801 research outputs found

    An image steganography using improved hyper-chaotic Henon map and fractal Tromino

    Get PDF
    Steganography is a vital security approach that hides any secret content within ordinary data, such as multimedia. First, the cover image is converted into a wavelet environment using the integer wavelet transform (IWT), which protects the cover images from false mistakes. The grey wolf optimizer (GWO) is used to choose the pixel’s image that would be utilized to insert the hidden image in the cover image. GWO effectively selects pixels by calculating entropy, pixel intensity, and fitness function using the cover images. Moreover, the secret image was encrypted by utilizing a proposed hyper-chaotic improved Henon map and fractal Tromino. The suggested method increases computational security and efficiency with increased embedding capacity. Following the embedding algorithm of the secret image and the alteration of the cover image, the least significant bit (LSB) is utilized to locate the tempered region and to provide self-recovery characteristics in the digital image. According to the findings, the proposed technique provides a more secure transmission network with lower complexity in terms of peak signal-to-noise ratio (PSNR), normalized cross correlation (NCC), structural similarity index (SSIM), entropy and mean square error (MSE). As compared to the current approaches, the proposed method performed better in terms of PSNR 70.58% Db and SSIM 0.999 respectively

    Research on digital image watermark encryption based on hyperchaos

    Get PDF
    The digital watermarking technique embeds meaningful information into one or more watermark images hidden in one image, in which it is known as a secret carrier. It is difficult for a hacker to extract or remove any hidden watermark from an image, and especially to crack so called digital watermark. The combination of digital watermarking technique and traditional image encryption technique is able to greatly improve anti-hacking capability, which suggests it is a good method for keeping the integrity of the original image. The research works contained in this thesis include: (1)A literature review the hyperchaotic watermarking technique is relatively more advantageous, and becomes the main subject in this programme. (2)The theoretical foundation of watermarking technologies, including the human visual system (HVS), the colour space transform, discrete wavelet transform (DWT), the main watermark embedding algorithms, and the mainstream methods for improving watermark robustness and for evaluating watermark embedding performance. (3) The devised hyperchaotic scrambling technique it has been applied to colour image watermark that helps to improve the image encryption and anti-cracking capabilities. The experiments in this research prove the robustness and some other advantages of the invented technique. This thesis focuses on combining the chaotic scrambling and wavelet watermark embedding to achieve a hyperchaotic digital watermark to encrypt digital products, with the human visual system (HVS) and other factors taken into account. This research is of significant importance and has industrial application value

    A review of enhanced image techniques using chaos encryption

    Get PDF
    Secured multimedia data has grown in importance over the last few decades to safeguard multimedia content from unwanted users. Generally speaking, a number of methods have been employed to hide important visual data from eavesdroppers, one of which is chaotic encryption. This review article will examine chaotic encryption methods currently in use, highlighting their benefits and drawbacks in terms of their applicability for picture security

    Multi-algorithmic Cryptography using Deterministic Chaos with Applications to Mobile Communications

    Get PDF
    In this extended paper, we present an overview of the principal issues associated with cryptography, providing historically significant examples for illustrative purposes as part of a short tutorial for readers that are not familiar with the subject matter. This is used to introduce the role that nonlinear dynamics and chaos play in the design of encryption engines which utilize different types of Iteration Function Systems (IFS). The design of such encryption engines requires that they conform to the principles associated with diffusion and confusion for generating ciphers that are of a maximum entropy type. For this reason, the role of confusion and diffusion in cryptography is discussed giving a design guide to the construction of ciphers that are based on the use of IFS. We then present the background and operating framework associated with a new product - CrypsticTM - which is based on the application of multi-algorithmic IFS to design encryption engines mounted on a USB memory stick using both disinformation and obfuscation to ‘hide’ a forensically inert application. The protocols and procedures associated with the use of this product are also briefly discussed

    Recent Trends in Image Encryption: A Review

    Get PDF
    Security of multimedia data is gaining acceptance owing to the growth and acceptability of images in various applications and in telecommunication. Encryption is one of the ways to ensure high security of images as they are used in many fields such as in secure medical imaging services, military intelligence, internet and intranet communication, e-banking etc. These images are stored or transmitted through a network; hence the security of such image data is important. In this work, recently developed encryption techniques are studied and analyzed to promote further development of more encryption methods to ensure additional security and versatility. All the techniques reviewed came into existence within the last five years (2011-2015) and are found to be useful for the present day encryption applications. Each technique is unique in its own way, which might be suitable for different applications. As time goes on, new encryption techniques are evolving. Hence, fast and secure conventional encryption techniques will always be needed in applications requiring high rate of security

    Color Image Encryption Using LFSR, DNA, and 3D Chaotic Maps

    Get PDF
    One of the most important challenges facing researchers is to find new methods to protect data sent over the Internet and prevent unauthorized access to it. In this paper, we present a new method for encrypting image data divided into two stages. The first stage requires redistributing the positions of the pixels by using a key of random numbers generated by linear feedback shift registers and then encrypting the data using deoxyribonucleic acid rules. The data generated in the previous stage is encrypted again using chaotic maps to increase the level of security in the second stage. Several statistical tests were implemented to verify the efficiency of the proposed method and compare the results with the work of other researchers. The results of the tests proved a reasonable safety rate compared to other techniques

    Image steganography using least significant bit and secret map techniques

    Get PDF
    In steganography, secret data are invisible in cover media, such as text, audio, video and image. Hence, attackers have no knowledge of the original message contained in the media or which algorithm is used to embed or extract such message. Image steganography is a branch of steganography in which secret data are hidden in host images. In this study, image steganography using least significant bit and secret map techniques is performed by applying 3D chaotic maps, namely, 3D Chebyshev and 3D logistic maps, to obtain high security. This technique is based on the concept of performing random insertion and selecting a pixel from a host image. The proposed algorithm is comprehensively evaluated on the basis of different criteria, such as correlation coefficient, information entropy, homogeneity, contrast, image, histogram, key sensitivity, hiding capacity, quality index, mean square error (MSE), peak signal-to-noise ratio (PSNR) and image fidelity. Results show that the proposed algorithm satisfies all the aforementioned criteria and is superior to other previous methods. Hence, it is efficient in hiding secret data and preserving the good visual quality of stego images. The proposed algorithm is resistant to different attacks, such as differential and statistical attacks, and yields good results in terms of key sensitivity, hiding capacity, quality index, MSE, PSNR and image fidelity

    Entropy in Image Analysis III

    Get PDF
    Image analysis can be applied to rich and assorted scenarios; therefore, the aim of this recent research field is not only to mimic the human vision system. Image analysis is the main methods that computers are using today, and there is body of knowledge that they will be able to manage in a totally unsupervised manner in future, thanks to their artificial intelligence. The articles published in the book clearly show such a future
    • …
    corecore