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Abstract: Cloud computing is continuing to prove its flexi-
bility and versatility in helping industries and businesses
as well as academia as a way of providing needed com-
puting capacity. As an important alternative to cloud
computing, desktop grids allow to utilize the idle com-
puter resources of an enterprise/community by means of
distributed computing system, providing a more secure
and controllable environment with lower operational ex-
penses. Further, both cloud computing and desktop grids
are meant to optimize limited resources and at the same
time to decrease the expected latency for users. The cru-
cial parameter for optimization both in cloud computing
and in desktop grids is the level of redundancy (replica-
tion) for service requests/workunits. In this paperwe study
the optimal replication policies by considering three vari-
ations of Fork-Join systems in the context of a multi-server
queueing system with a versatile point process for the ar-
rivals. For services we consider phase type distributions as
well as shifted exponential andWeibull. We use both ana-
lytical and simulation approach in our analysis and report
some interesting qualitative results.
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1 Introduction and Model
Description

During early stages of growth, small and medium enter-
prises face the problem of procuring the required comput-
ing power. Themain alternatives to themost expensive op-
tion of owning and running datacenter are the cloud com-
puting (CC) and desktop grids (DG).

According to NIST [25], CC “is a model for enabling
ubiquitous, convenient, on-demand network access to a
sharedpool of configurable computing resources (e.g., net-
works, servers, storage, applications, and services) that
can be rapidly provisioned and released with minimal
management effort or service provider interaction.” Ac-
cording to Murugesan and Bojanova [26], CC “offers huge
computing power, on-demand scalability, and utility-like
availability at low cost”. While there are many types of
CC [7], in the public cloud the users are provided requi-
site computing resources in a dynamic way over the In-
ternet with the help of Web services. These Web services
are provided generally by third-party vendors so as to have
low cost access to users. Thus, the service providers are re-
quired to optimize the limited resources and at the same
time decrease the expected latency for its users.

DG is a specifically designed, inexpensive, and power-
ful option for tasks that (a) require huge computational re-
sources and (b) may be split into a large number of loosely
coupled subtasks (known as workunits). The computa-
tional resources are harvested from the desktops, tablets,
GP-GPUs, and servers owned by volunteers (in case of
the so-called volunteer computing [33]) or by enterprise
itself (the Enterprise DG [14]), utilizing the idle times of
the aforementioned hosts. The diversity of computational
resources makes time to complete the task highly unpre-
dictable. Further, computation is only one of many steps
involved in solving applied research problems and hence
reduction of the expected latency is an important aspect of
DG computing.

A common mechanism used in the CC as well as
DG is replication. Each workunit is processed by multi-
ple hosts until the quorum (required number of valid re-
sults from these hosts) is obtained. Replication reduces
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expected latency [13, 15], whereas quorum reduces the
probability of malicious activity and increases application
turnaround [35]. Note that replication significantly com-
plicates the model and for this reason only recently re-
searchers have started applying queueing theory to study
CC [8, 9, 18] and DG [6].

One of the possible models to study the concepts of
replication and quorum may be seen in the class of Fork-
Join (FJ) systems. In a classical c-server FJ system an ar-
riving job is split into c tasks and each of these is sent
to one of the c (homogeneous) servers, each having a
distinct queue. Service of a job is completed as soon as
all c tasks of the job have completed their services (see
e.g., [2, 8, 20, 27]). In [17] a generalization of the FJ queue-
ing model is considered (referred to as (c, k)-FJ system),
wherein an arriving job, split into c tasks and sent to each
of c servers, is said to have completed the service when
any k out c tasks are completed. Note that (c, c)-FJ is the
classical FJ system. In [17], the Fork-Early-Cancel variation
of the FJ system (referred to as (c, k)-FEC) is considered,
wherein an arriving job, split into c tasks and sent to each
of c queues, waits until any k of c tasks start the service,
and at that moment the remaining (c − k) redundant tasks
are canceled. A detailed comparison of FJ and FEC mod-
els is performed in [18]. Summarizing the important results
from [16–18]),
(a) (c, 1)-FJ system is equivalent to a single server system
withfirst-come-first-served (FCFS) discipline, inwhich the
service times are given by the minimum of c iid. service
times;
(b) (c, 1)-FEC system is equivalent to a c-server system
with FCFS discipline;
(c) (c, k)-FJ is upper-bounded by (c, k)-Split-Merge (SM)
system (in which the replicas of a job are not allowed to
start service before the previous job completes its service),
equivalent to a single server system, in which the service
times are obtained as the k-th order statistics of c iid. ran-
dom variables.

In [37] the authors study a multiserver FJ-system with
Markovian arrival process (MAP), phase type (PH) ser-
vices, task vacations and intercommunication times (mod-
eled as PH random variables). An approximate solution
based on stochastic decomposition is derived, and exam-
ples are presented comparing the approximationwith sim-
ulation results under four dynamic scheduling policies for
a few scenarios. We also note an interesting overview of
FJ and related systems [39]. Specifically, in this survey pa-
per, the author reviews the queueing systems related to FJ
systems, the analysis of certain Markovian queues, meth-
ods to estimate the expected value of themaximum (which

play an important role in CC and DG models) of different
distributions, and approximations for the mean delay.

The focus of our paper is to study the three FJ systems:
(i) (c, 1)-FJ system, (ii) (c, 1)-FEC system, and (iii) (c, k)-SM
systems, 1 6 k 6 c, under the assumptions that the jobs
arrive according to a MAP.

The MAP, introduced as a versatile Markovian point
process by Neuts [28] and later simplified using less nota-
tions by Lucantioni, et.al. [23], is described by an under-
lying (continuous-time) Markov chain with generator, say,
D, of dimensionm such that D = D0+D1. Note that thema-
trix D0 governs transitions without arrivals and thematrix
D1 governs transitions inducing arrivals to the system. It
should be pointed out thatMAP is a rich class of point pro-
cesses and includesmany classical processes such as Pois-
son, PH-renewal processes, and Markov-modulated Pois-
son process. For more details on MAP and their applica-
tions in stochastic modelling, we refer to [22, 23, 30, 31].
Further, we refer the reader to [1, 4, 5] for a review and re-
cent work on MAP.

We assume that all c servers are homogeneous and
that the services they provide are PH with representation
(β, S) of order n. In simulations, however,we consider gen-
eral service time distribution.

In the sequel we need the following notations. By e
we denote a column vector of 1’s; ei, a unit column vec-
tor with 1 in the ith position and 0 elsewhere; and I, and
identity matrix (of appropriate dimensions). Should there
be a need to emphasize the dimension, we will do so like
Im rather than I, and similarly for the others. The notation
S0 is such that Se+ S0 = 0. The symbols,⊗ and⊕, respec-
tively, stand for the Kronecker product and Kronecker sum
of matrices. For details and properties on Kronecker prod-
ucts and Kronecker sums we refer the reader to [11, 24, 38].

Suppose λ and µ, respectively, denote the arrival and
service rates. It is easy to verify that λ = δD1e and
µ = [β(−S)−1e]−1, where δ is the stationary probability
vector of the irreducible generator D and is obtained as
the unique (positive) probability vector satisfying δD =
0, δe = 1. The expected latency E(L) (defined as the aver-
age sojourn time of a job in the system) and the expected
cost of computing E(C) (which is taken to be the average
service time of a job) are two performance measures that
play a key role in identifying an optimum (replication)
strategy.
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2 The steady-state analysis
In this section we will study the FJ, SM and FEC systems as
described in Section 1 in steady-state.

2.1 (c, 1)-FJ system

In this system, recall, an arriving job is split into c tasks
and served by each of c servers until the earliest service
completion of the task, when all other tasks of the job in
service are removed from the system. This system is known
to be equivalent to MAP/PH/1 queue [18], where the ser-
vice time, obtained as the minimum of c identical (β, S)
PH-distributions, has PH-distribution (α, T) of order nc,
given as follows [29]

α = β ⊗ · · ·⊗ β⏟  ⏞  
c

, T = S ⊕ · · ·⊕ S⏟  ⏞  
c

.

Let µT = [α(−T)−1e]−1 denote the service rate. In order
to study the model in this section as a continuous-time
Markov chain (CTMC), we need to keep track of the num-
ber of jobs, N(t) in the system, the phase of the service
times, Jr , 1 6 r 6 c, if any, and the phase of the ar-
rival process, M(t) at time t > 0. The state space of CTMC
{(N(t), J1(t), . . . , Jc(t),M(t)) : t > 0} is given by

Ω̃ = {i, i > 0},

where
– set0 = {k, 1 6 k 6 m}of dimensionm corresponds to

the case where the system is idle and theMAP process
is in one of m phases;

– set i = {(i, j1, · · · , jc , k), 1 6 i, 1 6 jr 6 n, 1 6 k 6
m} of dimension mnc corresponds to the case when a
job is at service, i −1 jobs are in the queue (if any), the
service time at rth server (1 6 r 6 c) is in one of the n
phases, the MAP process in one of the m phases.

The generator (see e.g., [30]) of the CTMC governing the
MAP/PH/1 queue is of the form

Q̃ =

⎡⎢⎢⎢⎢⎢⎢⎣
D0 α ⊗ D1
T0 ⊗ I Ã1 Ã0

Ã2 Ã1 Ã0
Ã2 Ã1 Ã0

. . . . . . . . .

⎤⎥⎥⎥⎥⎥⎥⎦ , (1)

where

Ã0 = Inc ⊗ D1, Ã1 = T ⊕ D0, Ã2 = T0α ⊗ Im .

2.1.1 The steady-state probability vector

Towards this end, we define x̃, partitioned as x̃ =
(x̃(0), x̃(1), · · · ), to be the steady-state probability vector
of generator Q̃ given in (1). Note that Q̃ is of QBD-type and
thus possesses matrix-geometric steady-state probability
vector [29] (for details on QBD processes see [1, 4]). Spe-
cific structure of the generator given in (1), allows to obtain
the vector x̃ as follows.

Theorem 1. Under the stability condition λ < µT , the
steady-state probability vector x̃ is of modified matrix-
geometric type. Specifically, we have

x̃(0)D0 + x̃(1)(T0 ⊗ I) = 0,
x̃(0)(α ⊗ D1) + x̃(1)[Ã1 + R̃Ã2] = 0,

x̃(i) = x̃(1)R̃i−1, i > 1,

where R̃ is the minimal non-negative solution to the matrix-
quadratic equation:

R̃2Ã2 + R̃Ã1 + Ã0 = 0. (2)

and the normalizing equation is given by

x̃(0)e + x̃(1)(I − R̃)−1e = 1.

Proof: The proof follows by applying thematrix-geometric
results as seen in [29].

2.1.2 Expected latency and the cost of computing

The expected latency, E(L) and the expected cost of com-
puting, E(C), for the FJ system are given by [29]

E(L) = 1
λ x̃(1)(I − R̃)

−2e, E(C) = c
µT

.

Remark 1. In a MAP/M/1-type system, the expected cost
equals E(C) = µ−1 since theminimum of c exponentials with
rate µ is exponential with rate µT = cµ.

We note that in general E(C) depends on c and the type of
dependence is related to the so-called log-concavity (log-
convexity) of the service time distribution, namely, the fol-
lowing lemma holds [18]:

Lemma 1. If the service time of a task has log-concave
(log-convex) distribution, then E(C) is non-decreasing (non-
increasing) in c.
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2.1.3 Explicit solution for MAP(2)/M/1-type system

In general, the matrix R̃ has to be obtained numerically
with anyof the iterative procedures (see e.g. [12]). However,
in the casewhenm is small, one can obtain R̃ explicitly us-
ing complex variable approach as presented in [10]. Sup-
pose that we consider the arrival process to be a MAP with
two phases (m = 2) and the service distribution of a single
task of the job is exponential with rate µ. Thus, the system
is equivalent to MAP/M/1-type system, with the service
time of the job being exponentially distributed with rate
µT = cµ (see Remark 1), and the stability criterion reduces
to λ < cµ. In this case, R̃ may be obtained explicitly and
the details are as follows.

First, note that for the current special case n = 1, β =
1, S = −µ, which implies α = 1, T = −cµ, and T0 = cµ.
This simplifies the matrices Ãi , i = 0, 1, 2 as follows:

Ã0 = D1, Ã1 = D0 − cµI2, Ã2 = cµI2.

Now we briefly outline the procedure of obtaining R̃. The
necessary details may be found in [10].
1. Write down the determinantal polynomial

det(A(ξ )) := det(Ã0 + ξ Ã1 + ξ2Ã2) for ξ complex.
2. Using trigonometric solution, obtain the greatest root

ξ3 of the third degree polynomial det(A(ξ ))/(ξ − 1) =
a3ξ3 + a2ξ2 + a1ξ + a0, with roots known to be real.

3. Find b0 = −a0/(a3ξ3), b1 = a2/a3 + ξ3.
4. Find R̃ as follows:

R̃ = [b0Ã2 − Ã0][Ã1 − b1Ã2]−1.

After obtaining R̃, following (2), it is easy to obtain the
explicit solution for the steady-state probability vector x̃.
Thus, the value E(L) may also be obtained exactly, while
E(C) = µ−1 (see Remark 1). It allows to evaluate the system
performance for relatively large values of c.

To illustrate this approach, we evaluate the value E(L)
for c = 1, . . . , 1000, with an example of MAP(2) with pa-
rameter matrices (D0, D1) given by

D0 =
(︃
−4 2
2 −5

)︃
, D1 =

(︃
1 1
2 1

)︃
.

In this case, verify that the stationary vector δ = (4/7, 3/7)
and the fundamental rate λ = 24

7 . We also take µ = 3 so
that the system is stable for any c > 1. Then, we obtain R̃
following theprocedure above, anddepict thedependence
E(L) on c. The results are displayed in Fig. 1, with logarith-
mic y-axis. It can be seen, that the E(L) decreases rapidly
with increasing number of replicas c.
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Figure 1: Reduced expected latency in MAP(2)/M/1-type system:
the expected latency E(L) (log. scale) vs. number of servers (or
replicas), c.

2.2 FEC system

Here, we consider a system in which an arriving job is
split into c tasks and each task is sent to each of the c
servers. As soon as any one of the c tasks starts service,
all other (c − 1) redundant tasks waiting in the queue are
canceled. The system corresponds to a queueing model
of MAP/PH/c-type. To obtain the two steady-state perfor-
mancemeasures, we reuse a few notations from the FJ sys-
tem. Let N(t), Jr , 1 6 r 6 c, and M(t) denote, respec-
tively, the number of jobs in the system, the phase of ser-
vice of the rth server (ignored if that server is idle), and
the phase of the arrival process, at time t. The process
{(N(t), J1(t), · · · , Jc(t),M(t)) : t > 0} is a CTMC with the
state space given by

Ω2 = {*}
⋃︁

{̂i, 1 6 i 6 c − 1}
⋃︁

{i, i > 0},

where the set of states is defined as follows:
– The set * = {k, 1 6 k 6 m} of dimension m corre-

sponds to the case where the system is idle and the
MAP process is in one of m phases.

– î = {(i, j1, · · · , ji , k), 1 6 jr 6 n, 1 6 k 6 m} of di-
mensionmni corresponds to the case where i, 1 6 i 6
c−1, servers are at service, with rth (r 6 i) server busy
in one of the n phases, and the MAP process is in one
of the m phases.

– i = {(i, j1, · · · , jc , k), 1 6 jr 6 n, 1 6 k 6 m} of
dimension mnc corresponds to the case where all c
servers are busy with i > 0 jobs waiting in the queue;
the MAP process is in one of m phases, the rth (r 6 c)
server busy in one of n phases.
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It is easy to verify the CTMCwith the above state space has
the infinitesimal generator matrix of the form:

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D0 B0,1
B1,0 B1,1 B1,2
. . . . . . . . .

Bc−1,c−2 Bc−1,c−1 Bc−1,c
Bc,c−1 A1 A0

A2 A1 A0
. . . . . . . . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3)

where

Bj,j = S ⊕ S ⊕ · · ·⊕ S⏟  ⏞  
j

⊕D0, 1 6 j 6 c − 1,

Bj,j−1 =
j−1∑︁
k=0

Ink ⊗ S
0 ⊗ Îj−k , 1 6 j 6 c,

Bj,j+1 = Inj ⊗ β ⊗ D1, 0 6 j 6 c − 1,
A0 = Inc ⊗ D1,
A1 = S ⊕ S ⊕ · · ·⊕ S⏟  ⏞  

c

⊕D0,

A2 =
c−1∑︁
k=0

Ink ⊗ S
0β ⊗ Îc−k ,

Îj = Imnj−1 .

2.2.1 The steady-state probability vector for FEC system

In this section we will look at the steady-state proba-
bility vector of the CTMC with generator given in (3).
Towards this end, we define x, partitioned as x =
(x*, x̂(1), · · · , x̂(c − 1), x(0), x(1), x(2), · · · ), to be the
steady-state probability vector of Q. That is, x satisfies

xQ = 0, xe = 1. (4)

Note that (a) x* of dimensionm gives the steady-state prob-
ability vector that all c servers are idle with the arrival pro-
cess is in one of m states; (b) x̂(j), 1 6 j 6 c − 1, of di-
mension mnj gives the steady-state probability vector that
j servers are busy with no job waiting in the queue, the
arrival process is in one of m phases, and each one of j
busy servers is in one of n phases; (c) x(i), i > 0, of di-
mensionmnc gives the steady-state probability vector that
all c servers are busy with i jobs are waiting in the queue,
the arrival process is in one of m phases, and each one of
c busy servers is in one of n phases.

It is easy to verify (see [29]) the following theorem.

Theorem 2: Under the stability condition that λ < cµ,

the steady-state probability vector x is of modified
matrix-geometric type. Specifically, we have

x*D0 + x̂(1)B1,0 = 0,

x*B0,1 + x̂(1)B1,1 + x̂(2)B2,1 = 0,

x̂(j − 1)Bj−1,j + x̂(j)Bj,j + x̂(j + 1)Bj+1,j = 0, 2 6 j 6 c − 1,

x̂(c − 1)Bc−1,c + x(0)[A1 + RA2] = 0,

x(i) = x(0)Ri , i > 1,
(5)

where R is the minimal non-negative solution to the
matrix-quadratic equation:

R2A2 + RA1 + A0 = 0. (6)

and the normalizing equation is given by

x*e +
c−1∑︁
j=1
x̂(j)e + x(0)(I − R)−1e = 1. (7)

2.2.2 Expected latency and the cost of computing for
FEC system

The expected latency and the expected cost of computing
for the FEC system are given by

E(L) = 1
λ

[︃
x(0)

(︁
R(I − R)−2 + c(I − R)−1

)︁
e +

c−1∑︁
i=1

ix̂(i)e
]︃
,

E(C) = 1
µ .

2.3 (c, k)-SM system

In this case we split each job into c tasks only at (be-
ginning) service epochs. The jobs sequentially enter into
service (in contrast to FJ system, where the jobs are dis-
patched to each of c servers immediately, and each server
has its independent queue). Thus, the service is offered ac-
cording to FCFS basis. After being processed, each task
is routed to a station where they wait until a quorum of
k, 1 6 k 6 c, of processed tasks of the same job is ob-
tained before it leaves the system. At that time the remain-
ing (c − k) servers are preempted and now all c servers
are available for serving the next task. Thus, in this case,
we study (c, k)-SM system, 1 6 k 6 c, as a single server
queueing system in which the service times are obtained
as the k-th order statistics of c identically distributed ran-
dom variables. It is known (see, e.g., [3]) that the kth or-
der statistics of c identically distributed PH-distributions
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is again a PH-distribution. However, the dimension of the
PH-distribution of the kth order statistics grows exponen-
tially with k and hence in this paper we will resort to sim-
ulation for the steady-state analysis of the model. We refer
the reader to [36] for an extended discussion of these type
of models.

3 Illustrative Examples
The purpose of this section is to discuss a few illustrative
examples to bring out the qualitative nature of the models
under study. Towards this end, we consider five arrival
processes and three service time distributions. These five
MAPs and three PH-representations are as follows.

1. Erlang (ERLA):

D0 =
(︃
−2 2
0 −2

)︃
, D =

(︃
0 0
2 0

)︃

2. Exponential (EXPA):

D0 =
(︁
−1

)︁
, D =

(︁
1
)︁

3. Hyperexponential (HEXA):

D0 =
(︃
−1.90 0
0 −0.19

)︃
, D =

(︃
1.71 0.19
0.171 0.019

)︃

4. MAP with negative correlation (MNCA):

D0 =

⎛⎜⎝ −1.00222 1.00222 0
0 −1.00222 0
0 0 −225.75

⎞⎟⎠ ,

D =

⎛⎜⎝ 0 0 0
0.01002 0 0.9922
223.4925 0 2.2575

⎞⎟⎠
5. MAP with positive correlation (MPCA):

D0 =

⎛⎜⎝ −1.00222 1.00222 0
0 −1.00222 0
0 0 −225.75

⎞⎟⎠ ,

D =

⎛⎜⎝ 0 0 0
0.9922 0 0.01002
2.2575 0 223.4925

⎞⎟⎠ .

Note first that the first three arrival processes, namely,
ERLA, EXPA, and HEXA, have zero correlation for two
successive inter-arrival times. The arrival processes la-
beled MNCA and MPCA, respectively, have negative and

positive correlation (with values -0.4889 and 0.4889)
for two successive inter-arrival times. The ratio of the
standard deviation of the inter-arrival times of these five
arrival processes with respect to ERLA are, respectively,
1, 1.41421, 3.17451, 1.99336, and 1.99336. The above MAP
processes will be normalized so as to have a specific
arrival rate.
For the service timeswe consider the following three (β, S)
PH−distributions. These distributions will be normalized
so as to arrive at a desired value for µ.

A. Erlang (ERLS) :

β = (1, 0), S =
(︃
−2 2
0 −2

)︃
.

B. Exponential (EXPS) :

β = (1), S =
(︁
−1

)︁
.

C. Hyperexponential (HEXS) :

β = (0.9, 0.1), S =
(︃
−10 0
0 −1

)︃
.

Example 1: The purpose of this example is to see the be-
havior of E(L) and E(C) under different arrival processes
and service times. Towards this end, we fix λ = 0.8, µ =
1.0, vary c = 1, . . . 5 and plot the measures ln(E(L)) and
E(C) under various scenarios, in Fig. 2.

First, we want to point out that in [18] for the case of
Poisson arrivals, it was shown that, as c increases,
(a) for log-concave type service distribution, E(L) de-
creases and E(C) increases;
(b) for exponential E(L) decreases at no additional cost,
that is, E(L) decreases while E(C) remains constant;
(b) log-convex type service distribution E(L) and E(C) both
decrease.

We notice from Fig. 2, that (for all arrival processes
considered) for Erlang (log-concave) services, ln(E(L)) de-
creases and E(C) increases with increasing c. We also no-
tice that MPCA arrivals appears to produce the largest
E(C) as compared to other arrivals. In the case of hyper-
exponential (log-convex) services both ln(E(L)) and E(C)
decrease with increasing c. Note that the results agree
with observed in [18]. It is also worth pointing out that
among renewal arrivals, the one with the largest coeffi-
cient of variation, namely, hyperexponential, yields the
largest E(L).

Example 2: The purpose of this example is to compare
FJ and FEC systems. In order to do this, we vary both λ and
c and plot E(L) in Fig. 3 and 4, respectively, for ERLS and
HEXS under various scenarios.
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Looking at these two figures, we observe the following
key points.
– Obviously, having a larger variability in services

(HEXS) yields a higher value for E(L) as compared to
the ones with smaller variability (ERLS).

– When considering Erlang services (see Fig. 3), we no-
tice that for both Erlang and hyperexponentail ar-
rivals, a pattern (similar to the one observed in [18])
with regard to E(L) when comparing the two systems,
FJ and FEC. Namely, starting from some input rate (re-
spectively, with increasing load) the FJ system gives
smaller E(L) compared to FEC. The crossing points of
the two curves for these systems depend on the load
(and hence, on the ratio of λ and c). Also, the cross-
ing points for hyperexponential arrivals are less than
the corresponding ones for Erlang arrivals. However,
for positively correlated arrivals (MPCA) we see that
FJ system appears to yield a smaller value compared
to those of FEC system, and furthermore, for large λ
values the difference is even more apparent.

– When looking hyperexponential services (see Fig. 4),
we notice that for all combinations, FJ system appears
to yield amuch smaller expected latency as compared
to the corresponding FEC system. This is intuitively
clear, since having a highly variable services such as
hyperexponential will yield a smaller service time for
FJ system compared to FEC system. While this has
been observed in ([18]) for the case of Poisson arrivals
and for log-concave and log-convex type services, we
notice here the same phenomenon for other types of
arrival processes. But more than this observation, the
fact that for non-Poisson arrivals andnon-exponential
services the measure E(L) appears to differ signifi-
cantly for the two systems: FJ and FEC.

It is worth mentioning here that when the services are ex-
ponential, we noticed that FJ system yields a higher value
for E(L) when compared to the corresponding FEC system
for all combinations and for all values of λ. When λ is in-
creased (keeping the stability) E(L) appears to approach
the same value for both systems. To save space, we do not
provide the figures here, since they do not provide addi-
tional insight.
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Figure 2: ln(E(L)) vs E(C) as c is varied under different scenarios
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Figure 3: Plot of E(L) under various scenarios for Erlang services
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Figure 4: Plot of E(L) under various scenarios for hyperexponential services
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4 Simulation
So far, we studied FJ and FEC systems analytically. How-
ever, the state space of the CTMC governing the systemun-
der study grows exponentially with c, and hence we turn
to simulation to study the systems for large values of c.
To complete the experiments, we validated our simulation
modelswith the analytical ones. Towards this end,we con-
sider the arrival processes and service time distributions
defined in Section 3. We fix λ = 0.8, µ = 1.0, and vary c
from 1 to 5. We compare the analytical results for FJ and
FEC systems with the simulated results, for the same set
of parameter values. The simulation models were imple-
mented using ARENA [19], a powerful software used in ap-
plied stochastic modeling and other areas. We made five
simulation runs with each run lasting 1,000,000 units of
model time.

In Tables 1 and 2, respectively, we display
the error percentages (i.e., error = |analytical −
simulated|/analytical) for E(L) and E(C) (in parenthe-
ses), for the FJ and FEC systems. Generally the simulated
results and the corresponding analytical results agree
closely, the error percentages are less than 1%. We also
denoted the scenarios with error percentages from 1.09%
to 6.65%, and re-run the simulations with 10,000,000
units of model time, which provided a significant error
reduce (e.g. for MPCA arrivals, EXPS services, and c = 1,
the error percentage dropped from 6.65% to 0.92%).

Having validated the simulated models with the ana-
lyticalmodels for the FJ andFEC systems,wenow simulate
these two models when dealing with large values of c.

Example 3: We fix λ = 0.9, µ = 1.0, take c =
1, . . . , 10, 15, 20, 50 and plot themeasures E(C) and E(L)
under various scenarios, in Fig. 5 and Fig. 6, respectively.
It is clear from these figures that
– for the FJ system, E(C) increases as the number of

servers (or replication parameter) is increased only for
the case of ERLS. It decreases to a constant for the
HEXS, and we stress the fast decrease for low values
of c. Note that we plot the theoretical value 1/µ for
the EXPS, since the result follows analytically. In gen-
eral, E(C) depends on the type of service time distri-
bution, which agrees to Remark 1 and Lemma 1, since
the ERLS is log-concave, while HEXS is log-convex.

– for the FEC system, E(C) is given by 1
µ confirming the

theoretical result (see Section 2.2.2).
– we see an interesting pattern among different scenar-

ios for the measure E(L). This measure appears to be
larger for FEC compared to that of FJ system for all sce-
narios except for MPCA arrivals and ERLS services.

In this case (i.e., for MPCA with ERLS) we see that FJ
system yields a higher E(L). This indicates that when
services have a coefficient of variation less than one
and for positively correlated type of arrivals, one may
need a larger number of servers as compared to other
scenarios.
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Figure 5: Plot of E(C) under various scenarios

4.1 Simulation of (c, k)-SM System

In this section we concentrate on simulating (c, k)-SM sys-
tem under various scenarios. In addition to the exponen-
tial service time distribution EXPS mentioned earlier, we
also consider a log-concave andaheavy-tailed one. The cu-
mulative distribution functions (CDF) follow:
D. Shifted Exponential (SEXS): The shifted exponential
with a shift of magnitude ∆ > 0 is one with CDF

FSE(x) =
{︃

1 − e−µ(x−∆), x > ∆,
0, x < ∆.

E. Weibull (WEIB): The 2-parameter Weibull considered
here has the CDF

FWB(x) =
{︃

1 − e−(2x)
0.5
, x > 0,

0, x < 0.

First, note that the simulated mean (µ′S) and standard de-
viation (σS) when using the three service distributions are
given in Table 3 below. In the example below,we simulated
the models using three simulation runs and each run is
done to cover 500,000 jobs leaving the system.

Example 4: In this example we look at (c, k)-SM sys-
tem by considering c = 3, 4, 5, vary k = 1, . . . , c and vary
ρ = λµ′S = 0.2, 0.5, 0.9, 0.95, by choosing λ appropriately
using the values of µ′S displayed in Table 3 above. Note that
the values of λ will be dependent of the type of arrival pro-
cess as well as the service distribution. However, using ρ
as a common parameter we can compare various scenar-
ios to bring out the qualitative aspects of the system under
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Table 1: Error percentages for E(L)(E(C)) under various scenarios for FJ system

PH − D c ERLA EXPA HEXA MNCA MPCA
1 0.45%( 0.03%) 0.08%( 0.07%) 0.28%( 0.00%) 0.32%( 0.03%) 6.30%( 0.02%)
2 0.15%( 0.06%) 0.33%( 0.10%) 0.06%( 0.06%) 0.10%( 0.06%) 3.02%( 0.10%)

ERLS 3 0.20%( 0.01%) 0.21%( 0.01%) 0.43%( 0.07%) 0.09%( 0.02%) 3.74%( 0.06%)
4 0.18%( 0.15%) 0.09%( 0.16%) 0.16%( 0.17%) 0.03%( 0.18%) 2.20%( 0.11%)
5 0.05%( 0.47%) 0.20%( 0.47%) 0.10%( 0.44%) 0.41%( 0.48%) 2.93%( 0.43%)
1 0.56%( 0.00%) 0.21%( 0.04%) 0.58%( 0.10%) 0.13%( 0.02%) 6.65%( 0.13%)
2 0.19%( 0.09%) 0.05%( 0.03%) 0.11%( 0.00%) 0.03%( 0.01%) 3.83%( 0.10%)

EXPS 3 0.14%( 0.01%) 0.01%( 0.01%) 0.09%( 0.07%) 0.07%( 0.06%) 0.48%( 0.00%)
4 0.10%( 0.11%) 0.16%( 0.12%) 0.24%( 0.08%) 0.07%( 0.04%) 0.64%( 0.04%)
5 0.24%( 0.02%) 0.09%( 0.03%) 0.09%( 0.01%) 0.02%( 0.03%) 1.31%( 0.05%)
1 1.31%( 0.03%) 1.63%( 0.14%) 0.30%( 0.08%) 0.50%( 0.04%) 0.91%( 0.01%)
2 0.41%( 0.03%) 0.37%( 0.01%) 0.16%( 0.06%) 0.05%( 0.01%) 0.49%( 0.03%)

HEXS 3 0.23%( 0.01%) 0.03%( 0.01%) 0.00%( 0.03%) 0.09%( 0.03%) 0.02%( 0.05%)
4 0.40%( 0.09%) 0.07%( 0.09%) 0.14%( 0.05%) 0.00%( 0.00%) 1.39%( 0.04%)
5 0.46%( 0.08%) 0.03%( 0.04%) 0.03%( 0.04%) 0.12%( 0.09%) 0.60%( 0.02%)

Table 2: Error percentages for E(L)(E(C)) under various scenarios for FEC system

PH − D c ERLA EXPA HEXA MNCA MPCA
1 0.45%( 0.00%) 0.08%( 0.00%) 0.28%( 0.00%) 0.32%( 0.00%) 6.30%( 0.00%)
2 0.02%( 0.00%) 0.03%( 0.00%) 0.14%( 0.00%) 0.07%( 0.00%) 0.38%( 0.00%)

ERLS 3 0.01%( 0.00%) 0.00%( 0.00%) 0.02%( 0.00%) 0.05%( 0.00%) 0.72%( 0.00%)
4 0.02%( 0.00%) 0.01%( 0.00%) 0.01%( 0.00%) 0.04%( 0.00%) 0.12%( 0.00%)
5 0.02%( 0.00%) 0.02%( 0.00%) 0.01%( 0.00%) 0.03%( 0.00%) 0.96%( 0.00%)
1 0.56%( 0.00%) 0.21%( 0.00%) 0.58%( 0.00%) 0.13%( 0.00%) 6.65%( 0.00%)
2 0.01%( 0.00%) 0.08%( 0.00%) 0.29%( 0.00%) 0.14%( 0.00%) 1.62%( 0.00%)

EXPS 3 0.02%( 0.00%) 0.02%( 0.00%) 0.10%( 0.00%) 0.03%( 0.00%) 1.09%( 0.00%)
4 0.03%( 0.00%) 0.02%( 0.00%) 0.00%( 0.00%) 0.01%( 0.00%) 0.83%( 0.00%)
5 0.03%( 0.00%) 0.04%( 0.00%) 0.01%( 0.00%) 0.03%( 0.00%) 1.44%( 0.00%)
1 1.31%( 0.00%) 1.63%( 0.00%) 0.30%( 0.00%) 0.50%( 0.00%) 0.91%( 0.00%)
2 0.28%( 0.00%) 0.24%( 0.00%) 0.13%( 0.00%) 0.40%( 0.00%) 0.40%( 0.00%)

HEXS 3 0.16%( 0.00%) 0.20%( 0.00%) 0.06%( 0.00%) 0.08%( 0.00%) 2.84%( 0.00%)
4 0.11%( 0.00%) 0.09%( 0.00%) 0.02%( 0.00%) 0.19%( 0.00%) 3.22%( 0.00%)
5 0.09%( 0.00%) 0.09%( 0.00%) 0.08%( 0.00%) 0.15%( 0.00%) 0.97%( 0.00%)

study. The results of experiment are presented on Fig. 7. It
is clear from the results, that the measure E(L) appears
– to decrease with increasing c for all scenarios and for

all k (where comparison is valid). For example, we can
compare k up to 3 when dealing with c = 3, 4, 5, we
can compare k up to 4 when dealing with c = 4, 5.

– to exhibit an interesting pattern. As k increases to c,
we see the expected latency for heavy-tailed services
like Weibull appears to go from least value (compared
to other service distributions) to the highest. This
seems to be the case for higher c. This phenomenon
can be explained as follows. For heavy-tailed distribu-

tion, when k is closer to c, the mean service time will
bemuchhigher as compared to other distributions, re-
sulting in a higher E(L).

5 Concluding Remarks and future
research work

In this paper we studied queuing models useful in the
study of efficient redundancy techniques in CC and DG
systems. We combined both analytic and simulation ap-
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Figure 6: Plot of E(L) under various scenarios

proach in the study of such queuing models under the as-
sumption that the arrivals occur according to a versatile
Markovianpoint process. Through simulation andnumeri-
calmethodswe showed the effect of redundancy on the ex-

pected latency as well as on the expected cost. Themodels
studied in this paper can be extended in a number of ways.
For example, heavy-tailed distributions for services [36]
play a significant role in CC and DG areas. So, it will be of
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Figure 7: Plot of E(L) under various scenarios when c = 3, 4, 5 and k = 1, . . . , c for ρ = 0.2, 0.5, 0.9, 0.95 (black, red, green, blue circles
correspondingly). Radius of the circle is proportional to the E(L).
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Table 3: Simulated µ′S (σS) for (c, k) systems when µ = 1

c k EXPS SEXP(0.2) WEIB(0.5, 0.5)
1 0.3330 (0.3324) 0.4668 (0.2666) 0.0041 (0.0644)

3 2 0.8327 (0.5996) 0.8662 (0.4797) 0.0842 (0.7196)
3 1.8310 (1.1630) 1.6671 (0.9315) 2.8885 (28.7177)
1 0.2500 (0.2495) 0.4001 (0.1999) 0.0009 (0.0138)
2 0.5831 (0.4154) 0.6667 (0.3340) 0.0134 (0.1118)

4 3 1.0826 (0.6491) 1.0665 (0.5204) 0.1566 (1.0599)
4 2.0805 (1.1896) 1.8652 (0.9514) 3.7994 (33.1038)
1 0.2002 (0.2000) 0.3599 (0.1597) 0.0003 (0.0040)
2 0.4497 (0.3189) 0.5599 (0.2561) 0.0036 (0.0297)

5 3 0.7825 (0.4607) 0.8269 (0.3707) 0.0284 (0.1808)
4 1.2825 (0.6799) 1.2271 (0.5451) 0.2402 (1.3591)
5 2.2780 (1.2052) 2.0251 (0.9653) 4.6818 (36.7680)

interest to explore this in the context of classical FJ system
as well as extensions of FJ and SM systems. This will shed
additional light similar to [18] but formore versatile arrival
process. It is alsoworthy of consideration for further exten-
sions both from theoretical and algorithmic points of view
to compare the results with the model presented in [37]. It
should be pointed that some preliminary results for multi-
server queues with log-convex type services are available
in [36].
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