3 research outputs found

    Security in Distributed, Grid, Mobile, and Pervasive Computing

    Get PDF
    This book addresses the increasing demand to guarantee privacy, integrity, and availability of resources in networks and distributed systems. It first reviews security issues and challenges in content distribution networks, describes key agreement protocols based on the Diffie-Hellman key exchange and key management protocols for complex distributed systems like the Internet, and discusses securing design patterns for distributed systems. The next section focuses on security in mobile computing and wireless networks. After a section on grid computing security, the book presents an overview of security solutions for pervasive healthcare systems and surveys wireless sensor network security

    Interdomain User Authentication and Privacy

    Get PDF
    This thesis looks at the issue of interdomain user authentication, i.e. user authentication in systems that extend over more than one administrative domain. It is divided into three parts. After a brief overview of related literature, the first part provides a taxonomy of current approaches to the problem. The taxonomy is first used to identify the relative strengths and weaknesses of each approach, and then employed as the basis for putting into context four concrete and novel schemes that are subsequently proposed in this part of the thesis. Three of these schemes build on existing technology; the first on 2nd and 3rd-generation cellular (mobile) telephony, the second on credit/debit smartcards, and the third on Trusted Computing. The fourth scheme is, in certain ways, different from the others. Most notably, unlike the other three schemes, it does not require the user to possess tamper-resistant hardware, and it is suitable for use from an untrusted access device. An implementation of the latter scheme (which works as a web proxy) is also described in this part of the thesis. As the need to preserve one’s privacy continues to gain importance in the digital world, it is important to enhance user authentication schemes with properties that enable users to remain anonymous (yet authenticated). In the second part of the thesis, anonymous credential systems are identified as a tool that can be used to achieve this goal. A formal model that captures relevant security and privacy notions for such systems is proposed. From this model, it is evident that there exist certain inherent limits to the privacy that such systems can offer. These are examined in more detail, and a scheme is proposed that mitigates the exposure to certain attacks that exploit these limits in order to compromise user privacy. The second part of the thesis also shows how to use an anonymous credential system in order to facilitate what we call ‘privacy-aware single sign-on’ in an open environment. The scheme enables the user to authenticate himself to service providers under separate identifier, where these identifiers cannot be linked to each other, even if all service providers collude. It is demonstrated that the anonymity enhancement scheme proposed earlier is particularly suited in this special application of anonymous credential systems. Finally, the third part of the thesis concludes with some open research questions

    Security Risk Management for the Internet of Things

    Get PDF
    In recent years, the rising complexity of Internet of Things (IoT) systems has increased their potential vulnerabilities and introduced new cybersecurity challenges. In this context, state of the art methods and technologies for security risk assessment have prominent limitations when it comes to large scale, cyber-physical and interconnected IoT systems. Risk assessments for modern IoT systems must be frequent, dynamic and driven by knowledge about both cyber and physical assets. Furthermore, they should be more proactive, more automated, and able to leverage information shared across IoT value chains. This book introduces a set of novel risk assessment techniques and their role in the IoT Security risk management process. Specifically, it presents architectures and platforms for end-to-end security, including their implementation based on the edge/fog computing paradigm. It also highlights machine learning techniques that boost the automation and proactiveness of IoT security risk assessments. Furthermore, blockchain solutions for open and transparent sharing of IoT security information across the supply chain are introduced. Frameworks for privacy awareness, along with technical measures that enable privacy risk assessment and boost GDPR compliance are also presented. Likewise, the book illustrates novel solutions for security certification of IoT systems, along with techniques for IoT security interoperability. In the coming years, IoT security will be a challenging, yet very exciting journey for IoT stakeholders, including security experts, consultants, security research organizations and IoT solution providers. The book provides knowledge and insights about where we stand on this journey. It also attempts to develop a vision for the future and to help readers start their IoT Security efforts on the right foot
    corecore