30,674 research outputs found

    Grid-enabling FIRST: Speeding up simulation applications using WinGrid

    Get PDF
    The vision of grid computing is to make computational power, storage capacity, data and applications available to users as readily as electricity and other utilities. Grid infrastructures and applications have traditionally been geared towards dedicated, centralized, high performance clusters running on UNIX flavour operating systems (commonly referred to as cluster-based grid computing). This can be contrasted with desktop-based grid computing which refers to the aggregation of non-dedicated, de-centralized, commodity PCs connected through a network and running (mostly) the Microsoft Windowstrade operating system. Large scale adoption of such Windowstrade-based grid infrastructure may be facilitated via grid-enabling existing Windows applications. This paper presents the WinGridtrade approach to grid enabling existing Windowstrade based commercial-off-the-shelf (COTS) simulation packages (CSPs). Through the use of a case study developed in conjunction with Ford Motor Company, the paper demonstrates how experimentation with the CSP Witnesstrade and FIRST can achieve a linear speedup when WinGridtrade is used to harness idle PC computing resources. This, combined with the lessons learned from the case study, has encouraged us to develop the Web service extensions to WinGridtrade. It is hoped that this would facilitate wider acceptance of WinGridtrade among enterprises having stringent security policies in place

    Efficient Redundancy Techniques in Cloud and Desktop Grid Systems using MAP/G/c-type Queues

    Get PDF
    Cloud computing is continuing to prove its flexibility and versatility in helping industries and businesses as well as academia as a way of providing needed computing capacity. As an important alternative to cloud computing, desktop grids allow to utilize the idle computer resources of an enterprise/community by means of distributed computing system, providing a more secure and controllable environment with lower operational expenses. Further, both cloud computing and desktop grids are meant to optimize limited resources and at the same time to decrease the expected latency for users. The crucial parameter for optimization both in cloud computing and in desktop grids is the level of redundancy (replication) for service requests/workunits. In this paper we study the optimal replication policies by considering three variations of Fork-Join systems in the context of a multi-server queueing system with a versatile point process for the arrivals. For services we consider phase type distributions as well as shifted exponential and Weibull. We use both analytical and simulation approach in our analysis and report some interesting qualitative results

    Supporting simulation in industry through the application of grid computing

    Get PDF
    An increased need for collaborative research, together with continuing advances in communication technology and computer hardware, has facilitated the development of distributed systems that can provide users access to geographically dispersed computing resources that are administered in multiple computer domains. The term grid computing, or grids, is popularly used to refer to such distributed systems. Simulation is characterized by the need to run multiple sets of computationally intensive experiments. Large scale scientific simulations have traditionally been the primary benefactor of grid computing. The application of this technology to simulation in industry has, however, been negligible. This research investigates how grid technology can be effectively exploited by users to model simulations in industry. It introduces our desktop grid, WinGrid, and presents a case study conducted at a leading European investment bank. Results indicate that grid computing does indeed hold promise for simulation in industry

    The financial clouds review

    No full text
    This paper demonstrates financial enterprise portability, which involves moving entire application services from desktops to clouds and between different clouds, and is transparent to users who can work as if on their familiar systems. To demonstrate portability, reviews for several financial models are studied, where Monte Carlo Methods (MCM) and Black Scholes Model (BSM) are chosen. A special technique in MCM, Least Square Methods, is used to reduce errors while performing accurate calculations. The coding algorithm for MCM written in MATLAB is explained. Simulations for MCM are performed on different types of Clouds. Benchmark and experimental results are presented for discussion. 3D Black Scholes are used to explain the impacts and added values for risk analysis, and three different scenarios with 3D risk analysis are explained. We also discuss implications for banking and ways to track risks in order to improve accuracy. We have used a conceptual Cloud platform to explain our contributions in Financial Software as a Service (FSaaS) and the IBM Fined Grained Security Framework. Our objective is to demonstrate portability, speed, accuracy and reliability of applications in the clouds, while demonstrating portability for FSaaS and the Cloud Computing Business Framework (CCBF), which is proposed to deal with cloud portability

    Integrating BOINC with Microsoft Excel: A case study

    Get PDF
    The convergence of conventional Grid computing with public resource computing (PRC) offers potential benefits in the enterprise setting. For this work we took the popular PRC toolkit BOINC and used it to execute a previously monolithic Microsoft Excel financial model across several commodity computers. Our experience indicates that speedup approaching linear may be realised for certain scenarios, and that this approach offers a viable route to leveraging idle desktop PCs in the enterprise

    Using a desktop grid to support simulation modelling

    Get PDF
    Simulation is characterized by the need to run multiple sets of computationally intensive experiments. We argue that Grid computing can reduce the overall execution time of such experiments by tapping into the typically underutilized network of departmental desktop PCs, collectively known as desktop grids. Commercial-off-the-shelf simulation packages (CSPs) are used in industry to simulate models. To investigate if Grid computing can benefit simulation, this paper introduces our desktop grid, WinGrid, and discusses how this can be used to support the processing needs of CSPs. Results indicate a linear speed up and that Grid computing does indeed hold promise for simulation
    • …
    corecore