA guideline

    MPC for MPC: Secure Computation on a Massively Parallel Computing Architecture

    Get PDF
    Massively Parallel Computation (MPC) is a model of computation widely believed to best capture realistic parallel computing architectures such as large-scale MapReduce and Hadoop clusters. Motivated by the fact that many data analytics tasks performed on these platforms involve sensitive user data, we initiate the theoretical exploration of how to leverage MPC architectures to enable efficient, privacy-preserving computation over massive data. Clearly if a computation task does not lend itself to an efficient implementation on MPC even without security, then we cannot hope to compute it efficiently on MPC with security. We show, on the other hand, that any task that can be efficiently computed on MPC can also be securely computed with comparable efficiency. Specifically, we show the following results: - any MPC algorithm can be compiled to a communication-oblivious counterpart while asymptotically preserving its round and space complexity, where communication-obliviousness ensures that any network intermediary observing the communication patterns learn no information about the secret inputs; - assuming the existence of Fully Homomorphic Encryption with a suitable notion of compactness and other standard cryptographic assumptions, any MPC algorithm can be compiled to a secure counterpart that defends against an adversary who controls not only intermediate network routers but additionally up to 1/3 - ? fraction of machines (for an arbitrarily small constant ?) - moreover, this compilation preserves the round complexity tightly, and preserves the space complexity upto a multiplicative security parameter related blowup. As an initial exploration of this important direction, our work suggests new definitions and proposes novel protocols that blend algorithmic and cryptographic techniques

    How to Incentivize Data-Driven Collaboration Among Competing Parties

    Full text link
    The availability of vast amounts of data is changing how we can make medical discoveries, predict global market trends, save energy, and develop educational strategies. In some settings such as Genome Wide Association Studies or deep learning, sheer size of data seems critical. When data is held distributedly by many parties, they must share it to reap its full benefits. One obstacle to this revolution is the lack of willingness of different parties to share data, due to reasons such as loss of privacy or competitive edge. Cryptographic works address privacy aspects, but shed no light on individual parties' losses/gains when access to data carries tangible rewards. Even if it is clear that better overall conclusions can be drawn from collaboration, are individual collaborators better off by collaborating? Addressing this question is the topic of this paper. * We formalize a model of n-party collaboration for computing functions over private inputs in which participants receive their outputs in sequence, and the order depends on their private inputs. Each output "improves" on preceding outputs according to a score function. * We say a mechanism for collaboration achieves collaborative equilibrium if it ensures higher reward for all participants when collaborating (rather than working alone). We show that in general, computing a collaborative equilibrium is NP-complete, yet we design efficient algorithms to compute it in a range of natural model settings. Our collaboration mechanisms are in the standard model, and thus require a central trusted party; however, we show this assumption is unnecessary under standard cryptographic assumptions. We show how to implement the mechanisms in a decentralized way with new extensions of secure multiparty computation that impose order/timing constraints on output delivery to different players, as well as privacy and correctness

    Literature Survey on Secure Multiparty Anonymous Data Sharing

    Get PDF
    The  popularity of internet as a communication medium whether for personal or business requires anonymous communication in various ways. Businesses also have legitimate reasons to make communication anonymous and avoid the consequences of identity revelation. The problem of sharing privately held data so that the individuals who are the subjects of the data cannot be identified has been researched extensively. Researchers have understood the need of anonymity in various application domains: patient medical records, electronic voting, e-mail, social networking, etc. Another form of anonymity, as used in secure multiparty computation, allows multiple parties on a network to jointly carry out a global computation that depends on data from each party while the data held by each party remains unknown to the other parties. The secure computation function widely used is secure sum that allows parties to compute the sum of their individual inputs without mentioning the inputs to one another. This function helps to characterize the complexities of the secure multiparty computation. Keywords:Anonymity,Secure multiparty computatio
    • …
    corecore