162 research outputs found

    Secure Full-Duplex Device-to-Device Communication

    Get PDF
    This paper considers full-duplex (FD) device-to-device (D2D) communications in a downlink MISO cellular system in the presence of multiple eavesdroppers. The D2D pair communicate sharing the same frequency band allocated to the cellular users (CUs). Since the D2D users share the same frequency as the CUs, both the base station (BS) and D2D transmissions interfere each other. In addition, due to limited processing capability, D2D users are susceptible to external attacks. Our aim is to design optimal beamforming and power control mechanism to guarantee secure communication while delivering the required quality-of-service (QoS) for the D2D link. In order to improve security, artificial noise (AN) is transmitted by the BS. We design robust beamforming for secure message as well as the AN in the worst-case sense for minimizing total transmit power with imperfect channel state information (CSI) of all links available at the BS. The problem is strictly non-convex with infinitely many constraints. By discovering the hidden convexity of the problem, we derive a rank-one optimal solution for the power minimization problem.Comment: Accepted in IEEE GLOBECOM 2017, Singapore, 4-8 Dec. 201

    Secure Full-Duplex Device-to-Device Communication

    Get PDF
    This paper considers full-duplex (FD) device-to-device (D2D) communications in a downlink MISO cellular system in the presence of multiple eavesdroppers. The D2D pair communicate sharing the same frequency band allocated to the cellular users (CUs). Since the D2D users share the same frequency as the CUs, both the base station (BS) and D2D transmissions interfere each other. In addition, due to limited processing capability, D2D users are susceptible to external attacks. Our aim is to design optimal beamforming and power control mechanism to guarantee secure communication while delivering the required quality-of-service (QoS) for the D2D link. In order to improve security, artificial noise (AN) is transmitted by the BS. We design robust beamforming for secure message as well as the AN in the worst-case sense for minimizing total transmit power with imperfect channel state information (CSI) of all links available at the BS. The problem is strictly non-convex with infinitely many constraints. By discovering the hidden convexity of the problem, we derive a rank-one optimal solution for the power minimization problem.Comment: Accepted in IEEE GLOBECOM 2017, Singapore, 4-8 Dec. 201

    Physical Layer Service Integration in 5G: Potentials and Challenges

    Full text link
    High transmission rate and secure communication have been identified as the key targets that need to be effectively addressed by fifth generation (5G) wireless systems. In this context, the concept of physical-layer security becomes attractive, as it can establish perfect security using only the characteristics of wireless medium. Nonetheless, to further increase the spectral efficiency, an emerging concept, termed physical-layer service integration (PHY-SI), has been recognized as an effective means. Its basic idea is to combine multiple coexisting services, i.e., multicast/broadcast service and confidential service, into one integral service for one-time transmission at the transmitter side. This article first provides a tutorial on typical PHY-SI models. Furthermore, we propose some state-of-the-art solutions to improve the overall performance of PHY-SI in certain important communication scenarios. In particular, we highlight the extension of several concepts borrowed from conventional single-service communications, such as artificial noise (AN), eigenmode transmission etc., to the scenario of PHY-SI. These techniques are shown to be effective in the design of reliable and robust PHY-SI schemes. Finally, several potential research directions are identified for future work.Comment: 12 pages, 7 figure

    Secure Full-Duplex Two-Way Relaying for SWIPT

    Get PDF
    This letter studies bi-directional secure information exchange in a simultaneous wireless information and power transfer (SWIPT) system enabled by a full-duplex (FD) multiple-input multiple-output (MIMO) amplify-and-forward (AF) relay. The AF relay injects artificial noise (AN) in order to confuse the eavesdropper. Specifically, we assume a zeroforcing (ZF) solution constraint to eliminate the residual self-interference (RSI). As a consequence, we address the optimal joint design of the ZF matrix and the AN covariance matrix at the relay node as well as the transmit power at the sources. We propose an alternating algorithm utilizing semi-definite programming (SDP) technique and one-dimensional searching to achieve the optimal solution. Simulation results are provided to demonstrate the effectiveness of the proposed algorithm.Comment: Submitted to IEEE Wireless Communications Letter

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Determination of optically stimulated luminescence dosimetric characteristics and suitability for entrance surface dose assessement in diagnostic x-ray examinations

    Get PDF
    The availability of Optically Stimulated Luminescence (OSL) dosimeter system developed by Landauer Inc. (Glenwood IL) has greatly improved radiation dosimetry application in the medical field. Recent studies with OSL dosimeters (nanoDots) gave much emphases to patient radiation exposure in radiotherapy but ignoring the potential risks from radiographic examinations. This study focused on the measurement of entrance surface dose (ESD) resulting from radiographic examination. Monitoring procedures have been developed by the International Atomic Energy Agency (IAEA) to estimate ESD, while considering exposure parameters and patient’s characteristics. However, dosimetric properties of the OSL system must be characterized to ascertain its suitability for ESD measurements in medical radiography due to energy dependence and over-response factors of the Al2O3 material. This thesis consists of three phases: 1) evaluating stability of the new OSL dosimetry system, 2) characterizing the nanoDots in radiographic energy range from 40 kV to 150 kV with typical doses ranging from 0 to 20 mGy, and 3) assessing suitability of the nanoDots for ESD measurement in routine X-ray examinations. The dosimetric characteristics of the nanoDots in the above energy range are presented in this study, including repeatability, reproducibility, signal depletion, element correction factor, linearity, angular and energy dependence, and dose measurement accuracy. Experimental results showed repeatability of below 5% and reproducibility of less than 2%. OSL signals after sequential readouts were reduced by approximately 0.5% per readout and having good linearity for doses between 5 – 20 mGy. The nanoDots OSL dosimeter showed significant angular and energy dependence in this energy range, and corresponding energy correction factors were determined in the range of 0.76 – 1.12. ESDs were determined in common diagnostic X-ray examinations using three different methods including direct (measured on phantom/patient) and indirect (without phantom) measurements with nanoDots OSL dosimeters, and CALDose_X 5.0 software calculations. Results from direct and indirect ESD measurements showed good agreement within relative uncertainties of 5.9% and 12%, respectively, in accordance with the International Electrotechnical Commission (IEC) 61674 specifications. However, the measured results were below ESDs calculated with CALDose_X 5.0 software. Measured eye and gonad doses were found to be significant compared to ESDs during anterior-posterior (AP) abdomen and AP skull examinations, respectively. The results obtained in this research work indicate the suitability of utilizing nanoDots OSL dosimeter for entrance surface dose assessment during diagnostic X-ray examinations
    corecore