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Foreword

Over twenty years following the introduction of the term Internet of Things (IoT)
by Kevin Ashton at MIT, IoT technologies are growing at a rapid pace. In-line
with early visions about IoT applications, IoT technologies are currently enabling
advanced services that interconnect physical and virtual things based on interop-
erable communication technologies. Most importantly, IoT applications are no
longer limited to small scale laboratory environments, as they are part of robust
enterprise deployments. Consumers are already seeing IoT applications improving
their lives and making the world a better place to live. For instance, thousands
of internet-connected devices are currently optimizing resource usage and improv-
ing environmental performance in modern smart cities. As another example, IoT
is a key enabler of advanced automation in industrial applications in sectors like
manufacturing, energy, and supply chain management. During the past weeks we
are also witnessing the importance of IoT technologies in fighting the COVID19
outbreak, through facilitating processes like diagnostic testing, contact tracing and
disease spreading estimation.

These developments are however the start of the IoT journey rather than its
destination. In several cases, state of the art IoT deployments have just scratched
the surface of potential use cases and there is still a long way to go to realize the
full potential of the IoT paradigm. The latter will be shaped by recent advances
in technologies like Artificial Intelligence (AI), big data, robotics, blockchain and
5G. These technologies are expected to enable an even broader and progressing
revolution in the future, across a wide variety of verticals, including healthcare,
smart cities, energy, agriculture, and industry. Specifically, they will enable next
generation IoT applications that will employ advanced and distributed computing
to bring intelligence and automation at the point of action. Emerging IoT systems
like connected and autonomous vehicles will be therefore able to take faster, more

xi
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intelligent, and more efficient decisions at the right place and at the right point
in time.

In this landscape, the number of IoT devices is rising constantly with an expected
40 billion IoT devices to be in used worldwide by 20251, including not only passive
devices, but also semi-autonomous smart objects. Nevertheless, the rising sophisti-
cation of IoT systems, technologies and applications is becoming associated with a
more complex IoT ecosystem. This ecosystem is characterised by a combination of
very diverse products, systems, and services, which rely on data and connectivity to
deliver their value.

Delivering real value in the scope of the complex IoT ecosystem is primarily
about addressing specific and pragmatic challenges, as needed for delivering appli-
cations that can be integrated into society. These applications must be part of an
open, predictable, and competitive IoT market where individual rights and free-
doms are respected. When it comes to addressing pragmatic challenges, the cyber-
security aspects of IoT come into the foreground. Specifically, security, privacy and
data protection aspects cannot be negotiated when it comes to deploying real-life
IoT applications that are ethical, trustworthy and protect the citizens’ rights. In
this context, the rising complexity of IoT technologies and ecosystems puts into
question conventional methodologies for risk assessment and traditional regula-
tory paradigms. In fact, IoT applications are characterised by a very large attack
surface and complex ecosystem consisting of diverse actors, heterogeneous physical
and virtual spaces, as well as devices of different size, nature, and complexity. In this
multi-actor, multi-stakeholder environment, cyber risks can mean different things
to different actors, and hence, it is not always possible to have a single approach for
confronting them. Furthermore, the complexity and fragmentation of applicable
legal frameworks for safety and liability, at both EU and national levels, proves to
be another significant challenge. Advanced digital technologies can become part of
the solutions to these challenges, as they provide powerful testing and validation
capabilities for managing cyber-security in complex environments.

The development of secure, trustworthy, and human-centric IoT systems and
applications is a top priority for the European Commission. A human-centric and
trustworthy approach is necessary to facilitate the uptake of digital solutions among
European citizens. This approach reflects the EU’s specific way and vision of human
progress and evolution. Ensuring a cybersecure IoT is an essential foundation of
this approach and vision. In Europe, any IoT solution must be compliant with the

1. https://www.statista.com/statistics/802690/worldwide-connected-devices-by-access-technology/

https://www.statista.com/statistics/802690/worldwide-connected-devices-by-access-technology/
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unique European Regulatory Framework, which has already a global impact on
citizens and businesses. Key pillars of this framework are the E-privacy Directive
2002/58/EC, the General Data Protection Regulation 2016/679, and the Cyber-
security Regulation 2019/881. These directives and regulations have represented
fundamental legal milestones ensuring that privacy and security are reinforced.
Furthermore, under the Commission’s new digital strategy, additional regulatory
actions have been planned, notably the creation of a specific AI framework address-
ing safety and ethical challenges, as well as the adaptation of existing safety and
liability frameworks to new technologies. Moreover, certification schemes for IoT
privacy and security remain important regulatory options under the GDPR and
Cybersecurity Act. The ultimate objective of past and ongoing work is to boost the
development of cybersecure IoT environments, while ensuring that all pieces of rel-
evant EU legislation and initiatives stay consistent among them and duplications
are avoided.

For nearly fifteen years, the European Commission has been funding excellent
research projects and innovation initiatives that have played a significant role in
building the European IoT ecosystem. These have included several large-scale pilot
projects, where IoT solutions were validated in real life settings. It has also sup-
ported a set of research projects in IoT security, including the projects that con-
tribute to this book. Furthermore, the European Commission has encouraged and
supported the clustering between projects, as a means of boosting their cooperation
and facilitating them to share best practices with respect to fundamental horizontal
topics such as security and privacy. Over the years, it has been proven that knowl-
edge sharing, and collaboration provides added-value and leads to multiplicative
benefits for the cooperating projects. The present book is an important outcome
of the collaboration of nine European Commission funded projects on IoT secu-
rity, which have collaborated efficiently and managed to identify common solutions
beyond the specificities of individual projects. The nine projects have collaborated
in inspiring and productive ways, in the scope of the H2020 IoT projects Security
and Privacy Cluster, which has been established by in 2018.

As the European Commission officials in charge of the Activities of the Cluster,
it is with great pleasure and satisfaction that we witness the completion of this
book on IoT cybersecurity solutions, which emphasizes the projects’ outcomes in
relation to technologies and methodologies for IoT security risk management. The
Commission welcomes this new book and its contribution to exploring innovative
technical solutions on IoT security, as well as their relation to ongoing regulatory
developments. We perceive the contents of the book as an invaluable contribution
towards the ambition of building a “Thriving IoT ecosystem” underpinned by a
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“Human Centred” approach. It is also very positive that this book is offered as an
Open Access publication, which could help it reach a wider readership and boost its
overall impact. Finally, it is our hope and expectation that this book will be proven
an effective resource and a good reading experience for the IoT community.

June 2020

Salvatore Scalzo
EC Policy Officer, “Internet of Things” Unit of DG CONNECT

IoT Security and Privacy Cluster Coordinator

Franck Boissiere
EC Programme Officer, “Internet of Things” Unit of DG CONNECT

IoT Security and Privacy Cluster Coordinator



Preface

In recent years, Internet of Things (IoT) systems have rapidly evolved in terms of
functional and technological sophistication. Early small-scale sensing systems and
wireless sensor networks have given their place to massively scalable, cloud-based
systems that comprise many thousands of internet-connected objects. At the same
time, the advent of edge computing has provided opportunities for advanced inter-
net of things deployments that process and analyze data in real time, while closing
the loop to the field and influencing the status of the physical world. Moreover, we
are gradually witnessing the rise of smart objects with semi-autonomous behavior
(e.g., drones, robots, automated guided vehicles), which intensify the decentraliza-
tion and the intelligence of edge/cloud architectures.

This rising complexity of IoT systems provides opportunities for more auto-
mated and intelligent business applications. However, it also introduces new cyber-
security challenges such as new ways for conducting large-scale attacks and a wealth
of vulnerabilities and risks at different parts of an IoT system such as smart objects,
IoT networks, edge gateways, and cloud elements. These vulnerabilities are evident
in the scope of recent large-scale cybersecurity incidents, such as the Mirai malware
that turned IoT devices into remotely controlled bots able to launch Distributed
Denial of Service (DDoS) attacks. The Mirai-based based DDoS back in 2016 took
advantage of vulnerabilities (e.g., hard-coded passwords, poorly patched software)
of internet-connected CCTV (Closed Circuit Television) cameras and DVR (Dig-
ital Video Recorders). As another example, the “Lizard Stressor” attacks few years
ago compromised many commercial home routers at a large scale.

In addition to confronting such attacks, developers, and operators of IoT sys-
tems must comply with stringent regulatory requirements, such as requirements

xv
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stemming from the General Data Protection Regulation (GDPR) and the Net-
work Information Systems (NIS) directive. To this end, there is a need for deploy-
ing effective security and data protection methods that boost compliance to the
security, privacy, and data protection mandates of these regulations.

In this context, security risk management methods can be a powerful tool for
developers, solution integrators, and operators of IoT systems. International stan-
dards and frameworks for risk management can be used to support the identifi-
cation of risks or threats, and to assess their respective probabilities. Nevertheless,
state-of-the-art technologies for security risk assessment have prominent limitations
when it comes to confronting risks associated with large-scale, cyber-physical, and
interconnected IoT systems. For example, risk assessments for modern IoT sys-
tems must be more frequent and must take into account knowledge about both
cyber and physical assets. Furthermore, they should be more proactive and auto-
mated, and able to leverage information that is shared across IoT supply chains.
In this direction, organizations can take advantage of emerging technologies (e.g.,
edge/fog computing architectures, machine learning, blockchain), to implement
novel risk assessment approaches that are characterized by automation, intelligence,
and transparency.

During the last couple of years, a group of European Commission (EC) funded
projects have been researching and implementing novel security and privacy mech-
anisms for the Internet of Things, including risk assessment and mitigation. The
projects have formed a Cluster of IoT Security and Privacy projects, as a means of
boosting their collaboration. The purpose of the present book is to present detailed
information about the novel risk assessment techniques that have been developed
by these projects and their role in the IoT security risk management process. Specif-
ically, the book presents several architectures and platforms for end-to-end security,
including their implementation based on the edge/fog computing paradigm. It also
highlights machine learning techniques that boost the automation and proactive-
ness of IoT security risk assessments. Furthermore, blockchain solutions for open
and transparent sharing of IoT security information across the supply chain are
introduced. Moreover, several chapters of the book present frameworks for privacy
awareness, along with technical measures that enable privacy risk assessment and
boost GDPR compliance. Likewise, techniques for security certification of IoT sys-
tems along with frameworks for IoT security interoperability towards end-to-end
security are discussed.

Overall, the book is structured into fifteen chapters that present different IoT
security technologies, including novel techniques for IoT security risk assessment.
Specifically:
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• Chapter 1 (“Introduction”) provides a brief overview of the main security
challenges for modern IoT systems. It also introduces some of the most popu-
lar risk assessment frameworks and discusses their limitations. Furthermore,
it illustrates some novel research directions in the area of cybersecurity for
IoT systems, notably directions associated with security risk management.

• Chapter 2 (“Security Data Modeling for Configurable Risk Assessment
as a Service in IoT Systems”) introduces a data model that enables the devel-
opment and configuration of data-driven IoT security systems, including sys-
tems that provide IoT Risk Assessment reports as a service. The introduced
model has the virtue of combining security data about the status of the IoT
system, with metadata about its configuration. The processing of the secu-
rity data can provide insights on vulnerabilities, risk, and threats associated
with IoT assets, as well as on mechanisms for delivering cyber-threat intel-
ligence. At the same time, the management of the configuration metadata
can be used for configuring data-driven cyber-threat intelligence functions
for IoT systems. The model has been developed in the scope of the H2020
SecureIoT project, where it has been also validated in various IoT use cases
in the areas of smart connected transport, smart manufacturing, and ambient
assisted living.

• Chapter 3 (“Data-driven IoT Security Using Deep Learning Tech-
niques”) presents the use of deep learning techniques, and more specifi-
cally, Variational Autoencoder (VAE) techniques for anomaly detection in the
behavior of smart objects like connected cars and socially assistive robots. It
also illustrates the validation of these models over IoT datasets collected from
these smart objects. The chapter discusses the advantages and limitations of
using deep learning techniques for detecting security-related anomalies in the
behavior of smart objects.

• Chapter 4 (“Privacy Awareness, Risk Assessment, and Control Measures
in IoT Platforms: BRAIN-IoT Approach”) presents an approach to embed-
ding privacy awareness and privacy control features in IoT solutions. The
presented approach has been developed in the scope of the H2020 Brain-IoT
project and emphasizes the importance of privacy awareness in IoT systems
in-line with the GDPR regulation. Furthermore, a conceptual framework for
Privacy Impact Assessment (PIA) in-line with the privacy principles of the
GDPR is presented as well.

• Chapter 5 (“IoT Network Risk Assessment and Mitigation: The SerIoT
Approach”) describes the IoT security risk assessment approach of the
H2020 SerIoT project. First, it discusses reference IoT risk scenarios
and reviews relevant mitigation techniques. Accordingly, a lightweight
policy-based approach for risk mitigation at the level of the attachment
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of IoT devices to a network is presented. The merits of a distributed
Machine Learning (ML) approach to real-time risk and attack detection
are discussed. Likewise, the chapter presents an attack mitigation approach
that leverages adaptive ML to re-route traffic in IoT networks and to
avoid compromised sections of the network. The chapter ends up pre-
senting experimental results from SerIoT, along with suggestions for future
work.

• Chapter 6 (“CHARIOT Integrated Approach to Safety, Privacy, and
Security”) focuses on the outcomes of the H2020 CHARIOT project.
Specifically, it summarizes the platform design, analytics, and services devel-
oped to protect industrial data security, privacy, and safety. It also includes
information about the architecture of the platform and the design of its ser-
vices, as part of a decentralized, fog computing architecture and a dynamic
IoT Safety Supervision Engine.

• Chapter 7 (“Pattern-driven Security, Privacy, Dependability and Inter-
operability in IoT”) presents the development and evaluation of a pattern-
driven approach for guaranteeing Security, Privacy, Dependability and
Interoperability (SPDI) properties in the IoT domain. The chapter discusses
how SPDI patterns can guarantee multi-layer end-to-end properties and how
the enforcement of the patterns can help satisfy network dependability guar-
antees. Furthermore, the chapter illustrates how patterns can offer a solution
to IoT semantic interoperability. The chapter is based on work carried out in
the scope of the H2020 SEMIoTICS project.

• Chapter 8 (“Enabling Continuous Privacy Risk Management in IoT
Systems”) is devoted to studying the interactions between GDPR and
the LINDDUN privacy threat modeling methodology. It also explores
the connection between LINDDUN (Linkability, Identifiability, Non-
repudiation, Detectability, Disclosure of information, Unawareness, and
Non-compliance) and the STRIDE (Spoofing, Tampering, Repudiation,
Information Disclosure, Denial of Service, and Elevation of Privilege) threat
model towards enabling continuous evidence-based risk management and
improving risk assessment for data protection. The chapter was contributed
by the H2020 ENACT and PDP4E projects.

• Chapter 9 (“Data Protection Compliance Assessment for the Internet
of Things”) provides an overview of several methodologies and approaches,
which ensure that IoT deployments comply with applicable data protection
regulations. The chapter takes a practical approach based on the lessons learnt
from activities that aimed at ensuring the compliance of various H2020 IoT
Large Scale Pilot (LSP) projects with the GDPR regulation.
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• Chapter 10 (“Cybersecurity Certification in IoT Environments”) presents
and analyzes current standardized IoT security certification approaches and
outlines their gaps in terms of security certification (e.g., their limitations in
dealing with dynamic security environments and/or security life cycle man-
agement). It also presents a methodology that combines security assessment
and testing in order to address some of the challenges and to serve as a basis
for future security certification schemes.

• Chapter 11 (“Firmware Software Analysis at Source Code and Binary
Levels”) presents recent research developments on the source code (pre-
compilation) and binary (executable level) of firmware developed for IoT
devices (sensors, gateways, and other nodes) in the H2020 CHARIOT
project. It includes methodologies to capture source code or binary level vul-
nerabilities or malicious code, which may increase security risks and compro-
mise the secure operation of IoT devices.

• Chapter 12 (“End-to-end Security for IoT”) presents an approach for end-
to-end protection and privacy for IoT systems. The approach covers all IoT
assets from the device up to the application level. The approach was developed
in the scope of the H2020 Brain-IoT project. It provides end-to-end integrity,
encryption, and devices management.

• Chapter 13 (“Blockchain Ledger Solution Affirming Physical, Oper-
ational, and Functional Changes in an IoT System”) introduces a
blockchain solution for ensuring data legitimacy, trust, and privacy in an
industrial IoT network. The chapter presents both the distributed ledger
employed and the methodology followed. Specifically, it presents a design
methodology and network setup compiled around an overall cognitive
architecture that was developed in the scope of the H2020 CHARIOT
project.

• Chapter 14 (“Leveraging Interledger Technologies in IoT Security Risk
Management”) introduces a novel approach to IoT security risk manage-
ment based on the outcomes of the H2020 SOFIE project. The approach is
based on the application of Distributed Ledger Technology (DLT) to securely
and openly federate IoT platforms. Distributed ledgers provide a novel way
to enable decentralized trust, while interledger technologies enable the bridg-
ing of multiple distributed ledgers together. This enables new opportunities
for performing IoT security risk management in more open, flexible, and
accountable way.

• Chapter 15 (“Epilogue”) is the concluding chapter of the book. It summa-
rizes the main takeaways from the previous chapters and provides an outlook
for the future evolution of IoT security.
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The target audience of the book includes:

• Researchers in the area of IoT security, who wish to be updated about
latest and emerging IoT security trends, with emphasis on trends that shape
the state-of-the-art IoT security risk management solutions.

• IoT systems operators, with an interest in adopting, deploying, and fully
leveraging the next generation of IoT security technologies to secure their
infrastructures and services.

• Providers of IoT solutions and services, who are interested in the imple-
mentation of use cases for the protection of their IoT assets.

• Security experts and consultants wishing to understand the future trends
in IoT security towards devising solutions for securing the next generation of
large-scale, massively decentralized IoT systems that comprise smart objects.

Overall, the book introduces novel IoT security technologies with emphasis on
solutions for IoT risk assessment. It also presents future trends in IoT Security,
including how novel digital technologies (e.g., Machine Learning, AI, blockchain)
can be used to secure emerging IoT systems. Furthermore, it provides insights on
privacy and data protection solutions, notably solutions that can support organi-
zations in their regulatory compliance efforts. The book is made available as an
Open Access publication, which could make it broadly and freely available to the
IoT community. I would like to thank Now Publishers for the opportunity and
their collaboration in making this happen.

Most importantly, I take the chance to thank the contributing projects for their
valuable inputs and contributions in developing the presented IoT security tech-
nologies, as well as in documenting them as part of the book. I would also like
to acknowledge funding and support from the European Commission as part of
the H2020 SecureIoT, Brain-IoT, CHARIOT, ENACT, IoT Crawler, NGIOT,
PDP4E, SEMIoTICS, SerIoT, and SOFIE projects.

March 2020
John Soldatos
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Chapter 1

Introduction

By John Soldatos

This chapter is the introduction to the book. It presents the main security and
privacy challenges for modern IoT systems, along with state-of-the-art frameworks
for security risk assessment and mitigation. Accordingly, it discusses the limitations
of these frameworks when it comes to implementing risk management systems for
modern IoT systems. Moreover, it outlines some of the enabling technologies and
security concepts that could help organizations alleviate these limitations. Some
of these concepts are driving the security and technologies that are introduced in
subsequent chapters.

1.1 Introduction

In recent years, we have witnessed the rise of the Internet of Things (IoT) paradigm,
which is empowered and propelled by the proliferating number of internet-
connected devices. The latter enable a wide range of innovative IoT applications in
sectors like trade, transport, healthcare, and industry. A main characteristic of these
applications is their ability to take intelligent decisions based on the collection and
processing of large amounts of data from the physical world. In several cases, these
decisions involve actuation and control activities that influence the status of the
physical world and the surrounding environment of the IoT systems.
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For over a decade, IoT systems have been evolving in functional and technolog-
ical sophistication. Early IoT applications were based on the collection and pro-
cessing of physical world data based on sensors, wireless sensor networks, and other
types of internet-connected devices. This early paradigm has gradually evolved in
terms of scalability, thanks to the integration of IoT systems and devices with cloud
computing infrastructures. The latter infrastructures have also enabled IoT appli-
cations to benefit from the elasticity, flexibility, and quality of service of the cloud,
which has empowered the development of larger scale applications. Nevertheless,
this scalability was based on a heavily centralized model, where very large num-
bers of internet-connected devices integrate their data and services in the cloud.
In recent years, this model has been decentralized based on the emergence and
expanded deployment of edge computing architectures and Cyber-Physical Sys-
tems (CPS), which include various smart objects like drones, smart wearables,
and autonomous guided vehicles. On the one hand, edge computing deployments
decentralize IoT functions by placing them closer to the field, while on the other
smart objects exhibit (semi) autonomous behaviors that can be implemented inde-
pendently from the cloud. Hence, emerging IoT applications feature decentralized
intelligence, which can be split across the cloud, edge nodes, and smart objects.
Edge computing and CPS systems are two of the main pillars of the fourth indus-
trial revolution (Industry 4.0), which closes the loop to the field and enables the
digital control of physical processes in a way that blurs the boundaries between
the physical and the cyber worlds. Likewise, Industry 4.0 is enabling the conver-
gence of Information Technology (IT) with the Operational Technology (OT) [e.g.,
Supervisory Control And Data Acquisition (SCADA) systems, DCS (Distributed
Control Systems), Programmable Logic Controllers (PLC)] that is widely used in
industrial settings.

However, this increased sophistication of IoT systems has introduced a host of
security challenges as well, including:

• New ways for large-scale security attacks: The proliferation of IoT devices
and their deployment has opened new cybersecurity vulnerabilities and
enabled new ways of conducting large-scale attacks. As a prominent exam-
ple, in October 2016, we witnessed the first large-scale distributed denial
of service (DDoS) attack based on IoT devices, which took advantage
of vulnerabilities (e.g., hard-coded passwords, poorly patched software) of
internet-connected CCTV (Closed Circuit Television) cameras and DVR
(Digital Video Recorders), in order to deploy the notorious Mirai malware
on them [1]. Likewise, back in January 2015, the “Lizard Stressor” attacks
compromised many commercial home routers at a large scale.
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• Vulnerabilities in Smart Objects: As “things” get more sophisticated, auto-
mated, and interconnected, their cyber resilience becomes more critical than
ever before. This is important as adversaries can nowadays create significant
damage by attacking individual smart objects and internet-connected devices.

• Threats associated with OT (Operational Technology) and Physical
Security: The convergence of IT and OT in industrial environments asks for
new integrated approaches to security that protect cyber and physical assets at
the same time. Indeed, OT systems are characterized by poor cybersecurity,
as OT protocols are usually vendor specific and not designed for security.
Moreover, OT environments are sometimes supported by old and insecure
IT systems (e.g., old operating systems, vulnerable drivers), while provid-
ing very poor documentation regarding their security-related characteristics.
Nowadays, many malicious parties try to compromise physical assets (e.g., a
data center) in order to attack cyber assets. In some cases, they also attempt
the so-called combined attacks, which go against cyber and physical assets at
the same time.

• Attack opportunities against digitally interconnected IoT infrastruc-
tures: IoT infrastructures in various sectors are gradually becoming digitally
interconnected, as part of value chains in different sectors. For example, dif-
ferent Industrial IoT (IIoT) assets residing in factories and logistics infrastruc-
tures are getting interconnected as part of the manufacturing value chain. As
another example, IoT-enabled healthcare platforms are becoming digitally
interconnected with intelligent transport platforms to enable the delivery
of emergency services. The interconnection of IoT platforms and infras-
tructures in different sectors increases their dependencies and provides the
means for attacking an infrastructure by launching an attack to an intercon-
nected infrastructure. Once one infrastructure is attacked, its interconnected
counterparts suffer from cascading effects. To alleviate such effects, coordina-
tion and orchestration of diverse, decentralized cybersecurity platforms and
methodologies is required. This goes typically beyond the capabilities of state-
of-the-art platforms for IoT security.

• A very wide spectrum of attacks: Non-trivial IoT systems comprise com-
plex IT infrastructures including networking, computing systems, software/
middleware systems, cloud computing systems, as well as a host of internet-
connected devices. Therefore, cybersecurity solutions have to protect a
very wide range of assets against a host of different attacks such as scan-
ning and mapping attacks against wireless and/or wired networks, proto-
cols attacks, data theft and loss of confidentiality attacks, attacks against
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cryptographic algorithms and key management systems, spoofing and other
authentication attacks, attacks against operating systems and applications,
Denial of Service (DoS) and jamming attacks (including DDoS), access con-
trol attacks, as well as physical security attacks.

• A demanding regulatory landscape: Integrators of IoT solutions and
providers of IoT services must nowadays comply with stringent directives and
regulations, which they cannot afford to ignore. As a prominent example,
in Europe the General Data Protection Regulation (GDPR) imposes strict
requirements for personal data protection, along with extremely high penal-
ties for cases of non-compliance. GDPR has a global impact, as several coun-
tries are already using GDPR as a blueprint for updating their data protection
laws and regulations.

Recent large-scale cybersecurity attacks against IoT infrastructures have
demonstrated that these challenges are for real. Moreover, they have illustrated that
organizations that adopt and deploy IoT technologies are exposed to significant
operational risk that can have severe economic impact.

1.2 Overview and Limitations of Security Risk
Assessment Frameworks

1.2.1 Overview of Security Risk Assessment

A security risk assessment process is one of the most important activities that
help organizations identify and mitigate the operational and the economic impact
of security threats. Specifically, the process of security risk assessment identifies,
assesses, and implements security controls in applications. One of its main goals is
to anticipate and prevent security vulnerabilities and threats. When carrying out a
security risk assessment, organizations can examine their assets end to end, while
considering the attacker’s perspective. The outcome of the risk assessment process
is typically a comprehensive report that can support the business management of
the organizations in their decision-making. Specifically, by considering the risks
that are associated with the various assets and the likelihood of their occurrence,
managers can make informed decisions about resource allocation, procurements of
security solutions, as well as about security controls implementations.

A typical security risk assessment process entails the following steps:

• Identifying the assets that are most valuable to the company. In the case of
IoT security risk assessment, the assets include IoT devices and IoT services.



6 Introduction

• Determining the potential threats to each asset. This step leverages infor-
mation about the IoT asset (e.g., information collected from a device via an
appropriate probe).

• Estimating the likelihood that events associated with the threat will
occur. Usually, a probability estimate is produced based on some determin-
istic or stochastic model about the asset and the attacker’s behavior.

• Determining the impact criticality of each loss event. Events that could
have a catastrophic impact on the assets and the organization should be
avoided as a matter of priority.

• Calculate risk scores based on combinations of information about events’
probabilities and their impact criticality.

In-line with the above-listed steps, risk management methods rely on the estima-
tion of a risk situation for the various assets. This estimation is based on information
about the processes, the assets, and the infrastructure of an organization. The main
goal of the process is the identification of potential risks and the development
of appropriate protective measures. The tangible outcome of a risk analysis is in
most cases a list of risks or threats to a system, together with the corresponding
probabilities.

International standards in the field of risk management are used to support
the identification of risks or threats, and to assess their respective probabilities.
These standards range from general considerations and guidelines for risk man-
agement processes (e.g., [2, 3]) to specific guidelines for the IT sector such as the
ISO20000 [4], ISO27000 [5], ISO/IEC 27002 [6], ISO27005 [7], and others
(e.g., [8]), all the way to highly specific frameworks. Most of these standards spec-
ify framework conditions for the risk management process, but rarely go into detail
on specific methods for the risk analysis or risk assessment. This is one reason why
often differences in the risk assessment arise within the specific areas of an applica-
tion, making a direct comparison of the results of the various frameworks difficult.

In this context, choosing the right method and the right tool for risk analysis
and risk evaluation proves to be complicated. In recent years, various concepts,
algorithms, and tools have evolved from research, specially designed to protect IT
infrastructures and systems. Since their historical background is settled in a business
context, in these methods a quantitative risk assessment is usually performed based
on monetary costs [9, 10]. This is the case with the French EBIOS1 and the UK’s

1. EBIOS stands for Expression des Besoins et Identification des Objectifs de Sécurité – Expression of Needs
and Identification of Security Objectives.
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CRAMM2 methods, but also with the ISO/IEC 27005:2013 standard [7]. Most
of the risk assessment methods and tools (e.g., most of the ones listed in [11]) use
the commonly known rule of thumb “risk= probability× potential damage” [12].
Depending on the applied method, the terms and scales for the assessment of the
probabilities as well as the potential damage are predefined (such as in the NIST
(National Institute of Standards and Technology) policy [13] or in the Mehari
method [14]). In practice, the selection of a specific risk-assessment tool is based
on practical considerations and depends on how well the present terminology of
the application can be mapped onto the predefined specific terminology of the risk
assessment methodology. In order to structure the process of risk assessment, there
are various attempts to develop models for general risk assessments. For example,
the AURUM system [15] provides a graphical tool for the risk modeling based on
ontologies. It uses a Bayesian approach for determining threat probabilities (which
is also done by the method proposed in [16]). The OCTAVE method [17] is based
on subjectively estimated probabilities and thus can be understood as an a priori
distribution with regards to the Bayesian approach. Also, the CORAS method [18]
allows the integration of several different risk assessment processes, whereas the
identification of the probability of an attack is not done automatically but a priori
to any risk assessment.

Finally, the assessment per se is performed in order to optimize the existing con-
figuration of an operation environment. A variety of mathematical models that
embed different reasoning techniques have been proposed, such as Integer Linear
Programming, Constraint Programming, Stochastic Optimization, Multi-criteria
Optimization, Robust Optimization, Metaheuristics, etc. In the literature, a variety
of optimization and decision support approaches have been reported. They inte-
grate techniques and models from Artificial Intelligence, Operations Research, and
Computational Logics (e.g., [19–21]).

1.2.2 Limitations of Security Risk Assessment Frameworks
for IoT

For nearly two decades, various organizations have used the above-listed methods
and frameworks for cybersecurity risk assessment. In general, these frameworks have
been proven efficient in protecting organizations from security risks. However, they
fall short when it comes to protecting modern IoT systems, which introduce a
whole new range of assets such as IoT devices and a cyber-physical (rather than a

2. CRAMM (CCTA Risk Analysis and Management Method) is a qualitative risk analysis and management
tool developed by UK government’s Central Computer and Telecommunications Agency (OGC since April
2001).
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cyber only) nature. Specifically, IoT systems present unique challenges that cannot
be adequately tackled based on conventional approaches. These include:

• Increased Dynamism, Variability, and Scale: Non-trivial IoT deployments
comprise very large number of devices, which are in many cases very densely
connected. These characteristics make them very different from conventional
IT systems and drive legacy risk assessment approaches to their limits. For
example, the dynamic nature of IoT environments imposes a need for con-
tinuous assessment of the state of the IoT assets rather than the commonly
used periodic assessments.

• Inter-enterprise Connectivity across IoT systems: IoT systems are increas-
ingly becoming interconnected. This is, for example, the case with Industrial
IoT platforms across the value chains of industrial sectors (e.g., supply chains
in smart manufacturing). It’s therefore common for the risk status of an asset
to be determined based on the status of other interconnected assets. As a
result, security risk assessments need to consider the interconnected nature
of IoT assets, including possibilities for collaborative risk assessments and the
impact of cascading effects.

• Cyber-Physical Nature of the IoT Infrastructures: Complex IoT infras-
tructures can be considered as large-scale cyber-physical systems. They com-
prise both cyber and physical assets, which provide the means for interacting
with the field and for influencing the status of the physical world. In this
context, risk assessments should consider the cyber-physical nature of IoT
systems, including both cyber and physical risks. Likewise, risk assessments
should consider combined cyber-physical attacks (e.g., launching an attack
against a physical asset in order to compromise a physical asset subsequently).
Managing cyber-physical risks is challenging as a result of the complexity and
interdependencies among various system components, including the integra-
tion between communication, computing and control technology.

• Need for IoT Cybersecurity Knowledge: In order to assess the risk of a
system, cybersecurity officers need to have some baseline knowledge about
the IoT assets. In practice, such knowledge is accumulated within a Security
Knowledge Base (SKB) or a Configuration Management Database (CMDB).
In the case of IoT systems, the knowledge to be attained is much more sophis-
ticated than the corresponding knowledge about conventional IoT systems.
For example, knowledge about the vulnerabilities of IoT devices is required, as
well as about how threats and vulnerabilities on one IoT asset affect another.
This complicates the security risk assessment task and renders some of the
conventional methods and knowledge bases inadequate (e.g., prone to errors
and likely to miss some important risk).
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• Complexity and Scale as Drivers for Increased Automation: The ris-
ing complexity of IoT environment asks for increased automation in the
risk assessment process. Hence, conventional manual assessments should be
replaced by software systems like machine learning and artificial intelligence.

• New Organizational and Social Elements: Much as risk assessments are
about technical measures and risks, there are also about establishing proper
structures and processes. IoT environments ask for novel organizational struc-
tures and processes, beyond conventional ways for organizing security func-
tions and teams (e.g., CERTs (Computer Emergency Response Teams)).

1.3 New Technology Enablers and Novel Security
Concepts

To address the above-listed limitations, cybersecurity experts and system integrators
are nowadays offered with novel technologies that enable effective solutions for IoT
security risk assessments. Following paragraphs outline some of these technologies
and the problems that they can solve.

1.3.1 IoT Security Knowledge Bases

Security Knowledge Bases (SKBs) are very important and versatile tools for match-
ing identified threats and incidents to existing knowledge during the execution of
security services. SKBs consolidate several sources of knowledge for Cyber Threat
Intelligence (CTI), such as:

• CPE (Common Platform Enumeration), which is a structured naming
scheme for IT software, systems, and packages.

• CWE (Common Weakness Enumeration), which lists common software’s
vulnerabilities.

• CAPEC (Common Attack Pattern Enumeration and Classification),
which lists common attack patterns on software and their taxonomy.

• CVE (Common Vulnerabilities and Exposures), which lists all publicly
known cybersecurity vulnerabilities and exposures.

SKBs can also collect and store external CTI data sources through available
documents in various formats like JSON (JavaScript Object Notation) and XML
(eXtensible Markup Language). There are several SKBs, including commercial
SKBs from major security vendors and SBKs from standards development bodies
(e.g., the OWASP (Open Web Application Security Project) Security Knowledge
Framework). Nevertheless, these SKBs are general purpose and do not comprise
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suitable security knowledge databases for the IoT assets, which is a setback to
supporting security applications like risk analysis and security management activi-
ties for IoT environments.

In order to enable effective and automated risk assessments for IoT systems,
SKBs should also collect and consolidate information from additional sources, as
means of covering IoT assets. For example, the OVAL (Open Vulnerability and
Assessment Language) specifications enable the description of IoT assets.

1.3.2 IoT Reference Architectures and Security Frameworks

To extend existing security risk assessment systems to the IoT space, organizations
can take advantage of readily available reference models and architectures for IoT
systems. One such architecture is the Reference Architecture of the Industrial Inter-
net Consortium (IIC), which is accompanied by a security framework, namely the
Industrial Internet Security Framework (IISF) [22]. These reference models pro-
vide insights for implementing general purpose security measures for large-scale
IoT systems. Furthermore, they provide ideas and guidelines about implementing
security measures across entire supply chains that span multiple IoT platforms. In
an era where infrastructures are becoming digitally interconnected, an attack on
one part of the supply chain can have severe effects on others. While the issue of
supply chain security is known and relevant standards exist (e.g., ISO 28000 [23]),
practical implementations are still in their infancy. To address the issue of supply
chain security, there is a need for seamless information sharing and collaboration
between supply chain systems and stakeholders.

Following chapters of the book present end-to-end security solutions that adhere
to the principles of the above-listed IoT reference architectures and security frame-
works.

1.3.3 Blockchain Technology for Decentralized Secure Data
Sharing for Security in IoT Value Chains

To secure IoT-based supply chains, it is essential to facilitate information sharing
between supply chain participants, as means of implementing security function-
alities such as collaborative risk assessment. The most prominent way for sharing
information between the various stakeholders involves the use of a shared database,
where selected information from all the different supply chain participants will be
persisted and accessed. Nevertheless, centralized information sharing is associated
with prominent limitations including:

• The need for a Trusted Third Party (TTP) that owns and operates the
centralized database infrastructure. However, in IoT supply chains, there is
not always a prominent and accepted TTP.
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• Persisting shared information in a centralized infrastructure makes it sus-
ceptible to cybersecurity attacks. Indeed, a centralized database once com-
promised would infect and destabilize the information sharing system.

In recent years, decentralized paradigms to sharing information have emerged,
including blockchain-based approaches. Blockchains present some unique oppor-
tunities for securely sharing information across parties such as [24]:

• A distributed architecture that can deter or minimize the effect of cyber-
attacks against the shared information. A distributed network structure
provides inherent operational resilience as there is no single point of failure.

• A consensus validation mechanism for news blocks of (shared) data,
which enables a continuous check on the integrity of past transactions
and guarantees strong security and decentralized trust. In the scope of a
blockchain mechanism, there is no need for a TTP to authenticate and vali-
date ownership of the data, as the nodes in the overall network use the peer-
to-peer network to process and verify transactions.

• Strong encryption features, as blockchain networks employ multiple forms
of encryption at different points and provide multi-layered protections
against cybersecurity threats. Participants access rights are secured through
asymmetric-key cryptography or public/private key encryption.

• Transparency, which provides another degree of cybersecurity protection, as
it is more challenging for hackers to place malware in the network to collect
information and to transmit it covertly to another database managed by the
hacker [25]. Each participant has an identical copy of the ledger, and hence,
the network creates the opportunity for deploying enhanced compliance pro-
cesses including, among other things, real-time auditing or monitoring. As a
result, vulnerabilities and threats may be identified quickly if good risk man-
agement and compliance controls are implemented.

• Opportunities for securing connected devices and sharing informa-
tion from them, through making them peer nodes in the blockchain net-
work [26].

• Support for Smart Contracts, which can implement security logic (i.e.,
security workflows) over the shared information.

In practice, these benefits can be better leveraged in the scope of permissioned
blockchain networks rather than in the scope of the public blockchain infrastruc-
tures that support blockbuster cryptocurrencies like Bitcoin and Ethereum. The
main reason for this is that permissioned blockchains offer authentication and pri-
vacy control of the participants, along with much better performance (i.e., reduced
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latency and handling of more transactions per second). The latter benefits stem
from the fact that permissioned blockchains can be decoupled from the compu-
tationally expensive Proof of Work (PoW) mechanisms. Moreover, permissioned
blockchains are often hosted on cloud platforms that have robust cybersecurity
controls across different layers of the technology stack.

The use of permissioned blockchain networks for sharing security information is
not widespread, and security implementations are in early stages. For example, the
authors in [27] describe an early implementation of blockchain-based solution for
sharing security information across financial institutions. There are also blockchain
solutions for information sharing in general, as well as for protecting specific IT
systems and IoT devices (e.g., [26]) and enabling the trusted exchange of data
between them (e.g., [28]).

Later chapters of the book present practical uses of blockchain technology for
privacy and data protection in IoT systems.

1.3.4 Technologies Facilitating GDPR Compliance

GDPR mandates the principle of proportionality (also called purpose limitation).
According to this principle, data should only be processed for the purpose for
which it was collected and from which consent has been provided. Related tech-
nology focuses on various consent management methods, authentication, and data
anonymization. Modern privacy-preserving encryption methods can potentially
give mathematical guarantees for such privacy and thus provide more rigorous pro-
tection. Recently, there have been significant advancements in privacy-preserving
encryption methods, which are gradually moving from research implementations
to enterprise deployments. For example, functional encryption solutions enable
the implementation of IoT services that cannot read the encrypted data, yet they
are able to read the results of the computation of specific functions of the data.
In this way, functional encryption can automatically safeguard GDPR require-
ments, such as the need to use private data only for the purpose for which it
has been provided. As another example in the area of encryption, homomorphic
encryption solutions enable a service to perform computations on encrypted pri-
vate data and then return the encrypted result to the user who can decrypt it to read
the results.

There are many more technologies and security approaches that can facili-
tate GDPR compliance. For example, multi-factor authentication techniques are
commonly deployed along with encryption to prevent data breaches and boost
GDPR compliance. As another example, there are also pseudonymization technolo-
gies that help masking personal data and avoiding the pitfalls of non-compliance.
Pseudonymization is referenced in the text of the GDPR itself. There are also other
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technologies that facilitate the tracking and mapping of data workflows in order to
identify incidents like data loss, data theft, and security attacks.

Several chapters of the book illustrate GDPR compliant solutions, along with
methodologies (e.g., privacy by design) for implementing and deploying them in
practical IoT security contexts.

1.3.5 Machine Learning and Artificial Intelligence Technologies
for Data-driven Security

For nearly two decades, several research works made use of Machine Learning (ML)
and Artificial Intelligence (AI) to analyze large amounts of security data as a means
of deriving insights on potential threats, vulnerabilities, and risks. IoT devices and
infrastructures generate large volumes of data and hence could be analyzed based on
similar approaches. This requires the application of ML algorithms over IoT secu-
rity datasets. In this context, the use of Deep Learning (DL) for detecting anomalies
and potential intrusions is suggested given that the performance of DL algorithms
improves significantly when trained with very large datasets. The research litera-
ture includes many works that apply ML/DL techniques towards detecting secu-
rity issues and anomalies at the network level, i.e., techniques applied over network
layer datasets. Nevertheless, such data mining techniques have not been extensively
applied in the case of IoT applications. The growing popularity of ML, DL, and
AI provides opportunities for building data-driven systems that will detect security
issues timely and effectively.

Several chapters of the book present data-driven approaches to IoT security. One
chapter presents the more specific case of applying DL for detecting anomalies in
IoT-related datasets.

1.4 Conclusion

This chapter has presented some of the most prominent cybersecurity challenges
for modern IoT environments. It has also illustrated how some of the main charac-
teristics of IoT systems are driving these challenges. Furthermore, it has presented
an overview of security risk assessment functionalities, including the standards
and frameworks that support their implementation. State-of-the-art techniques for
security risk assessment have prominent limitations when it comes to confronting
risks associated with large-scale, cyber-physical, and interconnected IoT systems.
Recent attacks against IoT systems (e.g., the Mirai-based DDoS attack) have mani-
fested these limitations and opened the discussion for new approaches. In this direc-
tion, security systems integrators can benefit from a range of novel technologies
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that can boost the timeliness and efficiency of the risk assessment processes, while
dealing with other concerns like GDPR compliance. For example, ML/DL tech-
nologies can detect complex attack patterns in order to accelerate the preparedness
of security teams. Likewise, blockchain techniques can boost the transparency of
data sharing across connected IoT systems. Furthermore, IoT security knowledge
bases can increase the automation of the IoT risk assessment process, by helping
organizations to identify IoT-specific threats and to provide advanced cyber threat
intelligence for IoT systems. Following chapters of the book illustrate a host of novel
techniques for IoT security, which leverage advanced technology enablers such the
ones outlined above.
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Chapter 2

Security Data Modelling for Configurable
Risk Assessment as a Service

in IoT Systems

By Nikos Kefalakis, Angela-Maria Despotopoulou,
Spyridon Evangelatos and John Soldatos

The implementation of data-driven security mechanisms for IoT systems requires
the collection and analysis of large amounts of security-related data from various
heterogeneous sources and Probes. This requires the unification and consolidation
of the diverse semantics of these data, based on the use of a common format for
representing cyber threat intelligence. However, state-of-the-art formats for mod-
eling and exchanging cybersecurity data are heavy weight and not tailored to IoT
systems. Moreover, they do not provide the means for modeling and configuring
the IoT security data collection system. This chapter introduces a data model for
IoT security data collection systems, which enables the implementation of data-
driven security services for non-trivial IoT systems, such as risk assessment services.
The introduced data model provides also the means for configuring data-driven
IoT security platforms, including their Probes and data collection services. In addi-
tion to presenting the main entities of the model and the relationships between
them, the chapter illustrates the use of the model for the implementation of a risk
assessment as a service platform. Overall, the IoT security data model of the chap-
ter can serve as a basis for implementing lightweight and configurable data-driven
solutions for non-trivial IoT systems.
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2.1 Introduction

In recent years, the rapid proliferation of internet-connected devices is driving an
unprecedented growth of Internet of Things (IoT) systems and applications. The
latter are evolving both in terms of the functionalities that they provide to end users,
but also in terms of the technologies that they comprise. Specifically, non-trivial
state-of-the-art IoT systems comprise numerous devices, including not only con-
ventional sensors and passive devices, but also smart objects and cyber-physical sys-
tems (CPS) like drones, automated guided vehicles and industrial robots. Moreover,
IoT systems are deployed in scalable edge/cloud computing infrastructures, which
comprise broadband networks, edge gateways and devices, as well as cloud data
centers. The rising sophistication of IoT systems provides the means for developing
and deploying novel IoT applications, yet it also introduces significant cybersecu-
rity challenges [1]. These challenges are evident in the scope of recent cybersecurity
incidents against IoT infrastructures and services. As outlined in the introductory
chapter of the book, these challenges include:

• The emergence of new types of large-scale security attacks against IoT sys-
tems, such as the large-scale Distributed Denial of Service (DDoS) attacks
that exploit the vulnerabilities of specific IoT devices.

• Vulnerabilities in cyber-physical systems (CPS), which are associated with the
cyber resilience challenges of CPS systems.

• Security threats associated with the interplay between Information Technol-
ogy (IT) and Operational Technology (OT) infrastructures, given the dif-
ferent nature of IT and OT assets and the conflicting IT and OT security
requirements.

• Complex regulatory compliance requirements in a demanding and volatile
landscape, such as the need for compliance to the General Data Protec-
tion Regulation (GDPR) in Europe and the Consumer Data Protection Act
(CDPA) in California, in the U.S.

In order to cope with these challenges, there is a need for end-to-end solutions
and tools that can protect IoT assets from the many different types of attacks. Secu-
rity monitoring and security data analytics is one of the primary functionalities
in this direction. It is also one of the security building blocks of standards-based
IoT architectures, such as the Industrial Internet Reference Architecture (IIRA)
of the Industrial Internet Consortium (IIC). The IIRA has been specified along
with an accompanying security framework, namely the Industrial Internet Security
Framework (IISF) [2]. The IISF specifies monitoring, analysis, and action work-
flows as a core security functionality for IoT systems. Based on such IoT monitoring
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workflows, it is possible to monitor the various devices, systems, and services that
comprise an IoT system in effective and integrated ways. Accordingly, monitoring
can then be a foundation for the identification, assessment, and mitigation of risks,
i.e., for the implementation of risk management functionalities that are an integral
and important element of every non-trivial security policy.

The implementation of data-driven security mechanisms is based on the employ-
ment of advanced analytics of large amounts of security data for the various
assets that comprise the IoT system [3]. These analytics include the application
of machine learning (ML) and artificial intelligence (AI) techniques, which can
enable the extraction of insights about security incidents, vulnerabilities, and risks,
as a means of executing risk assessment functions and boosting the early and proper
preparedness of security teams [4]. Likewise, ML and AI algorithms can be used
for extracting IoT security knowledge, including insights not already known. As a
prominent example, the use of predictive analytics can enable the extraction of pre-
dictive security insights about IoT assets, in order to facilitate timely preparedness.

The collection and consolidation of security data from multiple heterogenous
sources is a key prerequisite for the design and implementation of data-driven secu-
rity techniques, including ML/AI algorithms for security analysis [5]. Indeed, secu-
rity data stem from a variety of different Probes that are deployed in the diverse
assets and devices of an IoT system. These Probes provide data in different seman-
tics and formats, which makes it difficult to consolidate and analyze them in a com-
mon and unified way. This is a setback to the implementation of integrated, intelli-
gent, data-driven security techniques, which are capable of correlating information
and events associated with different assets, as a means of identifying vulnerabili-
ties and attack patterns beyond existing security knowledge [e.g., knowledge avail-
able in popular vulnerability databases like Common Vulnerability and Exposures
(CVE)] [6].

In order to remedy this situation, there is a need for collecting and mapping
security data in a common model for IoT security knowledge modeling and cyber
threat intelligence. Such a common data model can be a foundation for security
interoperability of IoT security data monitoring systems that collect and analyze
information from different platforms and devices [5, 7]. In this direction, stan-
dards organizations have developed knowledge models for cyber threat intelligence
like STIX (Structured Threat Information Expression) [8], which serves both as
a language and as a serialization format that enables the exchange of cyber threat
intelligence (CTI). As another example, the Industry Consortium for Advance-
ment of Security on the Internet (ICASI) has specified the Common Vulnerability
Reporting Framework (CVRF) [9]. CVRF is an XML-based data exchange format
that automates data reporting and consumption of information about software
vulnerabilities, while providing support for describing the vulnerability handling
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life cycle end-to-end. Likewise, the Managed Incident Lightweight Exchange
(MILE) working group of the Internet Engineering Task Force has introduced
the Incident Object Description Exchange Format (IODEF), which is described
in RFC5070 [10]. It is an XML format for exchanging operational and statisti-
cal security incident information. It can report information about hosts, networks,
services, attacks methodologies and forensic data. As part of RFC7203 [11], a set
of extensions over IODEF have been specified, namely the IODEF-SCI (IODEF
for Structured Cybersecurity Information) format. IODEF-SCI embeds structured
information within IODEF and defines new classes for types of information that are
not included in IODEF. The above list of formats for exchange, reporting, and seri-
alization of cyber threat intelligence information is non-exhaustive. There are var-
ious other standards-based formats, which focus on more specific types of security
incidents (e.g., abuse of messages) and in specific layers of the cyber infrastructure
(e.g., networking layer). However, most of these formats tend to be heavyweight
and their use in IoT security solutions is typically associated with a considerable
learning curve for IoT vendors and solution providers. Furthermore, most of them
are not tailored to IoT systems and devices, but rather cover a broader range of IT
systems and devices. Moreover, these formats are completely agnostic to the data
collection system, i.e., the Probes that are used to collect the information. Hence,
they do not provide the means for (re)configuring the operation of the IoT security
system in order to implement security automation functions. For example, formats
like STIX do not provide the means for defining and executing actionable intelli-
gence on the IoT security system, e.g., towards increasing the amount of collecting
data or invoking actuating functions in response to the identification or assessment
of certain risks. This could greatly facilitate the implementation of security automa-
tion functions, through combining reporting of security threats with actionable
intelligence on the security infrastructure.

Given these limitations of existing standards and formats, this chapter intro-
duces a new lightweight model for modeling assets and security functions in IoT
systems. This model is already used to provide security functionalities for IoT
systems in various use cases in the areas of connected transport, healthcare, and
smart manufacturing. Due to its lightweight nature, the model sacrifices expres-
siveness and rich semantics, in exchange of simplicity and a smoother learning
curve for IoT developers and solution integrators. Furthermore, it is tailored to
IoT systems and services, rather than prioritizing the modeling of other types of
cyber assets and cyber infrastructures. Also, it has the unique property of blending
information about the actual security data collection systems (e.g., the IoT security
Probes and their configurations) with threat intelligence information. This prop-
erty facilitates the implementation of actionable intelligence, through enabling
the encoding of security actions in response to identification of security incidents
and vulnerabilities, or even in response to security risk assessment functions. The
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security model that is presented in the chapter has been designed, developed, and
validated in the scope of H2020 SecureIoT project [5], which provides end-to-end
predictive IoT security solutions for various use cases, along with security services
like risk assessment and compliance auditing. As already outlined, the presented
data model is used for modeling security data for various use cases in connected
transport, healthcare, and smart manufacturing. At the same time, it is used for
configuring the SecureIoT data collection platform, as a means of facilitating differ-
ent deployment configurations at both design and run time. These configurations
boost the implementation of actionable security intelligence, as well as allow the
security services of the platform to reconfigure the operation of the various Probes.
This can also enable scenarios that close the loop to the field upon the identification
or the grading of certain security risks.

The rest of the chapter is structured as follows: Section 2.2 introduces the archi-
tecture of the SecureIoT platform [5], which has driven the specification of some
of the entities of the data model. Section 2.3 presents the data model, including
its main entities and the relationships between them. The presentation focuses on
the structural characteristics of the model and its constructs that enable data col-
lection and security data analysis. Note, however, that an exhaustive presentation
of the data model, including details for each one of the entities and their attributes,
is beyond the scope of this chapter. Section 2.4 is devoted to the description of
the SecureIoT Risk Assessment infrastructure, with emphasis on how it leverages
the introduced data model. This infrastructure is currently used to support mul-
tiple IoT security use cases based on different instantiations of the data model.
Section 2.5 is the final and concluding section of the chapter.

2.2 Data-driven Security Architecture

2.2.1 Overview

The SecureIoT project developed a BigData architecture for the security monitor-
ing and protection of IoT systems at scale. The architecture serves as a blueprint for
the development and deployment of IoT security systems. It enables the offering
of security services (e.g., risk assessment, compliance auditing) based on a managed
security, cloud-based model, i.e., a SECaaS (Security-as-a-Service) model.

The SecureIoT architecture specifies various components, which are grouped
together based on their functional relevance. As shown in Figure 2.1, the compo-
nents’ groups of the SecureIoT architecture are:

• Data Management Group: This group comprises components that collect
security-related data from IoT systems, as well as components that implement
actuation and security automation functions.
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Figure 2.1. SecureIoT architecture for data-driven security services for IoT systems [5].

• Analytics Group: This group clusters components that process and analyze
security data in order to derive insights that are accordingly used for security
risk assessments, compliance auditing and other security functionalities. Data
analytics are supported by a powerful mechanism of reusable “security tem-
plates,” which addresses different types of threats, vulnerabilities, and attacks.

• Global Repository: This group comprises databases and repositories where
information generated from the various components is persisted. The global
repository is at the center of the architecture and interfaces to all the differ-
ent/other groups of components.

• SLA Group: This group comprises components that keep track and audit
Service Level Agreements (SLAs) between operators of IoT systems and the
SecureIoT services providers in the scope of the SECaaS paradigm.

• Security and Privacy Group: This group consists of components that model
and implement security policies.

• Risk Assessment Group: This group comprises the set of components that
deliver data-driven risk assessments. These components enable the services
that are described in Section 2.4 of this chapter.

• Compliance Auditing Group: This group comprises the set of components
that enable and implement the compliance auditing services of SecureIoT-
compliant platforms.

• Programming Support Group: This group comprises the set of components
that support programmers and developers in securing their programs, based
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on a set of appropriate annotations that are decoded and operated based on
the collected security information.

Furthermore, a key communications’ component of the architecture is the data
bus, i.e., a communications channel through which real-time data are routed. Plat-
form components may subscribe to the data bus to receive data of interest to them.
Following paragraphs provide more information for each one of the above groups.

2.2.2 The Data Management Group

The components of this group are responsible for collecting data from IoT assets,
systems, and applications. The data are streamed to the Observations repository of
the Global repository. The main components of the group are:

• Deployed Probes: Probes collect data from the target IoT systems or appli-
cations and stream them to a cloud platform that follows the architecture.
The routing is performed by the data routing components.

• Probe Management and Configuration: This component is responsible for
managing and configuring the deployed Probes. It interacts with the SPEP
(Security Policy Enforcement Point), which provides automatic Probe con-
figuration commands that are used to configure the managed Probes. Manual
Probe configuration commands may also be issued by security operators.

• Probe Registry: This is a registry that maintains a record of the deployed
Probes. Probe deployment data, as well as state and configuration data, are
maintained by the registry. The registry provides Probe creation, reconfigu-
ration, and search capabilities.

• SPEP (Security Policy Enforcement Point): It executes actuating functions
towards the IoT system or application under protection. Examples of sup-
ported actuating functions include: (i) The automatic (re)configuration of
Probes, which can be triggered by security data analysis performed in the Ana-
lytics Engine; and (ii) Manual (re)configuration of Probes and other compo-
nents triggered by the Risk Assessment service, i.e., as a risk mitigation action.

2.2.3 The Analytics Group

SecureIoT provides data-driven security services, and hence, data analytics func-
tionalities are at the core of the architecture. They are provided and implemented
as part of the Analytics Group, which includes the following components:

• Analytics engine: Provides security analytics functionalities based on the
monitored security data that are collected by the Probes, as well as based on
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training data and templates. The Analytics Engine trains itself using historical
data that are stored in the Observations part of the Global Repository. The
outcome of the training is a set of templates that are stored in the Security
Template Database. The templates are executed by the Engine and provide
the data-driven logic that enables real-time identification of security issues
based on the analysis of real-time data that are streamed from the deployed
Probes through the data bus. The Analytics Engine raises alerts for security
issues that may be detected while monitoring the IoT systems. The gener-
ated alerts can be intercepted either by the SPEP component or by the Risk
Assessment Engine. Depending on the defined reconfiguration policies, they
may carry reconfiguration commands that are to be applied to the deployed
Probes. The alerts that are intercepted by the SPEP result in the reconfig-
uration of Probes, which can be put into effect through the Management
and Configuration component. Alternatively, Probe reconfigurations can be
executed manually through the Management and Configuration dashboard.

• Security Template Extraction: This component trains models based on his-
torical data and extracts reusable templates. In particular, the training part of
the analytics algorithm results in the generation of the security templates that
are stored into the Security Templates Database and are subsequently used by
the monitoring part of the analytics algorithm (e.g., in order to generate alerts
or trigger risk assessments).

• Security Templates Database: Stores the Security Templates, i.e., pre-
trained and ready to use machine learning and other data mining models. The
templates mechanism boosts reusability and modularity in handling many
different security risks.

2.2.4 The Global Repository

The Global Repository comprises various data stores that enable the persistent stor-
age of the data that are used by the other components of the architecture. The
following repositories of security data and metadata are included in the Global
Repository:

• Probe Registry: As already outlined, it contains a record of the deployed
Probes along with their attributes, including state information. It facilitates
the automatic deployment of Probes and their dynamic discovery.

• Observations: This repository contains historic security data that have been
collected by the deployed Probes. These data are used by the Analytics Engine
to train itself and produce security templates.

• Analytics Registry: This repository comprises information about the analyt-
ics algorithms that are employed by the SecureIoT platform, along with the
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(meta)data needed to configure their lifecycle. Hence, the Analytics Registry
is for analytics algorithms what the Probe Registry is for Probes.

• Policy Repository: This repository stores the policies that prescribe the han-
dling of security issues (e.g., threats, vulnerabilities).

• SLA repository: This repository contains SLA reports along with configura-
tion data about SLAs. It interfaces to components of the SLA Group.

• Security Knowledge Base (SKB) Repository: This includes publicly avail-
able data on known vulnerabilities and risks, and corresponding CTI (Cyber
Threat Intelligence) graphs. Its role is to facilitate the look up and resolu-
tion of attack patterns, as a means of automating processes and tasks for
risk assessment and compliance auditing services. In the scope of the imple-
mentation of the SecureIoT architecture, the contents of the SKB integrate
various sources of security knowledge from MITRE (Massachusetts Insti-
tute of Technology Research & Engineering) and NIST (National Insti-
tute of Standards and Technology), e.g., CAPEC (Common Attack Pattern
Enumeration and Classification collection), CVE (Common Vulnerabilities
and Exposures collection), CWE (Common Weakness Enumeration collec-
tion), CPE (Common Platform Enumeration collection) and NIST’s CVSS
(Common Vulnerability Scoring System collection).

• Configuration Management Database (CMDB): This database contains
information about all the assets of the IoT systems that are to be protected,
along with their attributes and configuration parameters.

2.2.5 The Security and Privacy Group

This group of components models and keeps track of the different security and
privacy policies that are used by SecureIoT-compliant systems. It provides func-
tionalities for modeling policies and trustworthiness in abstract, standards-based
and interoperable ways. The group comprises two main modules:

• Security and Privacy Policies Interoperability: This component provides
support for the definition of interoperable security policies, which are accord-
ingly used by other components of the SecureIoT architecture. To this end, it
supports for policy abstractions and policy descriptions in a standards-based
manner. For example, in the implementation of the SecureIoT platform,
XACML (eXtensible Access Control Markup Language)-based policies are
supported in order to facilitate the assessment of attributes and rules in a
common abstraction.

• The Trustworthiness Metrics and Utility Calculation: This component
identifies the trustworthiness of the provider of a certain IoT platform
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founded on standards-based metrics specified by the Industrial Internet
Consortium (IIC). It encompasses the IIC model and utility calculation
tools that facilitate the assessment of a participant’s trustworthiness based on
defined policies and configuration data.

2.2.6 The Risk Assessment Service Group

This group provides a service that checks the IoT system/deployment that is
being protected against a set of known vulnerabilities databases, like NIST’s NVD
(National Vulnerability Database) or the CVSS (Common Vulnerability Scoring
System). The service operates on collected security data for the target IoT deploy-
ment as well as stored CTI (Cyber Threat Intelligence) data. In principle, the Risk
Assessment service tries to match patterns of vulnerabilities against the collected
data and in case it discovers that the IoT deployment is exposed to a vulnerability
it raises an alert. To this end, the service leverages the Security Knowledge Base
of the Global Repository group. The Risk Assessment group service comprises the
following components:

• Risk Assessment Engine (RAE): This engine implements the logic of the
service itself. It makes use of a Risk Assessment database that contains sets of
known vulnerabilities and interacts with its user through the Risk Assessment
Dashboard. The RAE comprises its own database (RAE DB) and operates
based on its own set of rules (RA rules) that implement the risk assessment
logic.

• Risk Assessment Dashboard: This component provides a user interface to
the Risk Assessment Engine. Mitigation actions that are proposed by the Risk
Assessment Engine are presented to the Dashboard allowing the user to decide
for their enforcement. These actions are eventually carried out through the
SPEP component of the Data Management Group.

The operation of the RAE and of the dashboard based on the SecureIoT data
model is illustrated in Section 2.4 of this chapter.

2.2.7 The Compliance Auditing Service (CAS) Group

This group checks and verifies the compliance of IoT system/deployment to
regulatory-related requirements, e.g., GDPR, NIS (Network Information Sys-
tem), etc. The service operates on collected security data as well as on regulatory
requirements that are expressed as security and privacy policies. The engine that
implements the service verifies that the collected data conform to the regulatory
requirements as expressed through the respective policies. The latter are managed
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through the Policy Engine of the SecureIoT architecture. If no verification can be
secured, it raises alerts to the CAS console. The group comprises the following
components:

• Compliance Auditing Manager: Supports the auditing of the target IoT
application, the specification of policies and the generation of the respective
(compliance auditing) reports.

• Compliance Auditing GUI (Graphical User Interface): This provides a
user interface to the Compliance Auditing Manager.

2.2.8 The Programming Support Group

This group implements the Programming Support Service, which provides pro-
gramming support for security controls through annotations and a set of policies
for backing their handling at runtime. The Policy Engine of the SecureIoT archi-
tecture is responsible for applying the defined policies and is common to the Com-
pliance Auditing and the Programming Support services. The main component of
the group is the Programming Support Manager, which comprises the Policy Man-
ager that allows the specification of policies and the Model Manager that enables
the definition of the policy models.

2.2.9 The SLA Group

This group of components supports the management and auditing of Service
Level Agreements (SLAs) between IoT systems operators and SecureIoT services
providers. To support the management of such SLAs, the group includes the fol-
lowing components:

• SLA Probes: These are specialized Probes that collect SLA-related informa-
tion. They are placed in different parts of the SecureIoT architecture, includ-
ing Probes in the Data Management, Analytics, and Risk Assessment Groups.
The Probes are marked as “SLA Probes” in the architecture figure. They
enable the acquisition of (raw) data that are sent to the data routing com-
ponent. The latter transforms raw data to properly structured Observations
and stores them to the Observations Repository.

• SLA Processing Engine: This engine processes raw data and generates SLA
reports, i.e., reports that provide information about the execution of the SLA
(e.g., data collected, data processed, risk assessment reports generated, etc.).
The latter are stored in a dedicated part of the Global Repository, i.e., the
SLA Repository, which is destined to support SLA Management. The SLA
Repository hosts SLA reports along with configuration data about each SLA.
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• SLA Admin Console: This console provides the means for configuring and
managing SLAs, based on the processing of configuration data of the SLA
Repository.

A more detailed presentation of the SecureIoT and its use in supporting data-
driven security scenarios is available in [5] and [12]. The previous paragraph aimed
at outlining the main components and their relationships between them, as the
latter have driven the design and implementation of the data model for structuring
security data about IoT assets, but also for enabling the configuration of the various
Probes that comprise SecureIoT-compliant platforms.

2.3 Data Modelling for Security Systems Interoperability
and Configurability

2.3.1 Overview

To support the security data flow and exchange across the different components of
the SecureIoT architecture, a common data model has been specified. The model is
XML-based and comprises the semantics needed for structuring and storing secu-
rity data, along with metadata regarding the configuration of a SecureIoT compli-
ant platform. It is meant to be a lightweight model that is tailored to the needs of
data-driven IoT applications. Nevertheless, based on the Security Knowledge Base
(SKB) Repository, the data model can be linked to conventional sources of security
knowledge, as a means of automating risk assessment and cyber threat intelligence
processes.

In practice, the model is structured as a collection of interconnected and inter-
related schemas, which can be considered as stand-alone data models. In particular,
the SecureIoT Data Models form six main logical groups, which are driven by cor-
responding groups of components in the SecureIoT architecture. These include the
following groups:

• Data Management, which focuses on the modeling of the data collection and
data routing functionalities. These are integral functionalities of any security
data collection platform that collects information from multiple sources and
Probes, and routes them to different consuming applications (e.g., such as
low-latency edge analytics applications).

• Analytics, which focuses on the Analytics configuration and management at
the Security Intelligence layer.

• Knowledge Base, which focuses on modeling of Security Knowledge from
third-party standardized sources.
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Figure 2.2. Logical groups of the SecureIoT data models.

• Risk Assessment, which focuses on the configuration and management of
the Risks Assessment and Mitigations SECaaS service. The latter service is
illustrated in the following chapter.

• Configuration and Management DB (CMDB), which focuses on con-
figuration aspects of the SecureIoT compliant data security infrastructure.
It includes modeling of information about the configuration of the moni-
tored IoT systems.

• SLA, which comprises data models for configuring and reporting the SLAs.

Some of the Logical Groups are focusing on different aspects of the SecureIoT
infrastructure and some are shared along the different layers. All together they form
an integrated solution, which is used in the SecureIoT Infrastructure. Figure 2.2
shows the SecureIoT Root Entity of the data model with the different Logical
Groups.

2.3.2 Modelling Security Data: The Observation Entity

The Observation data model has a prominent position among the other Logical
Groups, given that it is used as a common format for exchanging and reporting
data within systems compliant to the SecureIoT architecture. The structure of this
sub-model is depicted in Figure 2.3. As evident from the figure, the Observation
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Figure 2.3. Observation entity: modelling security data.

sub-model comprises lightweight semantics tailored to IoT systems. It provides
the mean for representing timestamped values for various parameters that can be
provided by an IoT system or device. An observation can provide information about
different structures of IoT systems, which comprise one or more data sources (e.g.,
sensor streams, databases). Furthermore, an Observation can be associated with a
physical or a virtual location. A physical location is a real-life geolocation repre-
sented by coordinates, while a virtual location allows the association of the Obser-
vation relative to the location of another system.

In terms of data semantics, each Observation is associated with measurable quan-
tity (i.e., a metric) that is represented based on QuantityKind entity in the model.
The QuantityKind is an abstract classifier that represents the type of the quantity
that is measured (e.g., temperature, speed, acceleration, power consumption, vibra-
tion, etc.). Note that any given Probe can collect data of a given kind, i.e., different
metrics are provided by different Probes. Moreover, each Probe is associated to a
Data Source from which data originate and a Data Destination to which data are
fed. This Data Source is also modeled in the Observation schema. Overall, the
Observation schema allows the modeling of ‘live’ measurements from IoT systems,
which may comprise one or more physical and/or virtual data sources.

2.3.3 Configuring and Managing the Data Collection
and Routing Process: The Data Management Group

The Data Management Group models the configuration of the data collection sys-
tem, which facilitates the implementation of data routing functions. The main
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Figure 2.4. Data source entity modelling.

entities are the Probe, which is responsible for collecting data and streaming it to
the processing components of the platform and the Observation, which represents
the collected datum. Each Observation concerns a metric that is measured, and this
is represented as the QuantityKind in the model. A given Probe collects data of a
given kind, and if different metrics are to be measured, then different Probes must
be deployed. Moreover, each Probe is associated to a Data Source from which data
originate and a Data Destination to which data are fed. The structure of a Data
Source sub-model is depicted in Figure 2.4. Overall, the data management group
comprises the following core entities:

• Quantity Kind: Represents the quantity measured or provided by the data
source.

• Connection Interface Type: Models the type of connection interface which
is used at the Data Source and Data Destination entities.

• Data Source: Provides the characteristics and connection interface of a data
source.

• Data Destination: Provides the characteristics and connection interface of a
data destination.

• Probe Type: Models the type/category of each Probe. Each Probe is classified
to a certain Probe type.

• Probe: It models and represents a Probe instance. The Probe entity contains
the identity and configuration information of the Probe, which is typically
deployed within the monitored IoT System.
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2.3.4 Modelling Security Analytics: The Analytics Group

The Analytics group focuses on the configuration and management of Analyt-
ics configuration at the Security Intelligence layer. It consists of the following
entities:

• Processor Definition, which is used to describe an Analytics algorithm
and its parameters. It lists the metadata of the processor and its required
parameters. The structure of a Processor Definition sub-model is depicted
in Figure 2.5.

• Processor Manifest, which describes a specific instantiation of a Processor
Definition. It specifies the concrete data sources that are consumed from the
processor and the data sources that it produces. It also provides the parameters
required to instantiate the Analytics algorithm.

Figure 2.5. Processor definition.
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• Processor Orchestrator, which groups Processor instances towards creating
complex analytics dataflows. The latter can be used to represent various data
analytics algorithms, including ML models. Such model can provide addi-
tional intelligence to the data-driven security application.

The output of an Analytics workflow is represented based on the Observation
format, which includes information about the data source, the system, the times-
tamp, and the location of the data output through the dataSourceID, systemID,
timestamp, and Location elements, respectively. The QuantityKind of the Obser-
vation is a STIX compliant element. Its value includes one or more STIX indicators
determined by the algorithm. Each STIX indicator contains at least identifiers for
the attack, the asset being attacked and (optionally) information about the context
of the attack, including links to relevant CVEs.

2.3.5 Security Knowledge Base

The Knowledge Base group models Security Knowledge stemming from available
third-party standardized sources. It comprises links to the following schemas:

• CAPEC: MITRE Common Attack Pattern Enumeration and Classification
collection.

• CVE: MITRE Common Vulnerabilities and Exposures collection.
• CWE: MITRE Common Weakness Enumeration collection.
• CPE: MITRE Common Platform Enumeration collection.
• CVSS: NIST Common Vulnerability Scoring System collection.

These entities are linked based on standardized schemata provided from each
(knowledge provider) organization. These schemata are imported to the SecureIoT
Data Models and become available for use by other logical groups.

2.3.6 Modelling for Risk Assessment Services: The Risk
Assessment Group

The Risk Assessment Logical Group of the SecureIoT data model focuses on the
data entities that support the configuration and management of Risk Assessment
and Mitigation Services. The Group is using the CMDB and Knowledge Base enti-
ties for the configuration and management of the Engine. The main entities of the
group are:

• Risk Model, which provides the means for representing a model for a
risk assessment service. It provides the means for modeling different risk
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Figure 2.6. Risk modelling for the risk assessment engine.

indicators for different assets. The structure of a Risk Model sub-model is
depicted in Figure 2.6.

• Indicator, which represents an indicator that can be used for risk assessment.
• Alarm, which is used for reporting identified attacks based on the output of

an Analytics process.
• Specific Risk Model, which represents a specific risk model for users of a

specific organization.
• Risk Plan, which represents a risk pattern that is associated to a generic risk

model that is available to users of all organizations.
• Risk Assessment Engine, which models the runtime configuration parame-

ters of the Risk Assessment Engine (RAE).
• Risk Report, which models and represents a result of the risk assessment

procedure that is delivered to the end user.

2.3.7 Configuring the Data-driven Security System:
The Configuration Management Database

The CMDB logical group focuses on the configuration aspects of the data-driven
security infrastructure. It comprises information about the monitored IoT systems
and the attack scenarios against them. The group consists of the following core
entities:
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Figure 2.7. Vulnerability modelling in the scope of the CMDB group.

• System: Provides a set of observed characteristics for the IoT System.
• Asset: Models a cyber, physical, or cyber-physical element within an organi-

zation that is used in the frame of business operations.
• Vendor: Specifies an Asset’s Vendor.
• Control: Models a control element that is used to prevent attack impact.
• Mitigation Plan: Provides a Mitigation Plan based on a specified Asset.
• Mitigation Measures: Provides a list of available Mitigation Measures to be

applied for a given Abuse Case.
• Vulnerabilities: It is used to extend the MITRE Common Vulnerabilities

and Exposures (CVE) collection (see Figure 2.7).
• Attack Scenarios: Models a set of Abuse Cases based on the monitored Asset

and specified scenarios.

2.3.8 Managing Service Level Agreements (SLA): The SLA
Group

The SLA Group comprises data models that support the configuration and report-
ing of SLAs. The SLA group consists of the following elements:
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• SLA Definition: Provides the definition of an SLA processor that produces
a report about the status of an SLA.

• SLA Object: Models an instance of an SLA, which includes specific config-
uration parameters that enable the auditing and enforcement of the SLA.

• SLA Report: Provides the structure of the SLA report. It hosts results calcu-
lated by an SLA object.

2.4 Risk Assessment Services

2.4.1 Risk Assessment & Mitigation Service Overview
and Components

A Risk Assessment & Mitigation Service (RA&M) has been implemented based
on the SecureIoT architecture and the data models that were introduced in
earlier sections. Figure 2.8 illustrates the RA&M service implementation, which

Figure 2.8. Focus of the main building blocks of the risk assessment group in SecureIoT

architecture.
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leverages components of the SecureIoT architecture. The core component of the
RA&M service is the Risk Assessment Engine (RAE), which is responsible for col-
lecting and exploiting data from various sources of the SecureIoT data collection
infrastructure in order to assess potential risks and propose mitigation actions. To
this end, it comprises a rule engine that enables the execution of Risk Assessment
rules, which are executed over data and information from Data Monitoring and
Analytics components. Specifically, the data used by the RAE are retrieved either
by subscribing to data streams produced by the Probes or by accessing the SecureIoT
data storage repositories where the outcomes of data Analytics are persisted. More-
over, the RAE leverages information from the Security Knowledge Base (SKB)
where the NIST’s Common Vulnerability Scoring System (CVSS) can be used to
drive the computation of a vulnerability’s “likelihood” factor.

The results produced from the RA engine are presented to end users [e.g., secu-
rity officers, CERTs (Computer Emergency Response Teams)] through a proper
dashboard. The presentation of RA results includes recommendations for risk
alleviation activities. For example, they may include recommendations for the
enforcement of proper security policies based on the capabilities specified by
the monitored platform and the SecureIoT Policy Enforcement Point (SPEP)
component. As soon as a mitigation action is specified, the RA engine can send
the command to the interface of Policy Enforcement component at the Data Man-
agement group. Accordingly, the SecureIoT Policy Enforcement component will
execute the action based on the capabilities of the monitored platform.

The RA&M services make use of information from the Monitoring and Analyt-
ics component. The Risk Assessment (RA) service monitors the collected data and
makes use of the information stored in the Security Knowledge Base in order to
perform the risk assessment. Likewise, the Risk Assessment service calculates dif-
ferent configurations and risk criticality values as part of its risk assessment output.
The results produced by the RA component are presented to the service opera-
tor’s dashboard and are accompanied with risk alleviation recommendations like
enforcement of proper security policies. As soon as a mitigation action is specified,
the RA engine sends the reconfiguration commands to the SPEP at the Data Man-
agement group, which enforces the action to the components of the monitoring
platform.

The RA can assess risks for services that span multiple IoT platforms (e.g., supply
chain services). In particular, the RA&M service supports cross-platform applica-
tions by processing security data that are collected from Probes in different IoT
platforms. The processing takes advantage of the fact that the platform supports
the presented data models.
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2.4.2 Risk Assessment & Mitigation Implementation Scenario

One of the use cases that the RA&MS component is used is in the automotive
industry and, more specifically, in a connected car use case. The connected car
usage scenarios focus on an area within modern IoT such that modern vehicles are
no longer just a set of wheels, a body of metal and an engine, but are now full-
fledged IoT devices capable of partial/semi-autonomous behavior.

One connected car scenario is where an application involves analyzing vehicle
data to assess driver behavior and hence determine the driver risks in order to tailor
insurance premiums for customers using this service. The OBU (On Board Unit)
obtains raw vehicle data from two sources (Multi-CAN and GPS) and puts context
to that information (i.e., how frequent the data are acquired). Collected data are
then aggregated, stored locally, and uploaded to the IoT Cloud platform through
cellular or WiFi communication interfaces (considering the most appropriate or
efficient transmission strategy).

Possible Security gaps and risks for this scenario are:

• Vulnerabilities in software implementation in IoT platform components and
vehicle OBU.

• Bad configuration of communication protocols and networks, i.e., not use of
HTTPS/encrypted communications.

• Vehicle impersonation (Man in the Middle)
• Tampering of data in transit
• Denial of service at the vehicle (DoS)

2.4.3 Modelling of Security Information Flows and Reports

In order to support the abovementioned scenario, the Risk Assessment & Mitiga-
tion services utilizes most of the SecureIoT infrastructure. More specifically (as we
can see in Figure 2.1 above of the general SecureIoT architecture and more specifi-
cally in Figure 2.8 above focusing on the RA&MS), the following components are
used:

• SecureIoT Probes: for pushing collected raw measurements to SecureIoT
Infrastructure

• Data Routing: for storing the data pushed from the Probes to the Global
Repository (Elasticsearch)

• Security Template Extraction: for training the Analytics algorithms with
annotated historical data coming from the IoT Systems
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• Analytics Engine: which is using the trained templates to analyze the real-
time data coming from the IoT Systems and are stored to the SecureIoT
Global Repository (Elasticsearch)

• Data Bus: which is used as a messaging channel implementing publish/sub-
scribe for the Analytics reports

• CMDB: where specific use case data describing the involved Assets and the
potential vulnerabilities/threats are stored

• Risk Assessment Engine: which is analyzing the published reports from the
Analytics Engine to the Data Bus

• Risk Assessment Dashboard: which is responsible to visualize the risk assess-
ment reports with possible mitigation actions.

The Risk Assessment scenario set up is divided in two different phases:

1. The possibility to represent and protect the needs of the use cases and the
validation using SecureIoT by transferring the data from the use cases to the
RAE using communication channels of the project.

2. Its different processing components to transform the data from the Probes.

Regarding the first phase, we list all the inputs required in order to start work-
ing in the RAE: a tool for modeling the risk scenarios and transform the model to
computer data where in collaboration with the use case owner the security require-
ments are collected for the threat scenario. With this procedure, we collect infor-
mation about users, assets, threats, attacks, impact in the system, etc., which we
provide as sample below. Once the information is compiled, the modeling of the
system is conducted with the help of the modeling tool.

For the Risk Assessment data flow, the direct related components are the CMDB,
Global Repository (Observations), Analytics Engine, Data Bus, Risk Assessment
Engine and Risk Assessment Dashboard. Figure 2.9 below depicts a high-level
dataflow of the validation runtime. More specifically, we can see that first we instan-
tiate the Risk Assessment Engine, which retrieves all the configuration data from the
CMDB to be initialized (not depicted in the sequence diagram), and start listening
for the Analytics Engine reports by subscribing to a Data Bus topic named after
the ID of the Analytics Engine. Then, we set up the Analytics Engine to consume
incoming data from the Elasticsearch (Global Repository) where the captured Raw
Data are stored. The data are then analyzed for specific Attacks. When an attack is
identified, it is pushed to the Data Bus by using as topic name the ID of the instan-
tiated Analytics Algorithm. The report is then picked up from the Risk Assessment
Engine which applies preconfigured rules for the specific scenario and produces a
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Figure 2.9. Data management/analytics/risk assessment validation high level sequence

diagram.

report with possible mitigation actions. This report is then picked up from the Risk
Assessment Dashboard in order to provide it to the end user.

2.4.3.1 Risk Analysis

In order to perform the risk analysis, the first thing to do is to model the use-
case scenarios. The scenarios define how the system works, relations with external
elements, assets, roles involved, etc. Therefore, it is very important, in order to
detect the risks, to know what the normal case of working is, what are the possible
cybersecurity problems that can exist, and what are their impacts in the system.
Regarding this last one, it is important to describe the usability impact (e.g., service,
information stored, etc.) and the economic impact (e.g., inability to provide its
service for a whole day would have a huge impact in its business, etc.).

Therefore, in order to be able to perform the risk analysis for the SecureIoT
scenarios, we defined a process. The process is composed of the following phases:

• Attack scenario description: In the first phase, we discuss about the scenarios
of the use case in order to understand what the normal way of working is and
what the attack scenarios are. These scenarios disrupt the normal activity and
could make the system not to work as intended, data to be stolen, etc.

• Definition of assets and impact from the technical and business point of
view: After having collected the scenarios, we defined what are their assets
and the impact the attacks could have on them. This was studied from a use-
case user and cybersecurity expert perspective so we could give ideas of how
attacks could impact their services and business in a way they didn’t think of.
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• Modeling of the scenarios: Using the CORAS tool [13], we modeled dif-
ferent scenarios together with risks, assets, attacks, indicators, cybersecurity
properties, etc. Following we will examine the models created for each use
case in their own sub-sections.

• Creation of different models and data that are used as input for the Risk
Analysis Engine: Once the models are created, we extract information from
them to generate different data files that are necessary for the Risk Assessment
Engine. The files we need to generate are the indicators of the cybersecurity
threats of each scenario, mitigation actions, risks, and the DEXi model [14].
This last one is a mathematical model that is used for calculating the proba-
bility for a specific risk to happen.

• Analysis: Finally, we perform the analysis of the model, and the result is
shown in the Risk Assessment Engine on the one hand and in a console on
the other hand. We followed this approach so we can check the information
in both platforms and in the next iteration create our own interface that is
more IoT-oriented and provide more useful information of the one coming
from the Probes and assurance system.

2.4.3.2 SecureIoT Required Configuration Entities

This section shows how some of the most important entities of the SecureIoT Con-
figuration & Management Database is populated in order to support the above-
mentioned scenario.

System

System entity is an abstraction of an IoT System in the real world. The user needs
to provide a unique name for the System, a textual description, an organization
identifier, information on the system’s virtual or physical location and optionally
additional information. A System sample can be seen in the Table 2.1.

Table 2.1. Connected vehicle system.

{
"name": "SecureIoT CAD pilot FIWARE cluster",
"description": "Cloud and car system for SecureIoT testing",
"location": {

"geoLocation": {
"latitude": "41.2533139",
"longitude": "1.5521598"

},
"virtualLocation":"https://cad−pilot.secureiot.eu:8443/"

},
"organization": "IDIADA",
"additionalInformation": {

"0": "Datum0",
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"1": "Datum1",
"2": "Datum3"

}
}

Asset

Asset entity is an abstraction of an Asset belonging to the previous IoT System in
the real world. The user needs to provide, among other information, a unique name
for the Asset, the IP address and port through which it can be remotely accessed,
and the CMDB identifier of the System entity it belongs to. An Asset sample can
be seen in the Table 2.2.

Table 2.2. Connected vehicle asset.

{
"name": "OBU IDAPT 001",
"systemID": "1bdfc95f−2196−4150−91d7−b9fc9d7a7134",
"probeID": [

"obu_idapt_001_canbeat",
"cad_fiware_contextbrokerbeat"

],
"description": "Car",
"longDescription": "SecureIoT CAD pilot FIWARE cluster",
"ip_address": "192.168.3.65",
"port": 3333,
"location": {

"geoLocation": {
"latitude": "51.507879",
"longitude": "−0.087732"

},
"virtualLocation": "https://192.168.3.65:3333/car"

},
"securityData": {

"capecID": [
"154 Resource Location Spoofing",
"212 Functionality Misuse",
"441 Malicious Logic Insertion"

],
"cpeID":
["cpe:2.3:a:1024cms:1024_cms:1.4.1:∗:∗:∗:∗:∗:∗:∗"],
"cveID": ["CVE−2017−12697"],
"cweID": ["Intercept sensitive information
when the client connects to the server − (200)"]

},
"additionalInformation": [{

"0": "Datum0",
"1": "Datum1",
"2": "Datum3"

}]
}
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Abuse Case

Abuse Case entity is an abstraction of an attack scenario that may affect an Asset.
The user needs to provide, among other information, a unique name for the Abuse
Case, the CMDB identifier of the vulnerable Asset entity, information on the Con-
trols and Mitigation Measure that will be used as countermeasures against the
attack, as well as a numerical estimation of the attack severity (impact). An Abuse
Case sample can be seen in Table 2.3.

Table 2.3. Connected vehicle system abuse case.

{
"name": "Man in the middle attack",
"assetIDs": ["6e348dd4−e067−4456−8361−48ef8751b868"],
"controlIDs": [

"e14d4ce7−344e−475d−a847−d20c1de168ee",
"0d8557aa−623f−4cd9−b12e−ef05d782be99",
"11b0220a−84cf−4eea−8e5d−c6cb6db08efe"

],
"mitigationMeasures": [{

"extendedDescription": "Use PKI for encrypting the
data before sending to the server. PKI is recommended
as it is more secure and allows for better interaction
with other entities of the system",
"longDescription": "Use encryption mechanisms using a
PKI strategy",
"shortDescription": "IN−C1−M1"

}],
"processorOrchestratorID":

"cb53a12b−3a42−4f9e−871d−b23f2a5481e7",
"attackID": "8dd92273−573b−49c0−a61d−cde79d92ada8",
"securityData": {

"capecID": [
"154 Resource Location Spoofing",
"212 Functionality Misuse",
"441 Malicious Logic Insertion"

],
"cpeID":
["cpe:2.3:a:1024cms:1024_cms:1.4.1:∗:∗:∗:∗:∗:∗:∗"],
"cveID": [

"CVE−2017−14084", "CVE−2017−12697",
"CVE−2018−17187"

],
"cweID": ["Man in the middle (200)"]

},
"impact": {

"availability": 3,
"confidentiality": 8,
"integrity": 8

}
}
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2.4.3.3 RA&MS-specific Configuration Entities

This section shows how the data of mitigations, risks, and indicators for each of
the use cases are introduced in the Risk Assessment Engine. As aforementioned,
the models of each use case describe indicators and risks but this information must
be introduced in a machine-oriented language so the Risk Assessment Engine can
interpret it and use it for the calculations. Following we describe each of these
formats.

Indicators

The indicators are introduced in the system via JSON and using a specific format.
An example is shown in Table 2.4.

Table 2.4. Connected vehicle RAE indicator.

{
"mode_of_operation": 1,
"default_value": "No",
"motivation": "It has been detected a Man in the Middle

attack in the communication between the car and server.",
"data_type": "boolean",
"means": "alarm",
"question": "IN−1:Is the communication sent unprotected

from the car to the server?",
"rule": "PLUGIN_ID=80000 AND PLUGIN_SID=1",
"indicator_type": 3,
"sensor_types": [],
"id": 17

}

All the fields are mandatory except for the types of sensors used. This is done for
helping in the testing of the information in the system. Regarding the other fields,
they are:

• Mode_of_operation: if the system is up or deactivated
• Default_value: what is the output of the indicator by default
• Motivation: what is the attack identified by this indicator
• Data_type: the type of data
• Means: how the information is sent to the Risk Analysis Engine
• Question: the question defining the indicator
• Rule: what sensor is sending this information
• Indicator_type: the type of indicator (e.g., question, value, etc.)
• Sensor_types: the type of sensor (e.g., SecureIoT Probe)
• Id: the unique identifier of the indicator
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These data are processed by the Risk Analysis Engine and linked to other data of
the system such as the risks, mitigations, etc. The input validated for the indicators
comes from the Probes of SecureIoT. That way the “Rule” needs to identify a valid
Probe for linking these data to the correct scenario of risk.

Mitigations

Together with risk analysis, the Risk Assessment Engine is able to provide mitiga-
tions for identified risks. Although it is not shown in the models of each use case, we
define the information in a computer-oriented file so it can be processed and linked
to risks in the tool. In Table 2.5, we show one of the mitigations of the connected
cars use case.

Table 2.5. Connected vehicle RAE mitigation action.

{
"short_description": "IN−C1−M1",
"extended_description": "Use PKI for encrypting the
data before sending to the server. PKI is recommended as
it is more secure and allows for better interaction with
other entities of the system.",
"detailed_description": "Use encryption mechanisms using
a PKI strategy.",
"id": 58

}

The explanation of each of the fields is as follows:

• Short_description: the identifier used for linking with threats
• Extended_description: information that will be shown to the user regarding

the threat
• Id: unique identifier of the mitigation
• Detailed description: high-level description used for short advice in the dash-

board

Risks

The document of risks describes all the risks shown in the models in a computer-
oriented way. The objective of this is to allow the Risk Assessment Engine to link the
risks to the indicators and mitigations that we introduced previously. In Table 2.6,
we show one of the risks we used in the document with a description of the
fields.

Table 2.6. Connected vehicle RAE risk.

{
"id": 19,
"short_description": "WRP11−R1",
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"detailed_description": "Malicious hacker performs a man
in the middle attack accessing not encrypted data",

"sections": [1],
"mitigation_measures": [

58,
60

],
"mode_of_operation": "1",
"organization": "CarManufacturer1"

}

The descriptions of each of the fields used for the risks are:

• Mode_of_operation: indicates if the risk is activated or not for the risk assess-
ment

• Mitigation_measures: the link to the mitigations for this risk
• Detailed_description: a description of the risk
• Short_description: identifier used for linking in the internal database
• Organization: the identifier of the organization having this risk
• Sections: the number of possible linked items
• Id: the unique identifier of the risk.

2.5 Conclusions

This chapter introduced a lightweight model for exchanging and reporting security
data about IoT devices, systems, and other assets. The model makes provisions for
representing security data for various IoT assets and devices. It also provides the
means for modeling the ways these data can be analyzed in order to implement
security services for IoT systems such as risk assessment services. In the scope of
the chapter, we have presented a concrete example of how this model can be used
to support a data-driven IoT risk assessment service. Furthermore, the model can
represent metadata about the IoT data collection system, as means of facilitating
its (re)configuration. The latter can also serve as basis for implementing action-
able intelligence by closing the loop to the field in response to security incidents
or even in response to specific outcomes of the risk assessment process. Likewise,
the integration of configuration metadata facilitates the configurability and pro-
grammability of the IoT security system in dynamic environments.

The use of the data model for the implementation of various security services
in different use cases demonstrates that there is merit in the overall data model-
ing approach. In particular, benefits associated with the speed of the configuration
and implementation of the data-driven security services have been observed and
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validated. Moreover, the versatility of the model has been proven, given its ability to
support diverse data collection scenarios for different use cases. However, the adop-
tion of a lightweight approach comes with some limitations in the expressivity of
cyber threat intelligence applications, which can be a setback to higher automation
and intelligence. This is a trade-off that should be taken into account by designers
and deployers of IoT security systems based on the introduced data model. Fur-
thermore, the extent at which the proposed model is tied to the SecureIoT platform
should be investigated as well. There are certain parts of the model that are com-
pletely agnostic to the architecture of the SecureIoT platform. This is, for example,
the case for the modeling of data sources, Observations, and security analytics func-
tionalities. The modeling of these entities is general purpose and can be used in the
scope of virtually any IoT system for security data collection. Nevertheless, other
parts of the model are more closely affiliated to the modules and to the structure
of the SecureIoT architecture, which renders their customization and use in other
platforms more time consuming.

Overall, the chapter introduced a novel approach to modeling security data
and IoT security systems configurations. The approach emphasized security data
collection and analytics, towards delivering intelligent functionalities for security
teams, including data-driven risk assessment and actionable intelligence tied to their
outcomes. The approach can be certainly extended and customized to different
requirements, thanks to the use of XML-based, extensible and rather general-
purpose entities for modeling security data and their analysis.
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Chapter 3

Data-driven IoT Security Using Deep
Learning Techniques

By Stefanos Astaras, Nikos Kefalakis,
Angela-Maria Despotopoulou and John Soldatos

For nearly two decades, machine learning techniques have been extensively
researched in terms of their ability to indicate cybersecurity attacks in the network-
ing and cloud assets of IT systems. To a lesser extent, they have been deployed
in cybersecurity for IoT systems. Nevertheless, their potential for detecting attacks
in all layers and components of an IoT system has not been adequately investi-
gated. This chapter introduces deep learning techniques for the detection of abnor-
mal behaviors and anomalies in the operation of state-of-the-art IoT systems that
comprise smart objects such as connected vehicles and socially assisted robots. The
presented approach uses variational autoencoders and has been validated on real-
life datasets derived from smart objects with very promising results. Moreover, the
introduced algorithms have been integrated within a data-driven IoT security plat-
form, namely the SecureIoT platform that has been presented in a previous chapter.
Overall, the present chapter discusses a novel deep learning approach for IoT secu-
rity, while validating it in realistic datasets other than the legacy openly available
datasets that are commonly used by security researchers.

49

http://dx.doi.org/10.1561/9781680836837.ch3


50 Data-driven IoT Security Using Deep Learning Techniques

3.1 Introduction

In recent years, internet-connected objects are proliferating in number which is
one of the main drivers for the emergence and the rise of the Internet of Things
(IoT) computing paradigm. There is also a rising number of the different types
of internet-connected objects, which increase the versatility of state-of-the-art IoT
applications. Furthermore, we are also witnessing a rising sophistication of internet-
connected devices, which is also opening up opportunities for IoT applications
with advanced functionalities. This is the case with smart (connected) objects that
can operate autonomously, such as unmanned aerial vehicles (UAVs), autonomous
guided vehicles, and socially assisted robots. As a prominent example, autonomous
vehicles are set to disrupt the transport sector through enabling driverless cars
that will move more safely than human-driven ones. For another example, socially
assisted robots make possible new assistive applications for patients and elderly
users in need of coaching or support for managing their disease. Nevertheless, this
rising sophistication of IoT applications is inevitably followed by new possibili-
ties for compromising their operation based on security attacks. Such attacks can
occur at multiple levels and components of an IoT application, including attacks
against cloud components, edge devices, networking infrastructures or even the
smart objects and IoT devices themselves. Thus, there is also a need for novel cyber-
security mechanisms that could safeguard the operation of IoT applications against
adversarial attacks by malicious parties [1, 2].

One of the most prominent ways for implementing cyber-defense mechanisms
for IoT systems entails the collection and analysis of data from their various compo-
nents. Indeed, reference architectures for IoT security such as the Industrial Internet
Security Framework (IISF) [3] specify security workflows that involve the following
steps:

• Monitoring: The continuous collection of security-related data from the var-
ious assets of an IoT system through appropriate probes.

• Analyzing: The analysis of the data based on data analytics and data mining
algorithms. The aim of the analysis is in most cases to discern indicators of
security risks, vulnerability, and attacks (e.g., an attack pattern).

• Act: The implementation of remedial measures and actions based on actua-
tion functions.

In-line with these workflows, the SecureIoT project has implemented a data-
driven security platform, which provides the means for collecting security data from
various IoT components in scalable and highly efficient (e.g., with low latency)
ways. A brief description of the platform is provided in the previous chapter of the
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book, while more detailed descriptions are also available in other publications of
the authors [2, 4]. Data-driven security platforms like SecureIoT enable the inte-
gration of different types of algorithms for analyzing security-related datasets, for
the purpose of identifying patterns and events that are interesting from a security
viewpoint. In fact, the algorithms used are among the more critical components of
the data-driven security systems, as their efficiency determines the overall intelli-
gence of the security mechanism.

For nearly two decades, a great deal of data analytics and machine learning
techniques have been researched in terms of their ability to identify security risks,
attack patterns, and potentially abnormal behaviors. For example, the authors in
[5] present a range of network intrusion detection techniques, including statistical,
knowledge-based, and machine-learning approaches. For another example, compu-
tational intelligence methods have been also employed [6], including deep learning
techniques such as Artificial Neural Network (ANNs). Techniques based in ANNs
have also been employed for misuse detection in [7]. The system developed in
[7] took advantage of a knowledge base that contained attack signatures. Machine
learning techniques have also been put to service for more complex security tasks,
such as the identification of botnets [8] and intrusion detection in sophisticated sce-
narios [9]. Intrusion detection use cases have been also addressed by taking advan-
tage of genetic algorithms [10]. In general, most of the research efforts for applying
machine learning in cybersecurity have been focused on techniques for identify-
ing misuse and/or anomaly detection. Their main goal has been to identify known
intrusions with high confidence, while at the same time decreasing false-positive
rates for the identification of unknown attacks.

Most of the above-listed systems have been focused on network attacks. The
emergence of new distributed computing models, like cloud computing, gave rise
to the application of similar techniques for different types of IT assets and infras-
tructures [11]. For example, in [12] supervised machine learning techniques were
used for identifying security incidents compromising cloud infrastructures. The
application of machine learning for cloud security revealed promising results along
with limitations. The use of larger amounts of historical data for training was among
the techniques that later works employed in order to remedy those limitations [13].

As already outlined, the emergence of IoT systems and applications introduced
new cyber assets, along with a set of new challenges. Machine learning techniques
show significant promise for identifying anomalies and attacks associated with IoT
assets, yet they have not systematically been studied yet. Deep learning models
can be also applied, as IoT devices produce large amounts of data that could be
utilized for security analysis. Specifically, deep learning is a class of machine learn-
ing graph algorithms where each base input feature vector is classified, clustered, or
otherwise modeled in a multi-stage process that performs both higher-order feature
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Figure 3.1. Structure of variational autoencoder (VAE).

extraction and class fitting in a unified way. The defining characteristic is that the
entire process is simultaneously fitted on the data, and hence, there is no need for
a pre-designed feature extraction or pre-processing step. Deep learning models are
further divided into numerous sub-classes based on their topology, such as Recur-
rent Neural Networks (RNNs), Deep Belief Networks (DBNs), and Convolutional
Neural Networks (CNNs) [14].

This chapter presents a deep learning approach to anomaly detection in IoT
systems, notably systems that comprise smart objects like connected vehicles or
robots. Specifically, the chapter focuses on a deep learning method that has been
proved capable of detecting systematic faults and intrusions in IoT systems, namely
the Variational Autoencoder (VAE) [15]. This deep learning structure has multi-
ple hidden layers that first reduce the dimensionality of the input and then scale
up to reproduce it (Figure 3.1). It is conceptually separated into the encoder (i.e.,
the initial layers that perform dimensionality reduction) and the decoder (i.e., the
output layers that recreate the output). In the variational approach, the code layer
includes an adaptive probability distribution for the latent variable. The presented
approach has been developed and validated based on real-life datasets that have been
made available by OEM vendors and IoT integrators in the scope of the H2020
SecureIoT project [2]. Furthermore, the deep learning algorithms introduced on
this chapter have been integrated in the SecureIoT platform for data-driven secu-
rity [4], which has been presented in the previous chapter.

One of the principle innovations of the technique lies in the use of real-
life datasets from smart objects for the training and evaluation of the deep
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learning models. Most of the above-presented methods have been developed and
evaluated based on reference datasets, such as the one used in the scope of the
Third International Knowledge Discovery and Data Mining Tools Competition
back in 1999 and several datasets with network-level information provided by
DARPA [16–18]. The VAE models of this chapter have leveraged true IoT datasets
derived from novel smart objects/devices like a socially assisted robot and a con-
nected car. These datasets are therefore described in subsequent sections of the
chapter.

The rest of the chapter is structured as follows: Section 3.2 following this intro-
ductory section describes the methodology followed and the datasets used. Sec-
tion 3.3 presents the VAE models developed and used. Section 3.4 presents valida-
tion results on IoT real-life datasets. Section 3.5 is the final and concluding section
of the chapter.

3.2 Methodology and Datasets

3.2.1 CRISP-DM Methodology

In order to experiment with various VAE models over the available datasets, we fol-
lowed the Cross Industry Standard Process for Data Mining (CRISP-DM) Model
for Knowledge Discovery [19], which entails the following activities and phases:

• Business Understanding, which is the starting point of the process and refers
to the need for understanding the anomaly detection problem at hand.

• Data Understanding, which aims at examining the data in order to gain valu-
able insights on the applicability of certain data mining schemes. Data under-
standing enables the identification of data patterns in the datasets, which will
serve as a basis for synthesizing candidate machine learning schemes.

• Data Preparation, which will transform the maintenance datasets into a for-
mat appropriate for employing data mining and machine learning models.
This step involves Extract Transform Load (ETL) processes.

• Modeling, which discerns proper machine learning or statistics schemes for
the anomaly detection problem at hand. It interacts closely with the data
preparation phase in order to ensure that the available training datasets are
appropriate for fitting the target/identified models.

• Evaluation, which entails the assessment of the produced model in terms of
efficiency as the latter is reflected in the speed of training, the speed of model
execution, its noise tolerance, as well as its expressiveness and explanatory
ability. Metrics such as classification accuracy, errors in numeric prediction,
lift and conviction measures and more are frequently used.
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• Deployment, which involves the operationalization of successful models
based on the results of their integration in the SecureIoT platform that is
described in the previous section.

3.2.2 Connected Cars Dataset

The connected car datasets were provided by IDIADA,1 one of the most prominent
engineering companies providing design, testing, engineering, and homologation
services to the automotive industry. They have been provided from a simulation
tool that generates vehicle performance data from different travels. There are two
data sources: the first one is Controller Area Network (CAN) data, while the V2X
module provides the second. The CAN data are metrics used to represent different
conflicts that may occur, like how many unexpected data frames have been received
during a fixed period of time. On the other hand, the V2X module creates appli-
cation data of a vehicle such as its speed or its GPS coordinates.

The available data follow the SecureIoT data model, which is described in the
previous chapter. Hence, they can be integrated into the SecureIoT platform and its
global repository. Overall, there have been put into service 34 datasets with normal
behaviors and 3 containing anomalies.

3.2.3 Socially Assistive Robots Datasets

These are data generated by a QT robot [5]. The latter is a robot designed to stim-
ulate the memory functioning and physical activities of elderly people. Moreover,
it can be used to increase the efficiency of education by easily attracting the atten-
tion of autistic children to teach them new life skills. The available datasets refer
to multiple use cases and do not describe the same system’s elements. One of the
datasets has been generated after the QT robot has tried to recognize emotions of
people standing in front of it. The other datasets contain more technical data such
as motor positions that describe the robot’s behavior and have been obtained by
playing a game. In some of the datasets, the robot’s partner has the task to make
the same gesture as it, while in others the partner of the robot has been assigned to
show the correct sequence of cards in a memory game. Data are integrated in the
SecureIoT Global repository, and they follow the structure of the SecureIoT Data
model.

Additionally, there are data generated from an IoT-cloud platform (namely
CloudCare2U [5]), a solution aiming to provide a life as normal as possible to
chronic disease patients, based on a 40-day simulation. Five different types of

1. https://www.applusidiada.com/global/en/

https://www.applusidiada.com/global/en/
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datasets can be found, each associated to a set of sensors from the same simula-
tion. They are described as number 1 to 5 in the section about scenarios of socially
assistive robots. The first dataset contains environmental sensing data such as tem-
perature or humidity, and the second one provides data from wearable sensing data
such as the physical activity of the patient. The third and fourth datasets repre-
sent, respectively, visual sensing data, which give information about the patient
such as their position or age, and resting furniture data to know if the patient is on
the sofa. The last dataset contains measurements of a patient’s vitals such as their
heartbeat.

3.3 Variational Autoencoders for Anomaly Detection

3.3.1 VAE Architecture

A variational autoencoder, being a deep learning model, processes the input in mul-
tiple layers. The first layer is always the input layer, which forwards each input scalar
into subsequent nodes. VAEs are feed-forward models, which means that the input
layer has to include all the inputs that are relevant for a single output. So, in a
sequence of 5 consecutive measurements of 5 different sensors, we need an input
layer of length 25 (as is, for example, the case in the CAN application dataset).

Next is the value normalization layer. Each input scalar is offset by its minimum
value and scaled down by its new maximum value so that it is always in the range
of 0–1. This helps numerical stability and the multi-dimensionality of the model.
Without normalization, models tend to be biased towards inputs that naturally take
large values. The length of this layer is equal to the input layer.

The encoder part is formed by one or more fully connected layers. Each node in
a fully connected layer receives an input from every node of the previous layer (plus
a constant bias input), multiplies it by a learned weight, sums the inputs, and feeds
the sum to a non-linear activation function (Figure 3.2). The activation function
of the node helps the overall model learn the non-linearities of the process. The
output of the node is the result of the activation function. Models that perform
classification tend to favor sigmoid functions, while regression problems (such as
ours) tend to use the rectifier linear unit function (see Figure 3.3).

In the VAE, the consecutive fully connected layers decrease in length, eventually
down to the desired code dimension.

In the variational approach, a latent Gaussian probability distribution is formed
from the code, using a custom layer with this format:

• Two fully connected layers in parallel. The first produces the mean of the
distribution, and the second the variance.
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Figure 3.2. The general fully connected node (perceptron).

Figure 3.3. The rectifier linear unit function (ReLU) [20].

• A sampling layer that follows the previous two and samples a Gaussian dis-
tribution with the parameters it received.

The probability distribution is generally multi-dimensional. In our application,
2D and 3D latent representations work well.

The decoder has the same number of fully connected layers as the encoder, but
in reverse; the length of the layers starts from the code dimension and scales up to
the number of output nodes (which here is the same as the input nodes). The same
ReLU activation function is used.

Finally, a de-normalization layer is applied to the outputs, to bring them back
to their original range.
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3.3.2 VAE Training

Training a variational autoencoder is efficient, as it follows the conventions of train-
ing any deep learning model. There are four steps to designing a training process,
which we apply in-line with the CRISP-DM model [19]:

1. Preparation of the dataset
2. Choosing a batch size
3. Choosing an optimizer
4. Choosing a loss function

To prepare the dataset, we form sequences of measurements according to the
model we want to train. For example, in a model that takes a sequence of 5 input
vectors, we concatenate each vector in the dataset with its neighbors, so that every
vector eventually appears in 5 different sequences, at a different position each time.
Then, the dataset is shuffled, and 20% is removed and reserved for testing.

The batch size is the number of samples that are passed into the model in parallel.
A large batch size leads to faster training but can lead to reduced accuracy [21]. We
use a safe batch size range from 32 to 128 samples, since, as a rule of thumb, batch
sizes over 256 samples can create problems in the operation of the model.

The optimizer is the learning algorithm that updates the weights of each node in
the model. We use the Nadam optimizer (Nesterov-accelerated Adaptive Moment
Estimation), which is the Adam (Adaptive Moment Estimation) optimizer that
incorporates Nesterov momentum [22]. This algorithm assigns a different learning
rate to each parameter and keeps track of recent training updates to better guide
the process and mitigate noise.

The important innovation that variational autoencoders provide is the loss func-
tion, which is developed in terms of the encoder/decoder/code separation:

li = −E[log(pϕ(xi |z))]+ K L(qθ (z|xi )||N (z))

where:

• xi is the input with index i .
• z is the latent representation of xi , i.e., the code that the encoder produces.
• pϕ(x |z) is the distribution of the decoder, given a certain code.
• qθ (z|x) is the distribution of the encoder, given a certain input.
• N (z) is a distribution we define, usually a unit Gaussian N (0, 1).
• KL(P‖Q) is the Kullback–Leibler divergence. It measures how much infor-

mation is lost when using distribution P to represent another distribution Q.

The first term of the loss function is the expected log-likelihood that the decoder
reconstructs the input accurately. It is zero for a perfect reconstruction and grows
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as the model becomes less accurate. We need to use a practical substitute for per-
formance and numerical stability, a common choice being the root of the mean
absolute error.

The second term acts as a regularizer. Normally, the encoder can learn very local-
ized, essentially meaningless representations, leading to overfitting. However, the
Kullback–Leibler divergence will grow as the encoder’s distribution becomes more
complex and drifts away from our base distribution N (z).

As such, minimizing this loss function leads to an accurate model via the first
term, while it mitigates overfitting and keeps latent representations meaningful via
the second term.

3.3.3 Algorithm Fitness

Variational autoencoders are not direct predictors; their primary task is to encode
the context efficiently. This facilitates handling general abnormal cases with versa-
tility, making autoencoders a standard tool for detecting intrusions and faults in
industrial IoT contexts.

Labels are predicted by applying the model to the input with all possible label
values and choosing the one that reproduces the input more accurately (using a dis-
tance metric). Because autoencoders focus on correct modeling of the data, missing
features or labels can be compensated for by the model itself, thus providing the
following advantages:

1. The model can reconstruct missing features. We can artificially replace some
features from input vectors with “missing value” placeholders in the training
phase, but still include the real intended values in the loss calculation. The
model will learn to infer missing values.

2. The model can be fitted to new abnormal cases without retraining. We can
resume training with the new data and provide the new label as input. This is
especially helpful when transitioning from preliminary training and scaling
the dataset.

3. The model can detect abnormalities that weren’t encountered before. It can-
not specifically identify them, but if an input vector fails to be accurately
reproduced in the output with any label, it is evidence of a new use case that
was not encountered during training.

4. The model is very efficient on data of low dimensionality and isolated attacks.
It can learn the correlations between the features very well and isolated attacks
(i.e., attacks that are limited on the number of features they affect) are easily
recognizable and do not make the input similar to a normal situation or
another use case.
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Compared to a pure deep learning discriminator on ideal conditions, variational
autoencoders might exhibit efficiency disadvantages. When the entire dataset and
all the expected threat kinds are available beforehand, a pure discriminator may be
more accurate, because it is trained to model the boundaries of the data labels,
which is a simpler task than modeling the data itself. This is especially appar-
ent on broad labels with complex underlying structures. For example, an appli-
cation may have data organized in multiple clusters, while the normal clusters are
far and easily separable from the abnormal ones. An autoencoder will try to learn
the entire clustering while a discriminator may be accurate with just the simple
boundary.

Our approach focuses on memoryless, feed-forward modeling. A few of the
expected attacks are evolving, i.e., cannot be identified by a single input vector,
but are only apparent on multiple consecutive measurements. Feed-forward mod-
els are unable to detect this type of attack out of the box, but we can aggregate
measurements as an extra step and compute temporal information (such as input
deltas) to include in the input vectors. This is possible because even the evolving
attacks take place over a short duration (relative to sample spacing). This approach
ensures better coverage of use cases, while being simpler and more efficient than
using a recurrent model.

3.4 Application and Validation Results

We have trained variational autoencoders of various complexities and successfully
applied them to the available datasets.

3.4.1 Anomaly Detection in Connected Cars

The IDIADA dataset is a series of measurements from sensors installed in a vehicle
(such as fuel, speed, and steering angle) as it is being driven. The abnormal cases
are all intrusion-related and fall into the following categories:

• At least one sensor report is being overwritten with a static, usually extreme
value (e.g., speed or RPM appear as their maximum values despite the current
throttle position).

• At least one sensor report is being overwritten with a seemingly regular value,
but the way the value evolves is abnormal (e.g., the vehicle does not appear
to properly consume fuel as expected while it is being driven).

Both cases can be handled by a variational autoencoder, as they describe devia-
tions from normal operation. The autoencoder can be fitted to the normal driving
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conditions and subsequently detect many kinds of attacks without needing all pos-
sible malicious contexts from the beginning.

However, there are some challenges. The normal driving operation is not sim-
ple, as the state of the vehicle can vary according to the traffic and road condi-
tions, although we expect the relations between the speed, throttle, RPM, gear, and
steering angle to stay the same. In addition, one kind of attack takes place over
a duration and cannot be detected from a single time instance. We handle these
challenges by introducing data augmentation. Specifically, we resample the dataset
so that the various normal driving conditions are equally frequent during training,
and we aggregate sensor readings and inject the calculated sensor slopes along their
current values.

To validate the performance of the algorithm, we randomly split the post-
processed dataset into training (70%) and testing (30%) sets. Because there is no
strict confidence measure, we used the maximum squared reconstruction error of
the normal case as the classification threshold (i.e., inputs with a reconstruction
error on the normal label over a threshold are classified as abnormal). This allows
taking advantage of this model’s flexibility on abnormal cases and leads to the per-
formance curves depicted in Figures 3.4 and 3.5.

Expectedly, very low and very high thresholds lead to performance equivalent
to a random choice, as all test inputs are either rejected as abnormal or accepted as

Figure 3.4. ROC curve of the connected car classifier.
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Figure 3.5. Performance variations on the connected car dataset as a function of the

reconstruction error threshold.

normal, respectively. The optimal error threshold for this model is t = 0.76, where
the accuracy score is 92% on this test set.

3.4.2 Anomaly Detection in Socially Assistive Robots
Use Cases

3.4.2.1 QT Robot Dataset

The QT Robot dataset contains sensor and context reports. The data are broadly
labeled as normal or abnormal and have three components:

• Motor readings. The head, shoulders, and elbows are monitored for their
angular position and velocity in terms of yaw, pitch, and roll (depending on
the degrees of freedom of each motor).

• Gesture reports. The type of gesture to be performed by the QT robot, its
duration, and whether it was performed normally.

• Where applicable, event timestamps. Specifically, the start and end times
of the various runs of the QT Memory Game are recorded.

The task is to detect abnormalities in the robot motors with respect to the
intended gesture. Although it is hard to discern the gestures from the motor
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readings alone, the latter follow a regular pattern dependent on the gesture.
The duration also does not vary in the normal cases.

A variational autoencoder is ideal, as it can accurately model the normal behavior
because there is little variation among normal values, despite the complexity of
the relation. We can also detect all kinds of abnormalities without knowing them
beforehand.

Similar to the other use cases, we validate the performance of the algorithm
by randomly splitting the post-processed dataset into training (70%) and testing
(30%) sets. For this test, the motor position readings were used for the input, and
the label ground truth was derived from the gesture reports. The model we tested
provided the performance curves of Figures 3.6 and 3.7.

In this case, the ideal error threshold is t = 0.02, where the accuracy score is
73%. In general, the optimal threshold is dataset dependent as well as model depen-
dent. Here we can observe that the normal use case is more easily representable,
owing to more tightly coupled data, while abnormal data are more sparsely spread,
as attacks or faults can transpire in multiple ways. As such, the false-positive rate
tends to drop more abruptly than the false-negative rate rises.

3.4.2.2 IoT-cloud Platform (CloudCare2U) Dataset

The CloudCare2U dataset contains body and environment measurements from
the CC2U simulator. The data are broadly described as normal or abnormal.

Figure 3.6. ROC curve of the QT robot classifier.



Application and Validation Results 63

Figure 3.7. Performance variations on the QT robot dataset as a function of the recon-

struction error threshold.

However, due to the nature of the intended sensors, the various measurements
tend to be correlated with the current timestamp, especially on the normal case.
For example, the step counter consistently records two days of low step counts fol-
lowing five days of average step counts, simulating a workday/weekend separation
in behavior. The state of the user (sleeping, walking, grooming, etc.) is correlated
with the time of day, as do the various home sensors (lightning, illuminance, etc.).
The abnormal data, even when the measured values are not out of their specified
range, do violate the above assumptions.

Aside from absolute temporal correlations, there is more coupling between the
sensors. The user’s body state is dictated by their current activity. The temperature,
humidity, and gas sensor measurements tend to increase together, and this happens
when the user is performing an activity in that room. Following an entertaining
activity, the user’s reported boredom drops.

A variational autoencoder learns this series of correlations and properly models
the normal operation. This means that we do not need to know all the possible
abnormalities beforehand and do not need to be restricted with a pure discrimi-
nator. Rather, we can expect to detect many different deviations from the normal
conditions. Moreover, we get the advantage of flexible training. For example, in a
real setting, seasonal changes will change the usual values of the sensors. We do
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not need all the data beforehand, the model will operate correctly with the current
conditions, and we can adapt it by extending the training as the expected changes
are observed.

For this dataset, we followed the same procedure of randomly splitting the post-
processed dataset into training (70%) and testing (30%) sets. Not all features were
considered for classification, as many of them were mostly static or otherwise iso-
lated in range. To demonstrate the early fitness of the algorithm for this use case,
we used a subset of environmental sensors. The trained model produces the perfor-
mance curves of Figures 3.8 and 3.9.

We can see that, in this case, the ROC curve is much simpler than the other use
cases. The performance rates also show an inversion of the common behavior of
the previous datasets: the false-positive rate is gradually dropping here, while the
false-negative rate is abrupt. This is still a characteristic of the provided dataset, as
abnormal readings have one or more features with error values that are atypical of
that sensor’s normal range, directly leading to a higher reconstruction error. Normal
readings do not have a simple defining characteristic and their representations have
more natural variance.

Here, a threshold value of t = 0.3 appears to correctly capture all the abnormal
inputs of this test while keeping false positives relatively low, leading to an accuracy
measure of 90%.

Figure 3.8. ROC curve of the CloudCare2U classifier.



Conclusions and Discussion 65

Figure 3.9. Performance variations on the CloudCare2U dataset as a function of the

reconstruction error threshold.

3.4.3 Prototype Implementation

Apart from the training and evaluation of the VAE components on the above-listed
datasets, we have also implemented and integrated them in the SecureIoT platform.
Specifically, the Variational Autoencoder Analytics component has been developed
into two levels. The first level is offering the algorithm itself with the offline training
capabilities and the runtime version which discovers possible attacks. The second
level is a “wrapper” to the Analytics algorithm which controls its lifecycle and gen-
erates compatible output for the SecureIoT infrastructure ready to be consumed
by the Security-as-a-Service (SECaaS) services that are provided by the SecureIoT
platform.

3.5 Conclusions and Discussion

This chapter has introduced a deep learning approach based on Variational Autoen-
coders for detecting anomalies in IoT applications that comprise smart objects like
assistive robots and connected cars. The developed deep learning models managed
to detect the abnormalities in the behavior of the IoT devices and smart objects, in
three different application scenarios. Furthermore, the VAE components have been
integrated in the SecureIoT platform for data-driven IoT security.
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The developed model exhibits acceptable prediction time. Most of the time is
spent on initializing the algorithm, i.e., loading the data and the model and com-
piling the model for the target platform. On an Intel Core-i7 4771 CPU and an
nVidia Geforce GTX 770 GPU, initialization takes several seconds, while evalua-
tion of the data currently takes 80 ns for the proposed model. In terms of scalabil-
ity, the number of parameters of a model of a given depth scales linearly with the
dimensionality of the input. As such, so do the training and evaluation times.

There is necessarily a stochastic element in training a deep learning model, which
is further increased by using a variational approach. Nevertheless, a fully trained
encoder will always output the same probabilistic parameters for the same input.
Hence, the consistency of the model is deemed acceptable. Moreover, the current
implementation requires a script that will invoke the model with the correct param-
eters and input files. However, the parameters do not change between invocations
and the input file may or may not change, depending on the measurement storage
process. In this way, some degree of automation can be achieved.

Overall, our work is one of the first efforts to exploit deep learning for detecting
anomalies in smart objects. It is also an effort to integrate the deep learning model
in an IoT security platform, i.e., to integrate deep learning with a real-life data
collection system. However, future work is required towards identifying anoma-
lies and assessing risks in more complex scenarios involving multiple smart objects
and demanding correlation of diverse anomaly indicators. In this direction, rele-
vant datasets need to be made available, beyond the publicly available network and
IoT data.
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Chapter 4

Privacy Awareness, Risk Assessment,
and Control Measures in IoT Platforms:

BRAIN-IoT Approach

By Mohammad Rifat Ahmmad Rashid, Davide Conzon,
Xu Tao and Enrico Ferrera

With the increasing adaptation of Internet of Things (IoT) platforms in decen-
tralized cloud environments, more focus has been given towards facilitating the
privacy awareness building upon goals set by current European Union (EU) Gen-
eral Data Protection Regulation (GDPR) regulations. Therefore, it is necessary to
empower the end users (both private and corporate) of IoT platforms with the
capability of deciding which combination of self-hosted or cloud-oriented IoT
systems is most suitable to handle the personal data they generate and own as
well as with the ability to change the existing (or pre-set) configurations at any
time. BRAIN-IoT platform focuses on complex scenarios where actuation and
control are cooperatively supported by populations of IoT systems. The break-
through targeted by BRAIN-IoT is to provide solutions to embed privacy aware-
ness and privacy control features in IoT solutions. In this work, the authors explore
the following key areas: (a) privacy awareness in IoT systems using GDPR reg-
ulations and BRAIN-IoT platform, and (b) propose a conceptual framework for
Privacy Impact Assessment (PIA) using privacy principles presented in GDPR
regulations.
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4.1 Introduction

In the recent years, increasing number of IoT products and services are being widely
deployed in all professional and mass-market usage scenarios (Manyika et al., 2015
and Gartner, 2015). This exponential growth of diverse IoT platforms leads to mag-
nitude of market opportunities associated with the IoT products, but also in the rise
of some associated challenges and concerns. Furthermore, the IoT technology and
market landscape will become increasingly complex in the longer term, i.e., ten or
more years from now, as indicated in Holland (2012), especially after IoT technolo-
gies will prove their full potential in business-critical and privacy-sensitive scenarios.

Privacy can be conceptualized as “the right to be left alone” (Panagiotou and
Zaharakis, 2018). It refers to the process of disclosing and mobilizing personal data
under certain conditions and safeguarding measures. From technical perspectives,
IoT systems require context-based technological advancement regarding privacy
awareness, keeping consumers convenience as the primary concern, as indicated
by Sabo et al. (2013). Solutions suitable to tackle such challenges are still missing.
For instance, in smart city scenarios, many initiatives fall into the temptation of
developing new IoT platforms, protocols, models, or tools aiming to deliver the
ultimate solution that will solve all the IoT challenges and become the reference
IoT platform or standard. Instead, usually, they result in the creation of yet-another
IoT solution or standard.

In this paper, the authors explore the challenges of privacy awareness in futuristic
IoT environments, considering actuation in dependable fashion, by introducing
privacy awareness and control approach in the BRAIN-IoT platform, which is a
novel solution for building decentralized IoT platforms, based on inter-networking
across heterogeneous existing IoT systems.

BRAIN-IoT has been designed to support dynamicity and heterogeneity in
terms of new systems, protocols, and technologies, by allowing dynamic edge/-
cloud reconfiguration. Another advanced approach proposed by BRAIN-IoT is
security and privacy protection approach, which supports a set of end-to-end
security, privacy, and trust enablers suitable for fully decentralized environments.
In BRAIN-IoT platform, the authors address the challenges of privacy awareness
for IoT platform using GDPR core principles. The authors divide this research
goal into three research questions: (i) RQ1: Which features can be used to assess
privacy awareness in the IoT platforms? (ii) RQ2: Which privacy impact assess-
ment approach can be defined on top of the GDPR-based privacy principles? (iii)
RQ3: How to validate the security and privacy impact of a given IoT platform?

In response to RQ1, the authors explore key privacy principles intro-
duced in GDPR regulation and International Organization for Standardization
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(ISO)/International Electrotechnical Commission (IEC) 29100 standard (Stan-
dardization, 2011). Using these privacy principles, the authors propose privacy
assessment measures that can be used to detect privacy impact and address control
criteria. To address RQ2, the authors propose an iterative PIA approach that profiles
different privacy principles from GDPR and perform privacy compliance evalua-
tion for the IoT platform. The main contributions of this work are: (a) privacy
compliance evaluation approach using GDPR key privacy principles and ISO/IEC
29000 standard, (b) a conceptual framework for analyzing privacy risks using the
measures from privacy compliance evaluation, and (c) a complete report about the
experimentation of the proposed approach based on one of the BRAIN-IoT use
cases (processed data with sensitive information), i.e., the Critical Water Infras-
tructure one, described in Table 4.1.

This paper is organized as follows: Section 4.2 presents the related work focusing
on GDPR requirements related to IoT platforms, current standards, and tools for
PIA. Section 4.3 describes the proposed conceptual framework that relies on the
GDPR privacy principles and ISO/IEC 29100 standard. Section 4.4 outlines the
privacy awareness and control integration approach applied in BRAIN-IoT Crit-
ical Water Infrastructure scenario, and Section 4.5 discusses the results obtained.
Finally, the paper concludes with Section 12.5 by summarizing the main findings
and outlining future research activities.

4.2 Literature Review

This section provides an overview of the State of The Art (SoTA) in the context of
(i) GDPR implication in IoT domain and (ii) current standards and tools for PIA.

4.2.1 GDPR Requirements Related to IoT Domain

IoT applications are emerging across myriad sectors, for example, in health-care,
energy consumption, and utility monitoring, as indicated by Wachter (2018).
In these applications, to function properly as well as to optimize and customize
their services, the IoT devices constantly collect vast amounts of personal data such
as smart health applications that collect location data and health data (e.g., Fit-
bit) (Etsi, 2019). Without repeated and consistent identification of users, linked
up, seamless services would not be possible. However, the pursuit of identification
and personalization of users poses a risk to privacy.

Data controllers can draw inferences from these data. Users can easily perceive
this insight as invasive, unexpected, and unwelcome. Discriminatory treatment can
also result from inferential analytics and linkage of disparate records, motivating
limitations on user profiling as stated by Wachter (2018). The impossibility of
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weak cyber security standards, often owing to the limited computational power of
identifying technologies such as Wireless Fidelity (WiFi) or Radio Frequency IDen-
tification (RFID), can exacerbate privacy risks (Wachter, 2018). Together, these
risks make free and well-informed consent challenging in the IoT. Considering the
risk of personal data processing and linkage of user records, privacy policies often
fail to communicate clearly the privacy risks, as indicated by Basso et al. (2015a).

In Libertés (2017), the authors explain that GDPR regulation creates govern-
ing principles of personal data processing (Articles 5) and guideline for individual
rights (Article 25 and 33) that can help to perform PIA relevant for IoT devices.
In particular, GDPR (Voigt and Bussche, 2017) helps for transparency (Article 5),
data storage, access, rectification, and deletion (Articles 5, 15–17), informed con-
sent (Article 7), notification duties (Articles 13–14 and 33), automated decision-
making and profiling (Articles 21–22), privacy by design and privacy by default
(Article 25), cyber security (Articles 33–34), and data protection impact assessment
(Article 35–36). Tools created based on GDPR for PIA, like the one described in
Libertés (2017), can help to undermine the tendency of IoT devices and services to
collect, share, and store large and varied types of personal data, to operate seamlessly
and covertly, and to personalize functions based on prior behavior. For example, EU
H2020 project Synchronicity (Synchronicity, 2018) explores the benefit of GDPR
privacy principles in the domain of smart city. In BRIAN-IoT context, the term
privacy denotes “the right of an entity to be secure from unauthorized disclosure of
personal information that are contained in BRIAN-IoT platform.” In this paper,
the authors explore the key privacy principles from GDPR to perform privacy com-
pliance evaluation for any IoT system.

4.2.2 Current Standards and Tools for PIA

Personal information, in different forms, is continuously gathered and processed
by modern applications, as indicated in Voigt and Bussche (2017). This includes
data that are required for accessing a certain service (e.g., email address, credit card
number), additional personal data that the user may provide for an enriched user
experience (e.g., pictures, connections to social networks), and data that can be
automatically gathered by the service provider (e.g., usage pattern, approximate
location), as stated in Libertés (2017).

Standards for PIA. Taking into account various privacy principles, the fair
information practices developed by the Organization for Economic Coopera-
tion and Development (OECD) (OECD, 2013) and the Global Privacy Stan-
dard (Cavoukian, 2006) are commonly used in various application. However,
less focus has been given towards privacy awareness and control in a decentral-
ized environment. The most common reference models are the ISO/IEC 29100
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(Standardization, 2011), the ISO/IEC 29101 (Standardization, 2013), the Organi-
zation for the Advancement of Structured Information Standards (OASIS) Privacy
Management Reference Model (2013), and the reference architecture proposed by
Basso et al. (2015b). The ISO/IEC 29100 describes a high-level framework for the
protection of Personal Identifiable Information (PII), sets a common privacy termi-
nology, defines privacy principles, and categorizes privacy features. Also, ISO/IEC
29100 is intended to be used by persons and organizations involved in design-
ing, developing, procuring, testing, maintaining, and operating information and
communication technology systems, where privacy controls are required for the
functioning of PII.

This privacy framework is developed with the purpose of serving as assistance to
organizations to define their privacy safeguarding requirements related to all infor-
mation involved through following attributes: (i) by specifying a common privacy
terminology, (ii) by defining the actors and their roles in processing PII, (iii) by
describing privacy safeguarding considerations, and (iv) by providing references to
known privacy principles for Information and Communication Technology (ICT).
The ISO/IEC 29101 standard describes a reference architecture with best prac-
tices for a technical implementation of privacy requirements. It covers the various
stages in data life cycle management and the required privacy functionalities for
PII in each data life cycle, as well as positioning the roles and responsibilities of
all involved parties in information and communication systems development and
management. The OASIS Privacy Management Reference Model is a conceptual
model, which helps understanding and implementing appropriate operational pri-
vacy management functionalities and supporting mechanisms capable of execut-
ing privacy controls in line with privacy policies. These standards can be used to
guide, design, develop, and implement privacy policies and controls, they can also
be used as a reference point in the monitoring and measurement of performance
benchmarking and auditing aspects of privacy management programs in an organi-
zation. In the BRAIN-IoT context, apart from GDPR regulations, the Consortium
explores ISO/IEC 29100 standard to identify privacy control criteria.

Tools for PIA. The Unified Modeling Language (UML) (Group, 2011) is a central
resource in the development of modern software systems. The objective of UML is
to provide software engineers with tools for analysis, design, and implementation of
software-based systems, as well as for modeling other kind of processes. The UML
specification defines a lightweight mechanism for extending the language, called
“profiling.” In Basso et al. (2015a), the authors propose a UML profile for privacy-
aware applications. This UML-based profiling approach helps building UML mod-
els that specify and structure concepts of privacy. Although UML-based profiling
can help to model the privacy criteria, less focus has been given towards generalizing
privacy control approach for IoT platforms.
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Considering tools designed for privacy awareness and control, the nationale de
l’informatique et des libertés (CNIL) PIA tool described in Libertés (2017) has been
designed around three principles: (i) a didactic interface to carry out PIAs: the tool
relies on a user-friendly interface to allow for a simple management of your PIAs. It
clearly unfolds the PIA methodology step by step. Several visualization tools offer
ways to quickly understand the risks. (ii) A legal and technical knowledge base:
the tool includes the legal points ensuring the lawfulness of processing and the
rights of the data subjects. (iii) A contextual knowledge base, available along all
the steps of the PIA, adapting the contents displayed. The data are extracted from
several sources, e.g., the GDPR, the PIA guides and the Security Guide from the
CNIL, to the aspect of the processing studied. BRAIN-IoT will extend the IoT-
Modeling Language (IoT-ML) adding the some specific modeling profile that can
be used to describe privacy awareness polices. IoT-ML is a UML-based modeling
language built upon the Internet of Things Architecture (IoT-A) architecture frame-
work, described in Atzori (2017). It adds to the key concepts provided by IoT-A to
describe IoT systems, the ability to integrate new IoT domain models, as indicated
in Gérard et al. (2017).

4.3 A Conceptual Privacy Awareness Framework

A PIA approach can assist the controller of an IoT system to identify any specific
risks of privacy breaches involved in an envisaged operation. More specifically, a
PIA is an essential approach to identify privacy risks, and perform risk analysis, risk
evaluation, personal data flow, and storage. In the BRAIN-IoT scope, the PIA can
be performed in the context of two components, IoT devices and IoT systems for
various use cases.

The proposed approach is based on the following four components: (i) Context:
Define and describe the context of the IoT system under consideration. (ii) Privacy
principles: Analyze the controls guaranteeing compliance with the GDPR funda-
mental principles considering the proportionality and necessity of processing, and
the protection of data subjects rights. (iii) Privacy risks: Identify the threats that are
associated with data privacy and ensure they are properly treated. (iv) Privacy com-
pliance evaluation: Analyze the overall privacy safeguarding requirements related to
the processing of information assets in a particular setting.

4.3.1 Context

At the beginning of a PIA, it is important to outline the use case under consid-
eration, its nature, scope, context, and purposes. Also, identify the data controller
and any processor of information assets in a particular setting. In the context of
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BRAIN-IoT, for PIA an information asset could be: (a) software (e.g., an operating
system), (b) hardware (e.g., a sensor, Central Processing Unit – CPU – memory,
etc.), (c) processed data (e.g., personal data stored in BRAIN-IoT platform, sen-
sor status transmitted over a network, robot location in memory, etc.). In certain
instances, identifiability of the processed data might vary. To determine whether
or not information about a person considered as processed data in IoT platform,
several factors need to be taken into account. Personal data can be considered to be
information assets in at least the following instances (Standardization, 2011): (i) if
it contains or is associated with an identifier, which refers to a natural person; (ii)
if it contains or is associated with an identifier, which can be related to a natural
person; (iii) if it contains or is associated with an identifier, which can be used to
establish a communication with an identified natural person, and (iv) if it contains
references, which link the data to any of the identifiers above. Information does
not need to have an identifier to be considered information asset. Information will
also be considered personal data, if it contains or is associated with a characteris-
tic which distinguishes specific purpose. Any attribute which takes on a value that
uniquely identifies a information assets has to be considered as a distinguishing
characteristic, as indicated in Standardization (2011). Further, the authors explore
the processed data based on three categories: (a) information about the user (first
name, date of birth, email, etc.), (b) recorded data (sounds, images, movements,
temperature, etc.), and (c) calculated data (data from robot operating system, etc.).
These concepts have been used to define a template to provide a brief description
of the use cases for PIA.

4.3.2 Privacy Principles

The key element in a PIA is the evaluation of how an IoT platform provide services
for collect, store, and distribute personal data, as described in Basso et al. (2015b).
In the GDPR regulation (Parliament, 2016), the six key principles are set out right
at the beginning and inform everything that follows. Compliance with these key
principles is, therefore, a fundamental building block for PIA. In this PIA, apart
from six key principles, which lie at the heart of the GDPR, four additional pri-
vacy principles are considered: (a) the right to be informed, (b) the rights of access and
to data portability, (c) the rights to rectification and erasure, and (d) the rights to the
restriction of the process and to object. These four principles are based on the regu-
lation for individuals’ rights presented in GDPR (Article 15–17, 20, 25 and 33).
These four additional principles are considered based on the premise that individu-
als’ rights for access, rectification, erasure, portability and notifications for personal
data are important aspects for an IoT platform, as indicated in Libertés (2017) and
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Basso et al. (2015b). This section outlines privacy control criteria based on the six
key principles and four additional principles.

(P1) Lawfulness, fairness, and transparency: The lawfulness, fairness, and trans-
parency for information assets are set out in Article 6 of the GDPR. Six privacy con-
trol criteria are defined for this principle (P1-01...P1-06, corresponding to GDPR
Article 6 points a...f ). At least one of these criteria must apply whenever processing
personal data.

(P2) Purpose limitation: In the BRAIN-IoT context, purpose limitation principle
helps to ensure controller plan to use or disclose processed data (GDPR article 5).
The controller needs to specify purpose that is additional or different from the
original specified purpose. Also, it is important that the new specification must be
fair, lawful, and transparent (Standardization, 2011). In this case, the criteria are:
P2-01: clearly identified purposes for data processing; P2-02: purposes must be
documented; P2-03: regularly review the processing and, where necessary, update
the documentation and privacy information for individuals.

(P3) Data minimization: Data minimization is closely linked to the principle of
“collection limitation” but goes further than that. Whereas “collection limitation”
refers to limited data being collected in relation to the specified purpose, “data min-
imization” strictly minimizes the processing of information assets (GDPR article
5). The criteria for this principle are: P3-01: ensure adoption of a “need-to-know”
principle, i.e., one should be given access only to the information assets which is
necessary for the conduct of his/her official duties; P3-02: delete and dispose of
information asset whenever the purpose for personal data processing has expired;
there are no legal requirements to keep the information asset or whenever it is prac-
tical to do so.

(P4) Data quality: The data accuracy controls criteria for BRAIN-IoT system
requirements based on the Article 5(1)(d) of the GDPR (Parliament, 2016) are:
P4-01: ensure the processed data present in the IoT platform is not incorrect or
misleading; P4-02: ensure the reliability of processed data collected from a source;
P4-03: keep a note of any challenges to the accuracy of the IoT platform processed
data.

(P5) Storage limitation: Article 5(1)(e) of GDPR explicitly pointed out that a stor-
age duration must be defined for each type of process data, and it must be justified
by the legal requirements and processing needs (Parliament, 2016). Thus, storage
of personal data in a IoT platform must be justified using privacy control crite-
ria. The evaluation criteria for the storage limitation in the context of BRAIN-IoT
system are: P5-01: ensure mechanism must be implemented to archive common
data or purge archived data at the end of their storage duration; P5-02: functional
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traces will also have to be purged, as will technical logs which may not be stored
indefinitely.

(P6) Integrity and confidentiality: Article 5(1)(f ) of the GDPR concerns the
“integrity and confidentiality” of personal data. It can be referred to as the GDPR’s
“security principle.” This principle explores the broad concept of information secu-
rity. Poor information security leaves any systems and services at risk and may
cause real harm and distress to individuals—lives may even be endangered in some
extreme cases. The common control criteria for integrity and confidentiality are:
P6-01: presentation, when the device is activated, of the terms and conditions
for use/confidentiality; P6-02: possibility of accessing the terms & conditions for
use/confidentiality after activation; P6-03: legible and easy-to-understand terms;
P6-04: existence of clauses specific to the device; P6-05: detailed presentation of
the data processing purposes (specified objectives, data matching where applica-
ble, etc.); P6-06: detailed presentation of the personal data collected; P6-07: pre-
sentation of any access to the identifiers of the device, the smartphone/tablet or
computer, specifying whether these identifiers are communicated to third par-
ties; P6-08: information for the user if the app is likely to run in the back-
ground; P6-09: information on the secure data storage method, particularly in
the event of sourcing; P6-10: information on protection of access to the device;
P6-11: arrangements for contacting the company (identity and contact details)
about confidentiality issues; P6-12: where applicable, information for the user
on any change concerning the data collected, the purposes, and confidentiality
clauses.

(P7) The right to be informed: In the BRAIN-IoT platform, various components
of IoT systems are integrated for modeling tasks. An IoT platform should be able
to demonstrate that an individual has consented the processed data. The individ-
ual must be able to withdraw his/her consent easily at any time (Articles 7 and 8
of the GDPR). The following is a list of controls intended to ensure that: users
of BRAIN-IoT consent has been informed; there has been a reminder and con-
firmation of their consent; the settings associated with the latter have been main-
tained: P7-01: express consent during activation; P7-02: consent segmented per
data category or processing type; P7-03: express consent prior to sharing data with
other users; P7-04: consent presented in an intelligible and easily accessible form,
using clear and plain language adapted to the target user; P7-05: for each new user,
consent must once again be obtained; P7-06: where the user has consented to the
processing of special data (e.g., his/her location), the interface clearly indicates that
said processing takes place (icon, light).

(P8) The rights of access and to data portability: Where the data processing
benefits from an exemption from the right of access, as presented in Articles 15 of
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the GDPR, it is necessary to describe their implementation on the IoT platform,
as well as a justification on the arrangements. The following is a list of the controls
intended to ensure user’s rights of access to all data concerning restriction in access
and portability: P8-01: possibility of accessing all data, via the common interfaces;
P8-02: possibility of securely consulting the traces of use associated with the user;
P8-03: possibility of downloading an archive of all the processed data associated
with the use; P8-04: possibility of retrieving, in an easily reusable format, personal
data provided by the user, to transfer them to another service (Article 20 of the
GDPR)

(P9) The rights to rectification and erasure: As presented in Article 17 of the
GDPR, it is required to justify the arrangement for responding to the individu-
als considering the rights to rectification and erasure. This is the list of controls
intended to ensure the right of rectification and erasure of the processed data:
P9-01: indication from the IoT platform that the processed data will nevertheless
be stored (technical requirements, legal obligation, etc.); P9-02: clear indications
and simple steps for erasing data before scrapping the device; P9-03: possibility of
erasing the data in the event the device is stolen.

(P10) The rights to restriction of processing and to object: The list of control cri-
teria considering the rights to restriction of processing and to object of personal data
(from GDPR article 20 and 25) in a IoT platform are: P10-01: existence of “Pri-
vacy” settings; P10-02: invitation to change the default settings; P10-03: “Privacy”
settings accessible when activating the device; P10-04: “Privacy” settings accessible
after activating the device; P10-05: existence of technical means for the data con-
troller to lock access to and use of the individuals to restriction; P10-06: possibility
of deactivating some of the device’s features (microphone, Web browser, etc.); P10-
07: existence of alternative apps for accessing the device; P10-08: compliance in
terms of tracking; P10-09: effective exclusion of processing the user’s data in the
event consent is withdrawn.

4.3.3 Privacy Risks

GDPR is a complex regulation, but at its core, it’s a data protection law. This means
a processor must explore privacy threats and vulnerabilities to personal data pro-
tection to assess and mitigate privacy risks under GDPR. According to ISO/IEC
29100 standard, privacy threat is effect of uncertainty on privacy. Based on the
threats and vulnerabilities explored in various studies, e.g., in Wachter (2018), Par-
liament (Parliament, 2016), and Libertés (2017), the list of privacy threats in the
context of BRAIN-IoT platform can be found in BRAIN-IoT (2018), results of
the threat modeling done by the partners of the project.
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4.3.4 Privacy Compliance Evaluation

In this approach, the privacy compliance evaluation is performed using the fun-
damental privacy principles presented in GDPR and privacy threats outlined in
Section 4.3.3. The privacy compliance evaluation is based on two pillars: (1) Fun-
damental rights and principles, which are “non-negotiable,” established by law, and
which must be respected, regardless of the nature, severity, and likelihood of risks;
(2) Privacy threats, which identify the appropriate technical and organizational risks
to protect individuals data.

In any IoT application, the controller of a use case should identify and implement
privacy controls to meet the privacy safeguarding requirements, which is identified
by the privacy risk assessment and treatment process, as indicated in Libertés (2017).
Effort should be taken by IoT application controllers to develop their privacy con-
trols as part of a general “privacy by design” approach considerations, i.e., privacy
compliance evaluation should be considered at the design phase of systems data pro-
cessing, rather than being bolted on at a subsequent stage, as suggested in Voigt
and Bussche (2017). Therefore, it is important to verify and demonstrate that the
processing meets data protection and privacy safeguarding requirements by period-
ically conducting evaluation using internal auditors or trusted third-party auditors,
as stated in Libertés (2017). Also, the identified and implemented privacy controls
should be documented as part of the PIA for IoT applications.

Certain types of data processing can warrant specific controls for which the need
only becomes apparent once an envisaged operation has been carefully analyzed.
A risk is a hypothetical scenario that describes a feared event and all the threats that
would allow this to occur (Article 32 of the GDPR). Based on the privacy risk level
outlined in Figure 4.1, the authors performed the assessment of privacy control
criteria using the following scale to estimate the Severity and likelihood of privacy
risks:

Negligible (Scale: 0): It does not seem possible for the selected risk sources to materi-
alize the threat by exploiting the properties of supporting assets (e.g., theft of paper
documents stored in a room protected by a badge reader and access code). Con-
sidering severity, data subjects either will not be affected or may encounter a few
inconveniences, which they will overcome without any problem.

Limited (Scale: 1): It seems difficult for the selected risk sources to materialize the
threat by exploiting the properties of supporting assets (e.g., theft of paper doc-
uments stored in a room protected by a badge reader). Privacy stakeholders may
encounter significant inconveniences, which they will be able to overcome despite
a few difficulties.

Significant (Scale: 2): It seems possible for the selected risk sources to materialize
the threat by exploiting the properties of supporting assets (e.g., theft of paper
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Figure 4.1. Privacy and security risk level.

documents stored in offices that cannot be accessed without first checking in at
the reception). Privacy stakeholders may encounter significant consequences, which
they should be able to overcome albeit with real and serious difficulties.

Maximum (Scale: 3): It seems extremely easy for the selected risk sources to mate-
rialize the threat by exploiting the properties of supporting assets (e.g., theft
of paper documents stored in the public lobby). Further, privacy stakeholders
may encounter significant, or even irreversible consequences, which they may not
overcome.

Considering the likelihood and severity scale, it is possible to evaluate a privacy
principle (P) using each privacy control criterion (Ci ). The risk level for a privacy
principle (P) can be defined as:

P =
1
n

n∑
i=1

Ci , i = 1 . . . n (4.1)

Here, n is the number of privacy control criteria. Based on the risk value of a
privacy principle, it can be assumed that if the value is greater than 2, then the
risk level for a use case is significant and need further attention from controllers.
The severity and likelihood evaluation can be performed by monitoring how many
information assets affected by a specific privacy threat.

4.4 Experimental Analysis

This section describes the experiments performed on IoT scenario, namely Criti-
cal Water Infrastructure, provided by the BRAIN-IoT project. Firstly, an use-case
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description is presented, and then, the results of privacy compliance analysis are
reported.

Below in Table 4.1, the authors present an overview of Critical Water Infras-
tructure use case. Considering the processed data, there are no real personal data
present in this use case. However, the generalized PIA approach based on GDPR,
presented in Section 4.3, is applicable also to this type of use cases. Based on this
approach, the authors can get an overall view on impact of privacy threats consid-
ering GDPR regulation. The result of the privacy compliance evaluation of Critical
Water Infrastructure scenario is briefly presented in Table 4.2.

Table 4.1. Critical infrastructure management.

Use-case
description

The services of water treatment and supply in large cities are
fundamental for the existence of life and for its quality. These services
are associated to several infrastructures that are considered, in
accordance with European norms, as critical, and as such are therefore
bound to a series of conditions for their development. Within this
context, it’s about how best to apply the technological improvements to
our work environment preserving the established guarantees. It’s about
progressing in the application of technology in the processes related to
potable water and its urban distribution, in a way that within the
sustainability context, citizens receive a better service. In other words,
from a social point of view, but also from economic environmental one.

Processing
purposes

An important part of this effort is orientated to systems’
implementation, improving the general information of the companies
processes, thus those associated with IoT technologies and their
integration as company’s information models. The idea is that a greater
amount and better flow of information will allow taking better
decisions, to achieve resilient and sustainable systems to guarantee high
quality of life.

Processing
stakes

Online monitoring system of the quality of surface waters, with two
profilers and two quality control stations in the dam and the river that
supply the metropolitan area around the city of Corun̈a.
Treatment Plant (ETAP), with an automatized management system
that allows to control all process aspects to optimize the inputs demand,
especially reactive and energy as fundamental elements of sustainability.
Tele-control system of supply grids, with more than 80 control points,
i.e., deposits, pumps, and sectors, with access to water quality data and
the correct infrastructures’ functioning. This system serves also as a feed
of the hydraulic model of the supply grid, allowing a constant
improvement of water distribution efficiency amongst the population.

(Continued)
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Table 4.1. Critical infrastructure management (continued).

Monitoring of 20 control sections of division consumption with more
than 2000 metres installed to profile consumption patterns and
understand the behavior of the consumption for its implementation in
hydraulic and commercial models to improve the short-term services.
Monitoring of big clients’ systems with multi-parameter stations.
Monitoring of the delivery of water to third parties.

Processed data (a) Information about user: No personal data is stored for processing.

(b) Recorded data: (1) SERVER IP (Station A TELVA), (2) SERVER 01
(Win CC System), (3) SERVER 03 (Station and Central Server), (4)
Meteorological device, (5) Industrial Ethernet Switch not managed,
(6) PC1-SCADA WinCC NT, (7) PC2-SCADA EMALCSA, (8)
Router, (9) Gaugin Station, (10) Flow metre Sitrans MAG 5000, (11)
Flow metre Sitrans MAG 8000, (12) Flow metre Fus-1010, (13) Flow
metre Woltman, (14) Flow metre Vortex.

(c) Calculated data: (1) Data from dam level probe, (2) Multi-parameter
probe for water quality monitoring, (3) Secondary hydrostatic dam
level probe, (4) PLC module in dam top, (5) PLC in Dam Room, (5)
Interface module, (6) Profinet, (7) Profibus, (8) SensiNact, (9)
Tacdesoft new remote station, and (10) Profibus Repeater

Controller Infrastructure Management (EMALCSA)

Processor(s) BRAIN-IoT platform

Table 4.2. Privacy compliance evaluation of critical infrastructure use case.

Risk level

Privacy control criteria Privacy threats Severity scale Likelihood scale

(P1) Lawfulness, fairness, and transparency

P1-01 R-07, R18, R21 2 1

P1-02 R-19, R-20 1 0

Other rows are omitted for brevity

P1-06 R-18, R-19, R-21 3 2

(P2) Purpose limitation

P2-01 R-16 1 1

P2-02 R-06, R-08 2 0

P2-03 R-08, R-20 0 1

(P3) Data minimization

P3-01 R-01, R-04, R-06 3 2

P3-02 R-16 2 2

(Continued)
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Table 4.2. Privacy compliance evaluation of critical infrastructure use case

(continued).

Risk level

Privacy control criteria Privacy threats Severity scale Likelihood scale

(P4) Data quality

P4-01 R-01 2 1

P4-02 R-08, R-15 0 1

P4-03 R-11 1 0

(P5) Storage limitation

P5-01 R-06, R08, R15 1 2

P5-02 R-15, R-18 0 1

(P6) Integrity and confidentiality (Security)

P6-01 R-10, R14 2 1

P6-02 R-07 1 3

Other rows are omitted for brevity

P6-12 R-16, R-18, R-20 2 2

(P7) The right to be informed

P7-01 R-06, R-07 2 1

P7-02 R-05, R-07 2 3

Other rows are omitted for brevity

P7-06 R-02, R-11 2 1

(P8) The rights of access and to data portability

P8-01 R-01 2 3

P8-02 R-02 1 2

P8-03 R-07 1 0

P8-04 R-19 2 2

(P9) The rights to rectification and erasure

P9-01 R-12 1 0

P9-02 R-05,R-06,R-09 2 2

P9-03 R-05 3 2

(P10) The rights to restriction of processing and to object

P10-01 R-07 1 2

P10-02 R-10 1 0

Other rows are omitted for brevity

P10-09 R-19 1 2
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4.5 Discussion

This section reports a synthesis of the main findings of the experimental analysis
presented in Section 4.4.

The privacy compliance analysis is presented in a radar chart in Figure 4.2. This
figure illustrates the PIA results in a radar chart using 10 (P1 to P10) GDPR-based
privacy principles. The severity (expresses the magnitude of a risk) and likelihood
(expresses the possibility of a risk occurring) evaluation can be performed by mon-
itoring how many information assets (such as door controller, etc.) are affected by
a specific privacy threat (for instance, unauthorized access to services, illegal access,
etc.). The scale used is the one presented in Section 4.3, so it can be assumed that
if the risk value is greater than 2, then the risk for a use case is significant and needs
further attention from the use-case owner. From the PIA results, it is possible to see
that Integrity and confidentiality (Security) privacy principle (P6) has high sever-
ity and likelihood scale value (2) due to risks regarding illegal access, unauthorized
access to services, data from untrustworthy sources, vulnerable IoT devices, and
data from untrustworthy sources. Figure 4.3 illustrates the main findings of this
work which is labeled A to F.

Figure 4.2. Privacy compliance analysis for critical infrastructure scenario.
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Figure 4.3. Summary of findings.

4.6 Conclusion and Future Work

Complex IoT application scenarios present a set of challenges that were not consid-
ered in more traditional IoT applications, such as heterogeneity and lack of interop-
erability, security and privacy concerns. Moreover, the challenges in implementing
privacy awareness in IoT platforms consider the needs of allowing autonomous
behaviors in isolation. Further, as more IoT systems get connected to the inter-
net, there is a need for a highly scalable and extensible PIA approaches. Authors’
belief is that adopting the GDPR key privacy principles to remodel PIA approach
will enhance the reliability of IoT platform. This paper has explored the lingering
problems in the context of privacy awareness in complex IoT applications by inte-
grating GDPR in IoT platforms. More specifically, this paper has presented the way
in which the BRAIN-IoT project intends to address challenges of privacy aware-
ness in IoT platforms by leveraging GDPR and ISO/IEC standards. This paper
has further proposed a PIA approach for IoT platforms, which will also be advan-
tageous from the developers’ point of view. The proposed framework is yet to be
fully implemented and tested but it presents a direction of investigation for the
IoT community on ways the problem of scalability, ease of development, ease of
deployment, and lightweight implementation can be resolved.
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Chapter 5

IoT Network Risk Assessment
and Mitigation: The SerIoT Approach

By Gianmarco Baldini, Piotr Fröhlich, Erol Gelenbe,
Jose Luis Hernandez-Ramos, Mateusz Nowak, Slawek Nowak,

Stavros Papadopoulos, Anastasis Drosou and Dimitrios Tzovaras

Cyberattacks on the Internet of Things (IoT) can be the source of major economic
damage. They can disrupt production lines, manufacturing processes, and supply
chains. They can adversely impact the physical safety of vehicles and transportation
systems, and damage the health of living beings both through supply chains for
food, medicines, and other vital items, as well as through direct attacks on sensors
and actuators that may be connected to vital functions. Thus, securing the IoT is
of primary importance to our societies. This paper describes the technical approach
that we adopt for IoT security in the SerIoT Research and Innovation Project that
is funded by the European Commission. We first discuss the risk scenario for the
IoT and briefly review approaches that have been developed to mitigate such risks.
Then, we discuss a policy-based lightweight approach that mitigates risks at the
level of the attachment of IoT devices to a network. We follow this with a detailed
proposal based on using a distributed Machine Learning approach to risk and attack
detection in real time, as well as suggestions for future work.
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5.1 Introduction

The IoT may extend to billions of objects and sensors connected to Clouds,
databases, decision systems, and actuators [1]. It has the potential to improve the
critical processes that are at the heart of our socio-economic systems [2, 3] compos-
ing a data-driven society [4]. However, the pervasive nature of the IoT raises risks
that go way beyond the individual technologies such as the internet or wireless
networks [5] and machine-to-machine systems [6]. In addition to risks related to
system malfunctions, Quality of Service (QoS) failures, and excessive energy con-
sumption, they also include the theft and tampering of data, conventional network
attacks, and other attacks that attempt to deplete the energy of autonomous sensors
and actuators [7–12].

In Information and Communication Technology (ICT), risk management
embraces different processes intended to deal with the identification, assessment,
and mitigation of risks, which are derived from vulnerable ICT systems or potential
cybersecurity attacks [13]. However, the scale and heterogeneity of IoT systems sets
out significant challenges for the implementation of a risk management approach.
On the one hand, IoT represents the current trend to hyperconnected systems;
therefore, risk management aspects must consider the relationships and dependen-
cies among different devices that could affect to the security level of a certain sys-
tem or deployment. On the other hand, IoT deployments are usually composed
by components with resource constraints, which are installed in uncontrolled envi-
ronments with default security configurations. These constraints also make IoT
devices and systems an attractive target for possible attacks. Furthermore, due to
the potential huge number of devices in IoT deployments, there is a real need to
consider risk management approaches with a high degree of automation to effi-
ciently identify and mitigate new risks affecting such systems. These approaches
should be able to represent the relationships among devices, vulnerabilities, and
attacks of the overall deployment.

To create a suitable risk management methodology for the IoT, holistic
approaches are required to understand the probability and impact of potential
risks affecting devices and systems. As a core process of risk management, risk
assessment has been strongly considered in recent years by IoT researchers [14].
However, assessing risk is in itself insufficient, and we must design IoT networks
that can detect and then mitigate security risks, but also mitigate other risks that
may arise regarding the overall performance of the system by preserving QoS
and offering energy efficient operation of the system [15]. Thus, a continuing
overall evaluation of the risks introduced by IoT systems and their networks
is needed, and this paper offers a view of risk identification and mitigation as
applied to IoT systems, based on our work in the SerIoT Project supported by the
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European Commission [16]. In particular, we propose a system called Autopolicy,
which is intended to enforce security profiles according to the intended commu-
nications of a certain IoT system with other devices or systems. This approach
reduces the attack surface of the system and, consequently, the probability of
cybersecurity risks. Furthermore, we complement this mechanism with a detec-
tion approach, which uses a distributed anomaly detection scheme based on deep
learning (DL) and graph networks [17, 18]. Localized anomaly detection meth-
ods at IoT ports and network routers can also be investigated [19]. The mitiga-
tion method we proposed in this paper exploits network Self-Awareness [20, 21]
centered on Software Defined Networks [22] that can achieve secure and QoS-
based routing of significant traffic flows using machine learning and adaptivity
[23–26].

The structure of the chapter is as follows: Section 5.2 analyzes the main processes
composing a risk management and the challenges associated to the IoT paradigm.
Then, the description of the Autopolicy approach is described in Section 5.3. Fur-
thermore, Section 5.4 provides a detailed description of our approach for the detec-
tion of attacks and anomalies in IoT-based DL and graph networks.

5.2 Risk Management in IoT

The process of risk management is composed of different elements [13] including
risk assessment and the definition of risk mitigation solutions. In particular, accord-
ing to the definition provided by the National Institute of Standards and Technol-
ogy (NIST), the risk management includes “(i) the conduct of a risk assessment; (ii)
the implementation of a risk mitigation strategy; and (iii) employment of techniques
and procedures for the continuous monitoring of the security state of the information
system” [27]. Therefore, risk management implies the assessment, mitigation, and
monitoring of risks.

Risk assessment is defined in CNSSI-4009 [28] as the process of “identifying,
prioritizing, and estimating risks”. This includes determining the extent to which
adverse circumstances or events could affect an enterprise. However, as described
by [14, 29], risk assessment in IoT could be more difficult to implement in com-
parison to traditional ICT systems because of the pervasive connectivity of the IoT
devices and the different potential interfaces (e.g., different wireless standards or
middlewares), which can increase the attack surface. The assessment of the impact
can also be critical in specific categories of IoT devices like the cyberphysical sys-
tems (e.g., an automated vehicle) or healthcare (e.g., insulin distributor) as a cyber-
security threat can have quite damaging consequences. Another challenge of the
IoT domain for risk assessment is that IoT systems (e.g., a smart home or a smart
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vehicle) can be composed of many different devices that, in turn, could be com-
prised of several components with a different security level. This means that the risk
assessment of a certain system will depend on the security level associated to each
part of the system. For this aspect, the main challenge is related to the way in which
each risk value could be aggregated to provide a reliable value for the whole system.

A number of risk assessment methodologies have been developed in the literature
and applied in some cases to the IoT domain. For example, the Common Weakness
Scoring System (CWSS) [30] is a methodology to prioritize software weaknesses.
The main motivation is to provide means to different stakeholders (e.g., software
testers, or manufacturers) for quantifying the risks associated to a specific weakness.
This way, the corresponding stakeholder can prioritize the weakness to be solved
based on the estimated risk. Various metrics (i.e., Base Finding, Attack Surface and
Environmental metric groups, which in turn contain different metric to quantify
the CWSS score associated to a certain weakness) are used to produce a final CWSS
score between 0 and 100. The main challenge is obviously the quantification pro-
cess as cybersecurity risk is more difficult to quantify especially in the IoT domain
[14]. A similar approach is also used in the Common Vulnerability Scoring System
collection (CVSS) [31], which is based on three group metrics: Base, Temporal,
and Environmental. The CVSS is widely used today as it is used in the National
Vulnerability Database (NVD) created by the NIST. In the IoT literature, CVSS
and CWSS schemes are used to assess the risks in Bluetooth technology, where the
authors extended the authentication metric to include new security factors inher-
ent to the Bluetooth technology [32]. CVSS and CWSS have also been used as an
input in the process of cybersecurity certification of IoT devices in [33, 34]. Finally,
another quantitative risk assessment scheme is DREAD, which is used to compute
a risk value associated to a certain threat or vulnerability based on the use of five
categories: Damage potential, Reproducibility, Exploitability, Affected users, and
Discoverability. It was used at Microsoft, and currently, it is used by OpenStack. In
[35], DREAD is applied to the mobile healthcare domain due to its simplicity.

As already mentioned, risk identification is a core process of a risk assess-
ment approach. In this direction, threat and vulnerability assessments are usually
employed to identify risks to organizational operations, and the evaluation of those
risks in terms of likelihood of occurrence and impact if they occur. In turn, for
the identification of threats and vulnerabilities, Intrusion Detection System (IDS)
have been widely used [36] by monitoring and analyzing the network and/or sys-
tem events. However, previous considerations make the application of well-known
IDSs more challenging into IoT systems. Indeed, one of the popular approaches
in literature is to analyze the data produced by IoT device to identify potential
anomalies. A potential weakness of this approach is the difficulty to anticipate the
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attack as the anomaly is created when the attack is already ongoing or it is com-
pleted. Moreover, machine learning capabilities have been increasingly become
more powerful in recent times, and a complex security attack may be composed by
a sequence of attacks steps. Then, the research objective is to the detect the initial
steps in the attack.

These aspects are already highlighted by [37], which provides a comprehensive
taxonomy of IDSs for IoT. Authors classify IDSs according to different parameters,
such as the placement strategy (distributed, centralized, and hybrid) and detection
method (signature-based, anomaly based, specification-based, and hybrid). In par-
ticular, anomaly based detection techniques are used to detect new attacks by com-
paring the normal behavior of a certain system with its actual activity. This approach
could leverage the inherent nature of IoT systems, which are usually composed of
special purpose devices. This aspect is considered by the recent Manufacturer Usage
Description (MUD) standard [38], which is aimed to restrict the communication
to/from a certain IoT device. To generate such intended behavior, anomaly detec-
tion techniques have widely used machine learning techniques, and in [39], a dis-
tributed anomaly detection approach in which each node monitors its neighbors
is proposed, where monitoring nodes inform other nodes about security problems.
In [40], deep autoencoders to detect anomalous network traffic of IoT devices are
discussed and tested for different commercial IoT devices in the presence of IoT
botnets such as Mirai. In our case, we describe a risk monitoring approach based
on a multi-agent system and DL techniques for automatic feature extraction and
anomaly detection that is described in Section 5.4.

As the next step of a risk management approach, risk mitigation focuses on the
goal to mitigate the risks through different means: (a) avoiding the risk (e.g., not
using a specific interface), (b) reducing the risk by implementing specific counter-
measures (e.g., intrusion detection), or (c) transfer the risk to some other entity
(e.g., an insurance company). In the IoT domain, the mitigation of risk is more
difficult to achieve because of the limited computing capabilities of IoT devices,
which makes more difficult the implementation of sophisticated countermeasures.
The transfer of the risks is also difficult as IoT devices are often standalone systems
(e.g., a sensor). A potential approach to mitigate IoT security risks is the integra-
tion of Software-Defined Network (SDNs), in order to restrict communications
from/to IoT devices. Indeed, the application of SDN techniques into IoT scenarios
has attracted a significant interest from academia in recent years. For example, [41]
describes an architecture for managing the obtaining and enforcement of MUD
restrictions, which are enforced by SDN switches. In this direction, our approach
is based on an architecture to identify and mitigate security risks based on the com-
munication profiles of IoT devices that is described in the next section.
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5.3 Autopolicy System

The deployment of IoT scenarios requires new approaches to manage cybersecurity
risks throughout the life cycle of devices composing such scenarios. In recent years,
diverse proposals have been developed to address risk management aspects, in order
to realize the best security practices for IoT (such as those defined by the (ENISA)
[42]). In this direction, [43] proposed a system for automatically identifying the
type of IoT devices that are connected to a network and enforcing security rules to
restrict the communication of potentially vulnerable devices. Indeed, authors pro-
posed the use of SDN techniques for the enforcement of such rules. Furthermore,
[44] designed an automated approach to derive network security policies, as well
as a multi-layered policy enforcement architecture.

Based on the considerations from previous works, our approach (Autopolicy)
addresses several aspects of risk management in IoT scenarios. On the one hand, it
reduces the attack surface and, consequently, the potential security risks associated
to IoT devices by enforcing traffic profiles to be defined either by the device’s manu-
facturer, or automatically. On the other hand, it links the obtaining of such profile
to the authentication process of the IoT device, so that only traffic profiles from
legitimate devices are obtained and enforced. Furthermore, it integrates a decen-
tralized mechanism based on a Multi-agent System (MAS) for risk monitoring that
is described in the next section. This way, Autopolicy helps to identify and moni-
tor risks in a certain IoT network through traffic profiles, in order to mitigate the
impact and likelihood associated to well-known threats, such as DoS attacks.

Autopolicy follows a similar approach to the recent IETF standard Manufac-
turer Usage Description (MUD) [38], which defines an architecture and data for-
mat to obtain and define network profiles for IoT devices. Indeed, MUD has
received an increasing interest from other standardization organizations, such as the
NIST, which recently published a Cybersecurity Practice Guideline [45] describing
the advantages provided by MUD to reduce the potential harm of compromised
devices. It follows a simple data model to generate network traffic rule allowing/
denying the communication to/from a certain IoT device. In our case, we consider
additional aspects, such as the maximum number of connections or restrictions on
the message size, in order to properly react against DoS attacks.

An overview of the Autopolicy design is presented in Figure 5.1. The basic flow
of information starts when a new IoT device joins a network, and it is detected by a
switch (or controller) acting as Device Authenticator, which is responsible for grant-
ing/denying the access to such device. This initial authentication process is usually
called bootstrapping [46], and it is used to exchange the corresponding crypto-
graphic material between the IoT device and controller for authentication purposes.
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Figure 5.1. Functional diagram of Autopolicy and of its information flows.

For this purpose, there is a plethora of mechanisms that could be considered to
instantiate this process, for example, based on the use of the Extensible Authentica-
tion Protocol (EAP) [47], which is widely considered in the scope of 5G networks.
An alternative approach could be based on the OMA LwM2M specification [48],
which explicitly defines a Bootstrap Interface, so that a LwM2M Client can be
registered into the corresponding LwM2M Server. (OMA) defines four boot-
strapping modes (factory, smartcard, client-initiated and server-initiated), and
the use of transport layer security (i.e., TLS/DTLS) and application layer secu-
rity based on the recent Object Security for Constrained RESTful Environments
(OSCORE) [49].

After the bootstrapping process, the entity acting as Device Authenticator sends
the authenticated device identity to the Profile Manager, which uses the identity to
request the associated traffic profile. For example, following the MUD approach,
the identity could be represented by a X.509 certificate in which a URL is included
to get the traffic profile. In our case, the Profile Manager contacts the Profile Pub-
lisher, which manages the traffic profiles of IoT devices. Indeed, this entity follows
a similar role to the MUD File Server [38], which is an entity provided by the man-
ufacturer of the device. An alternative approach for sharing traffic profiles is repre-
sented by the use of blockchain as a trusted, distributed and transparent repository
of traffic profiles. This way, manufacturers are enabled to implement smart con-
tracts to manage the creation and update of traffic profiles. It should be noted that
the use of blockchain is also considered in [50] to store cybersecurity information
of IoT devices, including MUD profiles. In case there is not an associated profile
to the device, the Profile Manager contacts the Profile Builder entity to create such
profile based on IP traffic statistics and, optionally, additional information from
other repositories where that device is already deployed.
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Table 5.1 Traffic profile example.

{ ‘‘from_device’’: {
‘‘rate’’: 0.1,
‘‘allowed_dst’’: [

‘‘91.200.1.0/24 tcp/80,443’’,
],
‘‘connections’’:‘‘10’’

}
‘‘to_device’’: {

‘‘rate’’: 0.1,
‘‘blocked_dst’’: [

‘‘0/0’’,
],

}}

The obtained traffic profile is then sent to the Policy Enforcer, which only allows
IP traffic under strict rules defined by the profile. The role of the Policy Enforcer
could be embedded in the controller (or switch) acting as Device Authenticator.
Listing 5.1 shows a simple example of traffic profile to define restrictions on the
communications to/from the device. In particular, rate specifies the maximum
bandwidth (in Mbps); allowed_dst and blocked_dst indicate the IP address, pro-
tocol, and port of allowed/denied communications. Furthermore, connections rep-
resents the maximum number of connections allowed with a certain device.

While this represents a simple example of traffic profile, we plan to extend this
initial data model and align it with the MUD standard. The described mechanism
was designed for the needs of the SerIoT project as one of the components to pre-
vent and mitigate potential risks in IoT systems. Its role is to secure the network
from the malicious endpoints and ensure that IoT devices behave according to spe-
cific traffic rules. It should be noted that the described mechanism is intended to
reduce the attack surface by enforcing the rules associated to the intended behav-
ior of IoT devices. However, it still requires a dynamic approach to continuously
monitor the risks that can be identified through traffic analysis. For this purpose,
next section provides an overview of the risk monitoring approach that is being
implemented in the scope of the SerIoT project.

5.4 Towards Distributed Attack Detection

The recent proliferation of IoT technologies has given rise to a dramatic increase
in the number of edge devices. More devices not only introduce more security vul-
nerabilities but also greatly increase the volume of transferred data that must be
analyzed in order to detect and mitigate network anomalies. When undetected,
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such anomalies can have a great impact on the robustness and Quality of Service
(QoS) of the attacked IoT infrastructure. The main challenge for anomaly detec-
tion methods in today’s IoT network is the analysis of the big amounts of data that
arise from the growing number of IoT devices. Such large volumes of information,
as well as the distributed, large-scale, and heterogeneous nature of the IoT network,
render the goal of (near) real-time anomaly detection difficult to accomplish using
traditional centralized monitoring approaches [51].

In this respect, this work proposes the use of Multi-agent Systems (MAS) for
processing the large amounts of data exchanged by the IoT devices in a distributed
manner. The MAS allows for monitoring of the network traffic using parallel com-
putation, resulting in faster detection times, and thus, improving the security and
QoS of the IoT network. Additionally, when the agents have redundant roles (i.e.,
detection of anomalies regarding the same IoT device by different agents), the MAS
system offers robustness, since it can tolerate failures of one or multiple agents [52].
Finally, MAS also offers scalability, since due to the modular nature of the approach,
adding new agents to the network is easy and straightforward.

The main challenge when implementing MAS is how the agents will exchange
information in order to solve a problem in a cooperative manner [53]. In this
respect, this work utilizes recent advances in AI and Deep Learning (DL) in order
to enable automatic feature extraction and anomaly detection by the agents of the
MAS. Specifically, due to the graph structure of the network communication events,
where nodes represent devices and edges communication, it is natural to consider
DL approaches that deal with graph structured datasets, i.e., Graph Neural Net-
work (GNN) [18]. This work utilizes as an inspiration the more generic GNN
formulation, proposed by DeepMind [17].

The IoT network is defined as a graph G(V, E, fv, fe), where each node vi ∈ V
represents either an IoT device or a router, and each directed edge e j ∈ E represents
a directed communication between nodes. Each node and edge is augmented with a
feature vector through functions fv : V → RNv and fe : E → RNe , respectively,
where Nv and Ne, the size of node and edge feature vectors, respectively. These
features are calculated using network traffic over a specific time window 1T . The
list of utilized features is presented in Table 5.1.

The agents of the MAS are installed in a subset of the nodes V ′ ⊆ V and
exchange information using the same set of communication edges E . Each agent
comprised of two networks utilized for updating the feature representation of the
adjacent edges and the node they are installed on. These updated features are after-
wards utilized for multi-class anomaly detection through another pair of deep learn-
ing networks. An overview of this formulation for updating feature representa-
tion through information exchange between the different agents is illustrated in
Figure 5.2. Under this consideration, the role of the edge Deep Neural Network



Towards Distributed Attack Detection 97

Table 5.1. The list of network features used for anomaly detection. The number of features

for each node is Nv = 5 and for each edge is Ne = 3.

# Target Feature description

1 edge/node Average number of packets sent

2 node Average number of packets received

3 edge/node Average number of bytes sent

4 node Average number of bytes received

5 edge/node Average connection duration

Figure 5.2. The procedure for updating the feature representations of the edges and

nodes visible by each agent. The edge Deep Neural Network (DNN) takes as input the

previous edge feature values and the adjacent agent features, and updates the fea-

ture representation of each edge. The node DNN aggregates the information from the

updated edge feature values, and updates the feature representation of the specific node.

(DNN) is to integrate information from adjacent nodes, as well as the correspond-
ing edge, and update this edge’s feature representation. These updated feature rep-
resentations for all adjacent edges are afterwards taken as input by the node DNN
that updates the feature representation of the corresponding node. The Node and
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Edge DNNs are the same for all agents (i.e., have shared weights), and thus, each
agent is able to learn from events happening to other agents.

Based on the previous definitions, there are in total four DNNs, two used for
updating node and edge feature representations, namely MLPn and MLPe, and
two used for classification of neighbor nodes and the node in which the agent is
installed, namely Classifierneighbor and Classifiernode.

Given an agent installed in node v j , the procedure followed for updating the
features of this node and the adjacent edges, as well as detecting anomalies in the
entire neighborhood is formulated as follows:

e
′i
1T = MLPe(x

j
1T , x i

1T , ei
1T )

x
′ j
1T = MLPn

(
1
N

N∑
i=1

concat(e
′i
1T , x i

1T )

)

pi = Classifierneighbor(e
′i
1T , x i

1T )

p j = Classifiernode(e
′i
1T , x i

1T )

(5.1)

where x j is the feature vector of node v j where the agent is installed, x i is the
feature of the neighboring nodes in the graph, ei is the feature vector of the adjacent
edges, and N is the number of neighboring nodes. This computation is performed
with traffic data from a specific window1T . The MLPn network is applied on the
average of the updated features of each adjacent edge and node. The concant (.)
function takes as input two vectors and returns a larger vector which represents
the concatenation of the two vectors. Equation (5.1) represents a single iteration of
information exchange between agents. Stacking multiple blocks of such operations,
the agents can exchange information multiple times within each time period 1T .
The architecture of this procedure is illustrated in Figure 5.3. The entire network
is trained in a supervised manner using the back-propagation algorithm with cross-
entropy as loss for multi-class classification.

In this formulation of MAS, each agent is responsible for performing anomaly
detection not only on itself but also on its neighboring nodes. This redundancy
of the role of the agents enables the system to be robust in cases where one or
multiple agents may fail, since other agents will take over the role of detecting
anomalies in neighboring nodes instead of them. The issue that arises, however,
is how to combine the overlapping decisions of the different agents into a single
decision for each node in the IoT network. This work utilizes a simple aggregation
method, where a node is considered anomalous if at least one agent reported it as
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Figure 5.3. The architecture of each DNN agent in the multi-agent anomaly detection

system. The edge Multi-layer Perception (MLP) takes information from the N neighboring

agents and updated the values of the edge features, while the node MLP combines the

updated edge feature values and updates the feature values of the specific node (agent).

Edge features are used for predicting anomalies in the neighborhood, while node features

are used for detecting anomalies in the specific node, using the classifier networks. The

training is performed in a supervised manner using back-propagation with cross-entropy

loss.

anomalous. Alternative more sophisticated aggregation schemes will be considered
in future work.

5.5 Conclusions

The implementation of a suitable risk management approach demands for holistic
approaches for the assessment, mitigation, and monitoring of security risks in IoT
systems. Toward this end, we have provided an initial description of a policy-based
system that is being defined in the scope of the EU SerIoT project. Our approach is
based on the use of network traffic profiles, which specify the intended communica-
tions of IoT devices. Such effort is aligned with the recent MUD standard, which
has received an increasing interest from academia and industry during last year.
Autopolicy defines an architecture for obtaining and enforcing traffic profiles, in
order to mitigate potential security risks in IoT systems. Furthermore, it integrates
a distributed machine learning approach for risk monitoring by analyzing the net-
work traffic. As a future work, we plan to adopt the MUD standard as the baseline
to define and extend our traffic profiles to be enforced through the components
defined in the SerIoT SDN architecture. Furthermore, we will provide an imple-
mentation and detailed description of our adaptive machine learning approach to
reroute IoT traffic according to the identification of compromised nodes of a cer-
tain network.
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Industrial IoT applications in various domains including large office sites and trans-
port infrastructure are getting more complex with multiple computer-based man-
agement systems handling the workload. These systems can generate data that can
be used to introduce cognitive capability in many critical tasks. Handling the con-
cerns related to privacy and security is important to enable any complex function-
ality [1–3]. For this reason, the CHARIOT IPSE (IoT Privacy and Safety Engine)
shows a solution that links the privacy, security, and safety supervision functionality
in a novel way.

In summary, the safety supervision engine will propose a mechanism to pro-
cess and handle the signals generated by sensors for safety-related scenarios. Lately,
IoT deployments are moving away from an approach of offloading the cognitive
capabilities to one central approach towards distributed intelligence with mul-
tiple nodes handling the cognitive capabilities of the IoT deployment [1, 4].
The implementation of machine learning-based policies and propagating the
changes on the systems require edge cloud orchestration done by the system [5, 6].
To align with the CHARIOT objectives, CHARIOT develops a safety supervision
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engine that can run on multiple Fog nodes of an IoT setup. In addition, the safety
supervision engine provides collaborative optimization capability to dynamically
change priorities of sensor based on the operation mode of the system. By doing
dynamic prioritization of signal transfer to cloud, the scalability issue which is seen
as one of the major research challenges for industrial IoT [7] is tackled.

The CHARIOT Privacy engine uses blockchain to avoid privacy breaches
in the IoT network. The Privacy engine encrypts the data on a southbound
dispatcher (sensor side in the architecture) by using keys distributed on the
blockchain network. It keeps the policies and the access rights for particu-
larly sensitive data in the policy repository and enforces the access rights for
CHARIOT. The Privacy engine is particularly suitable for large industrial IoT
deployment environments where multiple contractors may access different data
streams [8, 9].

The CHARIOT Security Engine checks the firmware updates and related
changes in network and network transmission to make sure that the data shared
in the system is bona fide with no security breaches [10, 11]. CHARIOT uses open
source tools and heuristics where historical firmware binary data will be used to
identify updates with security vulnerabilities and inform the operator.

In this chapter, we will provide an overview of the core capabilities of CHARIOT
safety supervision engine, privacy engine, and security engine. An overview of the
Engine’s capabilities is also provided.

6.1 The CHARIOT Safety Supervision Engine

Industrial IoT systems are deployed in a wide range of applications in different
domains. Three living labs (piloting cases in Airports, Rail, and Smart Buildings)
included in CHARIOT cover a broad range of industrial IoT deployments in a
broad range of domains including transport, logistics, and workplace management.
The CHARIOT Safety Supervision Engine used the key pain points and business
requirements of these industrial IoT deployments while specifying, designing, and
implementing it.

State-of-the-art IoT safety supervision solutions including Microsoft Azure and
IBM Watson IoT Platform handle widely any safety critical functionalities that
might require complicated analysis on the Cloud Environment. Based on the
extracted and focal Living Labs’ industrial requirements, there is a clear need for
deploying more functionality on the edge of the network, and a Cloud-only solu-
tion would not be sufficient. For example, an IoT deployment on a train may
lose internet connectivity in a tunnel or an airport environment may lose internet
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Figure 6.1. A sample industrial IoT topology for a work campus environment.

connection during a hazard. A solution should provide a form of fault tolerance to
avoid single point of failure (Figure 6.1).

The CHARIOT safety supervision engine is designed to be flexible enough for
any industrial IoT system. CHARIOT has defined three abstract entities in three
layers. The layers can also have hierarchical structure among themselves:

• Zone: Zone is any physical area that includes some networked components.
A zone might be a train (Trenitalia), building floor (IBM), or airport room
(Athens Airport). A zone may be hierarchically attached to a parent zone (e.g.,
a room in a building floor). A zone may have an associated CHARIOT Fog
Node. All the Fog nodes run the safety supervision engine separately to enable
fault tolerance.

• Gateway: Gateway is any computational node that has network connection
with one or more sensors. A gateway in CHARIOT can also be a fog node
with relatively more computational power. These fog nodes can store the par-
tial state of the IoT Setup.

• Sensor: A sensor is any networked component that can collect data. The
sensor can be simple or complicated. A sensor can be optionally part of a
gateway. This relation is optional since some sensors are complicated enough
to have direct connection.
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The three layers of elements can have hierarchical dependencies. For exam-
ple, a zone might have two gateways connected to multiple sensors. CHARIOT
uses an IoTL (Internet of Things Language – A domain-specific language devel-
oped for CHARIOT Project) to keep all these dependencies consistent across
various nodes in the industrial IoT setup. The dependencies are kept consis-
tent on any node that is keeping the state of the industrial IoT Setup. In addi-
tion, using IoTL, one can easily define custom types and hierarchies for custom
scenarios.

IoTL is a language for communicating the state of the system. Its grammar is
created using ANTLR, and a Python 3 parser is generated by ANTLR. IoTL is used
to share and track the topology of an IoT setup across different components. This
language enables communicating safety-related actions and state changes between
multiple nodes of a system. The core specs of the IoTL are listed as follows:

1. Definitions: We use zone, gateway, and sensor as the key elements of an
IoT network. A zone is an enclosed area in an industrial IoT setup which
might have multiple zones, gateways, and sensors. Gateway is another core
unit which might be running CHARIOT safety engine if it is Linux enabled.
It controls the traffic of multiple sensors. A zone can be associated with a Fog
node.

2. Relations: A relation is defined between two components in the system. The
types of allowed relations are listed as follows:

(a) Dependency: A dependency is between a master and slave component
and denotes that the slave component is part of or controlled by the mas-
ter component. When the system state is synced to a local component,
the state associated with all the dependent components is shared too. For
example, several gateways might exist in a zone or several zones might
have a master zone.

(b) Correlation: Correlation can exist only between sensor components.
Violation of a correlation creates an abnormal state on the system. For
example, a certain level of correlation can be enforced for temperature
sensors in a room. If this policy is violated, the system may trigger fault
sensor alert on the CHARIOT Platform.

(c) Equality: Equality is equal recordings by two sensors at the same time
stamp.

(d) Delayed condition: Delayed condition is a condition applied within a
time interval. For example, the presence of sensor in a corridor might be
equal with a certain delay.
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3. Enforcements: Enforcements are plugged machine learning models and
policies defined for the Industrial IoT environment. A violation of an
enforcement is classified as an alert by the alert manager.

4. Alerts: Alerts are next actions after an anomalous condition in the system.

The CHARIOT Safety Supervision Engine can run on multiple nodes within
a distributed IoT deployment as seen in Figure 6.2. The nodes are associated with
zones in the safety supervision model. In a deployment, more than one node can
be deployed. Deployment of the same runtime on multiple instances ensures the
system availability even when the network is partitioned during a safety hazard. The
zone hierarchy is the same as the zone hierarchy in this setup. The safety supervision
engine is a web application that provides a REST-APIs and connectors for live
data streams. All the Safety Supervision Engine functionality is written on Python
Ecosystem and using open source Python libraries. Flask framework was chosen
due to its compactness, popularity, and easy integrability with machine learning
functionality written in Python Language.

The CHARIOT Safety Supervision Engine can run on multiple networked
nodes in complicated IoT deployments. In this case, multiple fog nodes can be
associated with different zones. Based on the hierarchy and the dependencies, each
fog node can observe only associated parts of the system, and they synchronize
periodically to keep the state of the system consistent across the nodes. Every change

Figure 6.2. Safety supervision node example.
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Figure 6.3. A simple example of global and local state in the safety supervision engine.

is hierarchically synchronized across all the computation nodes across the Fog Net-
work using the commands API with the “!sync” command. The high-level repre-
sentation of the nodes can be seen in Figure 6.2. The communication across the
safety supervision platform instances is carried out. In the current living lab envi-
ronments, only one Fog node exists for purposes of the CHARIOT proof of concept
and industrial cases.

The dependency relation across zones is kept within the state of the IoT Deploy-
ment. In the case of synchronization across different fog nodes, only state relevant
to one or more dependent component is shared with a fog node. For example, if
there is no relevant change in the state for one fog node, the state is not updated to
conserve resources. In Figure 6.3, we provide a simple example for this state shar-
ing mechanism. In this simple scenario, the global view has a bunch of gateways
associated with a single zone in an IoT deployment. The state relevant to the gate-
way named pi1 is kept by the fog node associated with that gateway. In the case of a
state change, only the relevant portions to the element are shared. By definition, the
global state associated with the root zone “designstudio” is associated with all the
elements in the IoT deployment, so it receives all the updates. On the contrary, the
fog node associated with pi1 only receives if a portion of the deployment relevant
to it has been updated.

6.2 The CHARIOT Privacy Engine

“Privacy” has been a fundamental issue since the early days of computing, especially
IoT. IoT is becoming part of everyday living and everything is being shared over
internet—photos, videos, health measurements, gaming records, etc—privacy IS
the area of matter of worry. In IoT, privacy has different scenario as compared to
others as mode of data collection, mining, and provisioning is different. Technically,
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data can be collected in such a manner that it may make difficult to interpret and
realize that personal data are ready to be compromised. Privacy of individuals in
IoT is a serious compromise factor. Within CHARIOT, privacy is given special
attention by ensuring that the system has control over:

• Data being collected by individual sensors should enter the system if only the
sensor is known and registered in the topology.

• If data are from a known sensor, data encryption must be applied using a
public key stored in a blockchain PKI.

So, “Promoting Privacy and Data Protection principles remains paramount to
ensure acceptance of IoT Services.”

6.2.1 IoTL Language Extension—Access Control

The CHARIOT’s IoTL was extended to include Access Control constructs that
provide declarative access control over the elements of the CHARIOT Network.

The Access Control IoTL extension introduces the following definitions:

1. Principal: Defines the person or entity that has listened on CHARIOT for
new messages. A principal example is an Industrial System Gateway.

2. Resource: Defines the things that the ACL rule applies to. Some examples
are the Sensors, Logs, or the alerts.

3. Operation: Identifies the action that the rule governs. CHARIOT supports
only READ.

4. Guard: Is the responsible service to apply ACL rules, for us the Privacy
Engine.

5. Action: Identifies the action of the rule. It must be one of: ALLOW, DENY.

An indicative application example of access control for CHARIOT follows
below:

The example (Figure 6.4) of an IoT network includes five sensors, a gateway and
two external services. All the sensors are connected to the gateway and the external
services are expecting data from sensors through the gateway. To define a public
key, we must add two properties in a json parameter of the entity definition; these
properties are pubkey and type. Pubkey is the public key data at any valid format
and type is which encryption scheme is used by the service (Figure 6.5).

After all services, gateway, and sensor are defined, we can add the rules to allow
communication between sensor and service. As seen in Figure 6.6, we allow BMS
to get observations from S2 but we forbid it to get observations from S1.
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Figure 6.4. Sample network design.

Figure 6.5. Define and external service and its public key.

Figure 6.6. Rule to REVOKE or GRANT privileges to BMS.

In this network, Room 2 must be protected by every unauthorized access, and
each data leaving this room must be tracked. In this case, the Privacy Engine is
expected to raise an alert for the administrator. We define this by using again the
parameter statement of the IoTL. Sensor sensitivity declarations can be seen in
Figure 6.7.

The components of the Privacy Engine (Figure 6.8) have been included below:

• Listener
Listener is a component waiting for any sensor measurement—data in ana-
logue or digital format, within the IoT system.
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Figure 6.7. Example of how we can define sensitive sensor.

Figure 6.8. Privacy engine components.

• Topology Synchronization
This component is responsible to keep information describing new sen-
sors topology within the IoT system and any update in sensor description
(location, sensitivity, etc.). Also, all valid recipients should be registered in
this component.

• Inspector
Inspector is the component responsible to raise an Alert Flag every time a
message is generated by a “Sensitive” labeled sensor, in order all actors within
the IoT Network to be aware of that type of sensors. To achieve this, the
network administrator should label a sensor as “Sensitive” so as to prevent a
privacy information violation.

• Blockchain PKI client
This component assures verification of the Public Key used by the recipient.
If there is a breach, an alert will be raised.

• Alert Generator
Alert Generator, if triggered, will generate an alert and will also keep record
of all alerts.

• Filter
CHARIOT Admin should define the Access List Controls with IoTL in order
to guard user data. Filtering rule (Figures 6.9) will effectively avoid leakage of
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Figure 6.9. How topology-related filtering rules are applied.

Figure 6.10. How cipher filtering rules are applied.

sensitive data to unauthorized users. Public-Key Encryption and Access Con-
trol List are used to achieve this. On the following flowchart (Figure 6.10),
the process of public-key encryption of message payload is shown.

• Northbound Dispatcher client
This component will propagate the final data package to the IoT network.

6.3 The CHARIOT Security Engine

In today’s context, smart devices belonging to the Internet of Things ecosystem (IoT
ecosystem) are increasingly present. However, the technology companies producing
these evolved systems tend to underestimate the potential risks to which they are
exposed to, since the latter are connected almost continuously to the internet. The
greatest danger is caused by superficial behavior conducted by the manufacturers
themselves who are oriented to release the firmware updates with an excessively low
frequency and sometimes, fortunately only in extreme cases so far, the updates are
not released at all. This superficial behavior allows hackers to take advantage of a
vast amount of potentially vulnerable devices.
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The firmware, an expression comprised of the terms firm (stable) and ware (com-
ponent), is a program present within each electronic component that performs a
critical task. Its fundamental role is to start the function of the same component
allowing it to communicate with further integrals or cards present in the device
in which they are installed. This determines the importance for releasing firmware
updates; otherwise, an IoT device that has not been updated since its purchase can
become dangerous for the consumer when cybercriminals discover a vulnerability
of the system. This usually occurs when a device manufacturer decides to allocate
its internal resources to the production of a new product to be introduced to the
market, instead of the development and release of updated firmware versions for
existing products. Consequently, the most significant risk for the consumer is find-
ing obsolete and potentially dangerous security hardware.

Failure to update the software should not always be attributed to the manufac-
turer; the end user plays an active and harmful role. Quite often, due to personal
inexperience or lack of knowledge for the “smart” product, the consumer does not
check for updates and does not install the firmware versions released and recom-
mended by the manufacturer. To overcome this particular situation and reduce the
security risks related to the exposing the security of the software platforms, the most
advanced devices, including computers, are programmed to perform automatic
updates without the need of any customer intervention. Unfortunately, updating
and protecting the security features of the systems belonging to the Internet of
Things is not, and will not be, trivial to the implementation of the proposed solu-
tions of this project.

To achieve a high-level security for IoT devices, it is necessary to introduce a
shared standard that can guarantee a common methodology for the design and
development of the device, but above all, issues that are related to the updates.

6.3.1 Up-to-date Firmware

Once the system operative life is started, an important countermeasure to mitigate
firmware tampering risk is keeping it always up to date to the latest manufacturer
version. Firmware patch management for all the system and its critical infrastruc-
ture should be part of Standard Operative Procedures (SOP).

One problem of this countermeasure is that many firmware manufacturers do
not release firmware patching often or do not release patches at all. System manu-
facturers should guarantee device firmware maintenance and updates for the entire
system, assuring fast patching of potential vulnerabilities. There should be a con-
tinuous in-house firmware testing and verification for ensuring the absence of bugs;
every manufacturer should guarantee this provision for at least the entire proposed
guaranteed lifespan of the device.
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On the other hand, however, updates can lead to vulnerability (vulnerable sur-
faces), potentially exploitable leaving a strong attack vector.

6.3.2 Firmware Threats and Exploitations

To understand how we can be protected from firmware tampering, we first have to
understand all the ways a potential attacker has to compromise the integrity of a
firmware platform.

The most insidious way to perpetuate an attack is by firmware image exploita-
tion. Modern devices’ OSes have the possibility to rewrite the platform firmware
live; an attacker can modify the firmware image during its presence on the manu-
facturer device, during its download, or the writing process to the chip, for example,
taking advantage of a machine with a compromised OS.

Regardless of the chosen exploitation vector, once reading/writing possibility of
the firmware chip content is gained, an attacker can:

• Reverse-engineer the entire firmware, extract the file system, and understand
how the entire device works, including knowing the possible use of known-
to-be-vulnerable out-of-date API/libraries or unknown exploitable vulnera-
bilities in the firmware code itself;

• Insert a firmware backdoor, making the device covertly connected to a mali-
cious Command & Control server;

• Change the device behavior, altering its performance, without altering the
telemetry values reported to administrators;

• Find hard-coded private symmetric-cryptography keys/passwords/usernames
or private certificates used to encrypt communications between the device
and other systems; the attacker may be able to eavesdrop these private com-
munications;

• Roll back the firmware to a previous legitimate version with known vulner-
abilities he/she wants to exploit; this attack is particularly insidious because
the pushed firmware is authentic, so it can easily survive most of the in-place
controls, as usually they tend to check just the firmware source and/or the
firmware integrity.

6.4 IPSE Dashboard and User Interfacing

In parallel with the above CHARIOT IPSE components, CHARIOT develops the
Cognitive System and related methodology as the accompanying supervision, ana-
lytics, and prediction models, enabling high security and integrity of Industrial
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IoT devices and systems. This includes the development of the intelligent behav-
ior of the CHARIOT platform to enable IoT critical systems’ secure interaction.
In this direction, a web-of-things environment is being developed interacting with
heterogeneous IoT devices and systems. This includes the development of the
suitable interfaces for the topological and functional behavior models for the IoT
system devices (components) as well as additional safety and privacy structures
that communicate through open APIs and include security services employing
Blockchain, IoT security profiles, and fog services.

This module will be mainly used to predict and avoid potentially endangering
behavior in the IoT system that is now handled in an optimized way in cooperation
with safety critical systems and run-time environments of the IoT system itself.
This is using the existing IoT platform (IBM’s Watson IoT) to demonstrate the
CHARIOT innovative concept and capability and support integration with other
safety, privacy, and machine-learning cloud services via relevant open APIs, thus
supporting third-party integration and innovation.

At the same time, a security, privacy, and safety awareness configurable dashboard
is being developed in order to remotely monitor in near real time the various IoT
gateways and sensors in the CHARIOT IoT network. This will be the actual end-
user interface to the CHARIOT solution and platform. The dashboard has been
designed as part of the entire IPSE implementation and will also be used for both
understanding of the IoT ecosystem topology as well as for the post data analytical
purposes to assist in the refinement and improvements of PSS policies.

This advanced intelligence web-based dashboard utilizes the latest state-of-the-
art web technologies in order to deliver rich content information to the LL users and
achieve cross-browser and multi-device compatibility. The web development has
been performed using the .NET Core framework and with the utilization of user
interface implementation technologies like HTML, CSS, and JavaScript. More-
over, support on publish-subscribe-based messaging protocols as well as REST-API
have also been utilized. Further to that, the dashboard follows rules regarding user
friendliness, responsiveness, and configurability as web solution, based on the LLs
needs. The Dashboard supports various components that are expected to support
and enhance the user experience as well as the actual system operation and configu-
ration such as interactive widgets, customizable entries, multiple components, data
filtering, gauss controls and fusion charts, map, and top view visualization controls,
etc. The following Figure presents a snapshot of this Dashboard for monitoring the
devices in a train wagon.

As presented in the following (Figure 6.11), via the IPSE dashboard, the status of
the IPSE Engines and fog node services can also be monitored. “Health visibility”
(Figure 6.12) is a service which is checking the “live” status of each CHARIOT
component in a graphical way.
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Figure 6.11. IPSE dashboard—train wagon sensors visibility.

Figure 6.12. IPSE components health visibility.

Moreover, via IPSE dashboard, the end user is able to perform administrative
and management activities related to:

• Sensor management, by securely adding or removing sensors on an existing
industrial IoT topology.

• Firmware management, by securely updating the firmware of a sensor or
a gateway and monitoring all checkpoints during this update process (via a
workflow diagram) as presented in the following (Figure 6.13).
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Figure 6.13. Firmware update and process visibility via the dashboard.

6.5 Conclusions and Future Work

Each engine of the CHARIOT IPSE provides several new innovations over the
state-of-the-art in industrial IoT. Distributed safety supervision introduced by
the safety supervision engine ensures fault-tolerant operation of the cognitive
safety assurance components such as anomaly detectors and other online machine
learning-based models. The relevant state is shared across multiple components in
the Fog network to enable edge cloud orchestration by using the domain-specific
language developed for IPSE. Having multiple active computation nodes in the
industrial IoT network enables fault tolerance during safety hazards against partial
network outages.

The Privacy engine ensures data privacy through encrypting data at the source,
namely at the southbound dispatcher through a PKI supported by CHARIOT
blockchain infrastructure. For industrial IoT setups with multiple contractors, our
approach provides detailed privacy policies for every sensor data stream. On top of
that, through the privacy-related constructs in the domain-specific language, pri-
vacy policies can be enforced even during partial network outage. Using CHARIOT
Blockchain solution for handling PKI provides secure encryption for the multiple
data streams handled by CHARIOT.

Finally, the security engine applies machine learning to identify security prob-
lems in possible firmware updates dynamically, and the signed firmware updates
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are distributed across the industrial IoT setup. Deployment of the integrated IPSE
provides CHARIOT living labs the capability of addressing their business-critical
problems related to safety supervision, security, and privacy.
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Chapter 7

Pattern-driven Security, Privacy,
Dependability and Interoperability in IoT
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Manolis Michalodimitrakis and Sotiris Ioannidis

This chapter presents the development of a pattern-driven approach for guarantee-
ing Security, Privacy, Dependability and Interoperability (SPDI) properties in the
IoT domain. The chapter details how SPDI patterns can be introduced to guaran-
tee multi-layer end-to-end properties, and how the enforcement of the patterns can
help and satisfy the requirements for network dependability guarantees. Moreover,
it briefly evaluates the presented approach and thus demonstrates how the appli-
cation of patterns offers a solution to semantic interoperability challenges in IoT
environments.

7.1 Introduction

While the fifth generation (5G) of mobile communications is already dawning
upon us, the next steps in their evolution will be key in supporting this soci-
etal transformation, while also leading to a fourth industrial revolution that will
impact multiple sectors. Next-generation networks, such as the Internet of Things
(IoT), aim to create open and global networks for connecting smart objects, net-
work elements, applications, web services, and end users. Research and industry
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attempt to integrate this evolving technology and the exponential growth of IoT
by overcoming significant hurdles such as dynamicity, scalability, heterogeneity,
and end-to-end security and privacy. The introduction of digital technologies in
economic and societal processes is key to addressing economic and societal chal-
lenges such as aging of population, ensuring societal cohesion, and sustainable
development. IoT appears to be an important pillar of 5G. Global networks like
IoT create enormous potential for new generations of IoT applications, by leverag-
ing synergies arising through the convergence of consumer, business, and industrial
internet, and creating open, global networks connecting people, data, and things.
A series of innovations across the IoT landscape have converged to make IoT prod-
ucts, platforms, and devices technically and economically feasible. However, despite
these advances, significant business and technical hurdles must be overcome before
the IoT’s potential can be realized.

Some important challenges and complexities include:

• Sustaining massively generated, ever-increasing, network traffic with hetero-
geneous requirements

• Adaptation of communication technologies for resource-constrained virtual-
ized environments

• Provision of networking infrastructures featuring end-to-end connectivity,
security, and resource self-configuration

• Trusted information sharing between tenants and host systems.

Overcoming these challenges requires the implementation and deployment stack
of IoT applications. The overall aim of SEMIoTICS1 proposes the development of
a pattern-driven framework [1, 2], built upon existing IoT platforms, to enable and
guarantee secure and dependable actuation and semi-autonomic behavior in IoT
and Industrial Internet of Things (IIoT) applications. The SEMIoTICS frame-
work supports cross-layer intelligent dynamic adaptation, including heterogeneous
smart objects, networks, and clouds. To address the complexity and scalability needs
within horizontal and vertical domains, SEMIoTICS develops and integrates smart
programmable networking and semantic interoperability mechanisms.

The SEMIoTICS architectural framework (Figure 7.1) has been envisaged and
developed for efficient interconnectivity of smart objects. Each layer contains spe-
cific developed modules able to handle different aspects and guarantee different
properties. More specifically, Software Defined Networking (SDN) Orchestration
layer provides data and control plane decoupling resulting in a cloud computing

1. SEMIoTICS: Smart End-to-end Massive IoT Interoperability, Connectivity and Security: http://www.
semiotics-project.eu

http://www.semiotics-project.eu
http://www.semiotics-project.eu
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Figure 7.1. SEMIoTICS envisaged and developed architecture.

approach that facilitates network management and enables programmatically effi-
cient network configuration meeting different IoT application requirements related
to security, bandwidth, latency, and energy efficiency, using semantic information.
Network Function Virtualization (NFV) Orchestration layer provides a flexible,
programmable, dynamic, and scalable networking paradigm, making it ideal for
satisfying the Quality of Service (QoS) demands of SEMIoTICS use cases. Field
layer is responsible for hosting all types of IoT devices such as sensors and actua-
tors as well as IoT gateway, which provides common way for communication and
ensures enforcement of SPDI patterns in this layer. Finally, Application Orchestra-
tion layer consists of all applications receiving the communication from field layer.

This chapter is organized as follows: Section 7.2 presents the IoT challenges
and the background of security, privacy, dependability and interoperability (SPDI)-
related issues. The main concept and the key building blocks of the proposed
pattern-driven IoT service orchestration solution are detailed in Section 7.3. Sec-
tion 7.4 provides a glimpse on the proposed SPDI patterns. Finally, Section 7.5
features the concluding remarks and pointers to future work.

7.2 Background and Challenges

The background of the SPDI properties and the necessity for the usage of pat-
terns to drive the fulfillment of the end users’ goals in the directions of security,
privacy, dependability and interoperability for the IoT are provided in this section.
Furthermore, the IoT challenges stemming from each of the four domains are also
briefly mentioned in order to highlight that being able to address them system-wide
and in a by-design-fashion is of paramount importance in industrial or larger IoT
environments.
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7.2.1 IoT Security

Smart objects, IoT applications, and their enabling platforms are often vulnerable
to security attacks and changing operating and context conditions that can compro-
mise their security [3]. This is exacerbated by the fact that they typically generate,
make use of, and inter-relate massive personal data in ways that can potentially
breach legal and privacy requirements. Preserving security and privacy properties
remains a particularly challenging problem, due to the difficulty of: (a) analyzing
vulnerabilities in the complex end-to-end compositions of heterogeneous smart
objects; (b) selecting appropriate controls for smart objects with heterogeneous
resources/constraints (e.g., different schemes for ID and key management, differ-
ent encryption mechanisms); and (c) preserving end-to-end security and privacy
under dynamic changes in IoT applications and security incidents, in the context
of the ever-evolving IoT threat landscape [4]. In this context, basic security tasks
such as mutual authentication, encryption, and data integrity remain challenging
in IoT, with a variety of lightweight solutions proposed [5]. Confidentiality and
integrity protection mechanisms also require strong authentication and authoriza-
tion mechanisms. Existing solutions requiring user involvement [6] or certificates
[7] lack scalability and support for dynamic IIoT networks. Security and privacy at
the IoT back-end, e.g., the cloud and centralized servers, requires distribution of
data and processing, which necessitates the use of new distributed and/or collabo-
rative paradigms of cloud computing [8]. To ensure that the most sensitive private
data remain secure from source to end user and only accessible to authorized enti-
ties, one of the solutions is to encrypt data based on policies for access control,
in addition to using secure communication channels. Thus, specific research areas
such as Attribute-based Encryption (ABE) need to be improved in order to make
them more efficient and scalable [9].

7.2.2 Privacy Invasion

With an increased consumer awareness by privacy invasions on general media or
on industrial IoT applications, the need for privacy protection becomes immanent.
From a business perspective, the problem of privacy comes framed as the problem
to protect companies trade secrets. Additionally, privacy legislation can be a major
concern in certain markets more than in others. Lately, the legal concerns have
been fueled by heightened fines for privacy violations introduced in data protection
laws, especially Europe’s GDPR [10, 11]. The GDPR [10] requires among other
things that personal data may be gathered only for a precisely specified purpose. It
also requires to minimize the amount of collected data [12] and the data subject.
Moreover, the individual person who’s personal data are handled needs to give their
informed consent a priori to the data gathering and must be able to intervene.
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Further to being a legal or business challenge, privacy could also be seen as a human
right in either way privacy matters in the IoT domain and as such we discuss some
privacy challenges which have to be taken care of at the architectural level:

• Handle IoT devices as first-class citizens: Unsuspicious information com-
municated within the IoT could too easily be used by attackers to extract
companies trade secrets or infringe the human right to protect personal infor-
mation. Privacy requires to tackle the privacy problems already at the field
level, i.e., already deploy sensors and actuators which are capable of tackling
privacy problems [13]. As a minimum step, this requires to protect confiden-
tiality of any data that is communicated, i.e., by encrypting traffic [14].

• Minimize transferred data: Data minimization can be achieved in many
ways, by simple aggregation of data, but SEMIoTICS is even smarter and
performs intelligent analytics locally [15].

• Provision of privacy enhancing mechanisms and services Required to
implement in practical IoT deployments the technological advances that
allow to provide data with certain quality guarantees while still containing
less private information [16–18].

• Specify privacy requirements: A device that is communicating might leak,
i.e., even encrypted traffic may still be vulnerable to being analyzed for length
of packets, frequency of communication, and other observable communi-
cation meta-data. Thus, achieving unobservability of communication [19]
would be the highest goal for IoT privacy [20]. To achieve privacy holisti-
cally and deploy the right mechanisms correctly, privacy must become part
of the engineering framework [21].

• Monitor potential privacy breaches: The patterns approach allows to
address and specify privacy requirements. But, the potential of design pat-
terns for privacy goes beyond a single policy language cause; they allow com-
munication between different actors in different domains. Finally, they are
ideal for enabling information privacy into information systems [22].

The latter mentioned challenge of monitoring allows the data subject to exercise
some form of oversight, which adds to the transparency of the data processing.

7.2.3 Network Dependability

Dependability is the ability of a system to deliver its intended level of service to
its users [23]. The main attributes which constitute dependability are reliability,
availability, safety, and maintainability. Dependable systems impose the necessity
to provide higher fault and intrusion tolerance. The satisfaction of these attributes
can avoid threats such as faults, errors, and failures offering fault prevention; fault
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tolerance; and fault detection. More specifically, dependability in SEMIoTICS is
focused on three major attributes such as reliability, availability, and fault tolerance
as follows:

• Reliability is the ability of a system to perform a required function under
stated conditions for a specified period of time [24]. It is an attribute of sys-
tem dependability, and it is also correlated with availability. For hardware
components, the property is usually provided by the manufacturer. This is
calculated based on the complexity and the age of the component. Reliability
can be classified into two main categories: the deterministic models and the
probabilistic ones.

• Availability guarantees that information is available when it is needed [24].
The lack of availability in network transmissions has a severe influence on
both the security and the dependability of network. More specifically, net-
work availability is the ability of a system to be operational and accessible
when required for use. Moreover, availability in networks is the probability
of successful packet reception [25]. Other factors which affect the availabil-
ity of a link are the transmission range of the signal strength, noise, fading
effects, interference, modulation method, and frequency.

• Fault Tolerance is the ability of a system or component to continue nor-
mal operation despite the presence of hardware or software faults [24]. Net-
work fault tolerance appears to be a critical topic for research [26]. The most
common solutions to guarantee fault tolerance and avoid single point of fail-
ure include the replication of paths forwarding traffic in parallel, the use of
redundant paths, and the ability to switch in case of failure (failover) and traf-
fic diversity. Fault tolerance mechanisms exist in all layers of field, network,
and back-end/cloud. In the field layer, failures involve the drop of sensors
or actuators and the gateways. More specifically, fault tolerance in network
architectures requires the design of a network able to guarantee avoidance of
single or multiple link failures, faulty end hosts and switches, or attacks. The
key technical solution of the problem includes the creation of a fault toler-
ance mechanism to provide open-flexible design where existing fault tolerance
solutions are not effective.

Dependability analysis of an IoT system includes whether non-functional
requirements such as availability, reliability, safety, and maintainability are pre-
served. The conditions depend on the respective dependability property that the
system guarantee. The satisfiability of a property can be defined by a Boolean value
(i.e., true, false), an arithmetic measure (i.e., delay), or probability measure (i.e.,
reliability/uptime availability).
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7.2.4 IoT Interoperability

Interoperability gives an ability to a system or a product to connect and work with
other systems or products. Interoperability is defined as a characteristic of a product
or system, whose interfaces are completely understood, to work with other products or
systems, present or future, in either implementation or access, without any restrictions
[27]. The following types of interoperability can be distinguished and are covered
in SEMIoTICS [28]:

• Technological interoperability enables seamless operation and cooperation
on heterogeneous devices that utilize different communication protocols.
Technological interoperability still remains a significant barrier in IoT set-
tings as up to 60% of the overall potential value is currently locked due to
lack of compatible solutions [29].

• Syntactic interoperability can establish clearly defined formats for data,
interfaces, and encoding. In terms of syntactic interoperability, IoT vendors
typically claim to utilize standardized and widely used technologies and plat-
forms in order to increase the acceptance of their products. Nevertheless, the
variety of common choices, such as the Constrained Application Protocol
(CoAP), eXtensible Messaging and Presence Protocol (XMPP), Advanced
Message Queuing Protocol (AMQP), MQ Telemetry Transport (MQTT),
Devices Profile for Web Services (DPWS), and Universal Plug and Play
(UPnP), leads to a fragmented landscape [30]. Mechanisms for resolving this
issue include gateway proxies for the messaging protocols [31], but again their
presence cannot be assumed in all environments and their introduction leads
to increased complexity in interactions and additional costs.

• Semantic interoperability settles commonly agreed information models
and ontologies for the used terms that are processed by the interfaces or
are included in exchanged data. It is materialized by including informa-
tion regarding the data (metadata) and linking each element to a commonly
shared vocabulary. As IoT integrates an extremely large amount of heteroge-
neous entities, these entities need to be consistently and formally represented
and managed. The Open Geospatial Consortium (OGC) [32] and Semantic
Web Activity of the World Wide Web Consortium (W3C) [33] help provide
enhanced descriptions and meaning to sensor data. Several semantic frame-
works like Semantic Sensor Network (SSN) ontology [34] and IoT-Lite [35]
have been proposed in the international literature. One of the main concerns
leading to poor adoption of IoT semantic descriptions is that semantic tech-
niques increase the complexity and processing time, and therefore, they are
unsuitable for dynamic and responsive environments such as the IoT.
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• Organizational interoperability cross-domain service integration and
orchestration through common semantic and programming interfaces. The
common interpretation of semantic information in a globally shared ontology
could be useful in enabling cross-domain and cross-organization interac-
tions. However, this is not always the case. Although several local sys-
tems may utilize popular or standardized ontologies, eventually they extend
them and establish their own semantics and interfaces. The use of Seman-
tic Information Broker (SIBs) is proposed the literature [36], while other
approaches focus on providing common and generic Application Program-
ming Interfaces (APIs) between the different IoT middleware platforms,
towards a marketplace of applications and services (e.g., BIG IoT [37]
project).

7.2.5 Achieving Security, Privacy, Dependability
and Interoperability by Design

Research and industry communities alike stress the need to adopt a by design
approach as the most effective means of addressing the above challenges, i.e., con-
sidering these early from the design phase. In this context, the pattern-driven
approach of SEMIoTICS follows the security-by-design concept, which aims to guar-
antee system-wide security properties by virtue of the design of the involved systems
and their subsystems. This is leveraged to provide orchestration-level SPDI guaran-
tees, while encompassing all involved components and entities which are composed
to create the orchestrations (e.g., physical devices and software). A key capability
required in security-by-design is the ability to verify the desired security properties
as part of the design process. A typical way to achieve this is using model-based
techniques [38–40], whereby software component and service compositions are
modeled using formal languages, and the required security properties are expressed
as properties on the model [41]. The satisfiability of the required properties is based
on model checking [42, 43]. Other approaches focus on software service workflows
using business process modeling languages (e.g., Sec-MoSC [44]). Pino et al. [45]
use Secure Service Orchestration (SSO) patterns to support the design of service
workflows with required security properties, leveraging pattern-based analysis to
verify security properties. This avoids full model checking that is computation-
ally expensive and non-scalable to larger systems, such as the IoT. Moreover, some
model-based approaches (e.g., [45]) support the transformation of security require-
ments to code for automated checking of the required properties, both at design
and at run time.

The SEMIoTICS pattern-driven framework’s operation is inspired by the many
works that have successfully used design patterns as a mean to communicate across
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different stakeholder domains and to reuse proven solutions for problems which
occur over and over again. The initial works date back to the 1977 book “A Pat-
tern Language: Towns, Buildings, Construction” by Alexander et al. [46], where
the concept of reusable design solutions for architectural problems was intro-
duced. The pattern approach has ever since been successfully applied in other
domains, e.g., software design [47], security [48], privacy [49]. Here, SEMI-
oTICS, especially, builds upon ideas from similar pattern-based approaches used
in service-oriented systems [50, 51], cyber-physical systems [52], and networks
[53, 54], covering more aspects in addition to Security, and especially privacy
[55, 56] and also providing guarantees and verification capabilities that span both
the service orchestration and deployment perspectives, as detailed in Section 7.3
above.

7.3 SPDI Patterns

To enable the pattern-driven approach, it is necessary to develop a language for
specifying the components that constitute IoT applications along with their inter-
faces and interactions. In this context, the definition of the various functional and
non-functional properties of IoT components and their orchestrations is required
in the form of a model. The defined model appears in Figure 7.2 and is presented
in detail in [2]. A model with such characteristics effectively serves as a general
“architecture and workflow model” of the IoT application.

Figure 7.2. IoT orchestrations system model.
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7.3.1 Pattern Language

Once defined, this model is used to derive a language which will allow the defini-
tion of pattern rules and facts which, consequently, enable the reasoning required
for verifying SPDI and QoS properties in specific IoT applications and subse-
quently enable different types of adaptations. The derived language for defining
IoT application models adopts an orchestration-based approach. An orchestration
of activities may be of different types depending on the order in which the dif-
ferent activities involved in it must be executed (e.g., sequence, parallel, choice,
merge). Moreover, an orchestration involves orchestration activities. The imple-
mentation of an activity in an IoT application orchestration may be provided by
a software component, software service, network component, an IoT sensor, actu-
ator or gateway, as well as a sub-orchestration of IoT application activities of the
previous types. These types of IoT application activity implementers are grouped
under the general concept of a placeholder, which is accessible through a set of
interfaces.

Overall, this language: (i) provides constructs for expressing and encoding
dependencies between SPDI properties at the component and at the compo-
sition/orchestration level; (ii) is structural, without prescribing exactly how the
functions should be executed nor, e.g., how the ports ensure communication; (iii)
supports the static and dynamic verification of SPDI properties, and; (iv) can be
automatically processable by the SEMIoTICS framework so that IoT applications
can be adapted at run time.

Patterns expressed in the above-defined language enable the pattern-based IoT
application management process followed in SEMIoTICS, in which patterns are
used to: design IoT applications that satisfy required SPDI properties; verify that
existing IoT applications satisfy required SPDI properties at design time, prior to
the deployment of the application; and enable the adaptation of IoT applications
or partial orchestrations of components within them at run time in a manner that
guarantees the satisfaction of required SPDI properties.

To fulfill the above, SPDI patterns encode proven dependencies between
security, privacy, dependability and interoperability properties of individual
components of IoT applications and corresponding properties of orchestra-
tions of such components. More specifically, a pattern encodes relationships of
the form:

P1 ∧ P2 ∧ . . . ∧ Pn −→ Pn + 1 (7.1)

In the above, Pi (i= 1,…,n) are properties of individual components, and Pn+1
is a property of the orchestration of these components. The relation encoded by a
pattern is an entailment relation.
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The run-time adaptations that can be enabled by SPDI patterns may take three
forms: (a) to replace particular components of an orchestration; (b) to change the
structure of an orchestration; and (c) a combination of (a) and (b).

7.3.2 Machine-processable Pattern Encoding

An important requirement for implementing the SPDI pattern-driven manage-
ment and adaptation of the IoT infrastructure is to support the automated pro-
cessing of developed patterns. To achieve this, the SPDI patterns can be expressed
as Drools [57] business production rules, and the associated rule engine, by applying
and extending the Rete algorithm [58]. The latter is an efficient pattern-matching
algorithm known to scale well for large numbers of rules and datasets of facts, thus
allowing for an efficient implementation of the pattern-based reasoning process.
A Drools production rule has the following generic structure:

rule name
<attributes>*
when <conditional element>*
then <action>*
end

7.3.3 Reasoning Components

Pattern-related components are present in all layers of the SEMIoTICS framework
(Figure 7.3), in line and towards realizing the SEMIoTICS vision of embedded
intelligence across all layers of the IoT deployment.

In more detail, these components are:

• Pattern Orchestrator: Module featuring an underlying semantic reasoner able
to understand IoT Orchestrations and workflows, as received from the Recipe
Cooker module, and transform them into composition structures (orchestra-
tions) to be used by architectural patterns to guarantee the required prop-
erties. The Pattern Orchestrator is then responsible to pass said patterns to
the corresponding Pattern Engine (as defined in the back-end, network and
field layers), selecting for each of them the subset of these that refer to compo-
nents under their control (e.g. passing network-specific patterns to the Pattern
Engine present in the SDN controller).

• Backend Pattern Engine: Features the pattern engine for the SEMIoTICS
back-end, along with associated subcomponents (knowledge base, reason-
ing engine). It is able reason on the SPDI properties of aspects pertaining
to the operation of the SEMIoTICS back-end. Moreover, at run time the
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Figure 7.3. Pattern reasoning engines at all layers of the SEMIoTICS architecture.

Backend Pattern Engine may receive fact updates from the individual Pattern
Engines present at the lower layers (Network & Field), allowing it to have an
up-to-date view of the SPDI state of said layers and the corresponding com-
ponents

• Network Pattern Engine: Integrated in the SDN controller to enable the capa-
bility to insert, modify, execute, and retract network-level patterns at design
or at run time. It is supported by the integration of all required dependencies
within the network controller, as well as the interfaces allowing entities that
interact with the controller to be managed based on SPDI patterns at design
and at run time.

• Field Layer Pattern Engine: Typically deployed on the IoT/IIoT gateway, able
to host design patterns as provided by the Pattern Orchestrator. Since the
compute capabilities of the gateway can be limited, the module is able to host
patterns in an executable form compared to the pattern rules as provided in
the other layers.
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7.4 Pattern Enforcement’s and Evaluation in SEMIoTICS
Use Cases

Patterns in SEMIoTICS framework are enforced to satisfy SPDI properties on
the different use cases. In the next subsections, a demonstrated scenario to enable
pattern-driven IoT orchestration to satisfy QoS requirements is presented. More-
over, the policy enforcement through the pattern engine to monitor privacy viola-
tions is provided. Finally, the service function chaining patterns are also described to
enable the classification and forward traffic through the respective security service
functions in the SEMIoTICS pattern framework.

7.4.1 Pattern-enabled IoT Orchestrations

A demonstration scenario that relies on the SEMIoTICS pattern-driven network
interface and its capabilities was designed and developed in industrial IoT environ-
ments and more specifically oil leakage detection in wind turbines through video
monitoring. The overarching aim of the scenario is to distribute a complex applica-
tion (composed of multiple tasks) to a network of IoT device and specify constraints
(through patterns) on the network orchestration. In this context, the developed sce-
nario leverages a user-friendly design and deployment of IoT orchestrations. The
two key research innovation of the scenario and associated demonstration relate to:
(1) True distribution of application flows over multiple devices and representing
the network perspective and (2) Automated enforcement of network orchestration
constraints by defining them as SEMIoTICS patterns.

In the above, other than the user-friendly, graphical interface and distributed
nature of defining the IoT orchestrations involved (including where/on which
devices parts of a flow are deployed), we also want to define SPDI and QoS between
these deployments. Focusing on the network aspects, while maintaining the high-
level abstractions needed for user-friendliness, a “Network Link” node enables
direct communication between distributed Node-RED instances. Said “Network
Link” node enables definition of QoS constraints (e.g., minimum bandwidth,
latency) and the whole orchestration specification (a “Recipe”) [59, 60], and the
QoS constraints are translated into the SEMIoTICS pattern language and sent
to Pattern Orchestrator [61, 62]. From the latter, the information is relayed to
the network (SDN) Pattern Engine. A high-level view of this process is shown in
Figure 7.4.

7.4.2 Security and Privacy Policy Enforcement Patterns

The main storyline is focused on a patient living in a smart home environment.
In this environment, the patient’s information is kept confidential by default;
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Figure 7.4. Pattern enforcement QoS [61].

Figure 7.5. Interaction security manager and pattern engine.

however, in the event of an emergency, e.g., a patient fall, this information needs
to be available to a selected set of authorized users, e.g., in this case medical per-
sonnel. The process, also depicted in Figure 7.5, includes a doctor’s initial request
to a service where the request is checked for validity by a policy enforcement point
(PEP). Asking a SEMIoTICS component called Security Manager is only needed if
the service would be exposed by the field level and after the synchronization and
evaluation of the Security Manager. Based on this information, the PEP will then
decide if the request or the response will be granted or not.

With respect to the scope of privacy, the SEMIoTICS Security Manager as
depicted in Figures 7.3 and 7.5 acts to ensure that the privacy properties imposed by
the pattern are technically enforced. In detail, this happens by enabling the interac-
tion of a Security Manager located in the back-end with the Pattern Engine through
the associated privacy pattern rule as depicted in Figure 7.5. The goal is that the
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Pattern Engine is able to check if the current policy used to make the decisions
inside the Backend Security Manager is conforming to the SPDI Patterns as speci-
fied by the application. The Pattern Engine thus periodically makes requests to the
Security Manager to obtain the necessary information to judge the quality of the
currently enforced policy. For example, to check that no one has access to a patient’s
location, it queries to obtain a list of entity that would be granted access. Based on
the response, the appropriate pattern rule expressing the SPDI pattern can reason
on the answers received from the Security Manager. For example, under normal
health conditions of all patients that response shall be an empty list. By reasoning
over the response, the Pattern Engine is able to identify if the policy being enforced
in SEMIoTICS is compliant with the privacy pattern; this is done without having
to check the actual technical enforcement (e.g., the access control policy as specified
in the PEP), but rather by checking its effectiveness; further, it is able to reflect this
to the outside via an API call that will allow other components to retrieve the SPDI
status.

7.4.3 Service Function Chaining and SPDI Patterns

E-health monitoring systems situated at homes can facilitate the monitoring of
patients’ activities and enable the remote provision of healthcare services. They
improve the quality of elder population well-being in a non-obtrusive way, allow-
ing greater independence, maintaining good health, preventing social isolation
for individuals, and delay their placement in institutions such as nursing homes
and hospitals. One of the scopes of SEMIoTICS is to provide security guarantees
through the traffic forwarding via different network security functions by applying
the Service Function Chaining (SFC). The main focus of scenario is to support
the traffic classification based on the predefined SFC for providing secure chains
to forward the different kind of traffic of this use case. SEMIoTICS framework
can be applied in order to support the SFC mechanism to guarantee security and
dependability based on the defined SPDI patterns instantiating the required (i)
Virtual Network Function (VNFs) and (ii) SFC for assuring the SPDI require-
ments. Traffic classification is based on the predefined SFC for providing secure
chains to forward the different kinds of traffic of this use case. The procedure of
instantiation and the identification of the respective SFCs and the VNFs based
on the patterns are depicted in the Figure 7.6. Considering the different types
of traffic reaching the back-end where the chaining of services will take place, a
variety of intricacies can be observed such as of low trust and low priority, low
bandwidth and latency, medium trust but high priority, medium trust and of low
priority, and finally high trust and high priority, as low latency and relatively high
bandwidth.
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Figure 7.6. Pattern enforcement service function chains.

The design of an efficient control flow mechanism is required to be used not
only to verify SFC and VNFs but also to instantiate them for assuring the SPDI
requirements based on the enforcement of the respective SPDI patterns. When an
SFC cannot be verified, the required VNFs are requested by the Virtual Infrastruc-
ture Manager (VIM) via NFV Orchestrator to identify them or to instantiate them
if they do not exist. The procedure of instantiation and the identification of the
respective SFCs and the VNFs based on the patterns are depicted in the Figure
7.6 including the following interactions with the components of the SEMIoTICS
architecture. Pattern Orchestrator forwards a specific chain request to the pattern
engine for forwarding the traffic between entities through a specific chain of func-
tions. Pattern engine forwards this request to the SFC manager which is located
in the SDN controller responding to the pattern engine whether the chain exist
or not. If the chain exists, then a respond of the chain satisfaction is returned to
the Pattern Orchestrator. If the chain does not exist, then a request is forwarded
to the VIM asking whether the service functions exist or not. If functions exist in
the VIM, then the chain can be instantiated in the SFC Manager and a respond of
the chain satisfaction is returned to the Pattern Orchestrator. If functions do not
exist in the VIM, then a function instantiation request is forwarded to the NFV
Orchestrator, which is responsible to instantiate them in the VIM. Then, the chain
can be instantiated in the SFC Manager, and a respond of the chain satisfaction is
returned to the Pattern Orchestrator. Based on the provided dynamic instantiation
of service chains and service functions through the pattern engine, the potentiality
within this use case can be increased and extended by the support of additional ser-
vice chains to enable traffic classification through different combinations of service
functions to guarantee different secure end-to-end traffic forwarding.
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7.5 Conclusion

This chapter presented a pattern-driven framework addressing the often very
diverse and complex and not well-scaling requirements of commercial, societal,
and industrial IoT applications. The work presented the SEMIoTICS frame-
work’s approach towards the development of patterns for orchestration of smart
objects and IoT platform enablers in IoT applications with guaranteed security,
privacy, dependability and interoperability properties. The definition of the pat-
tern language and its development was also presented. Moreover, the chapter show-
cased the usefulness of a pattern-driven approach by describing how it works to
increase the security, privacy, interoperability and dependability in very differ-
ent and specific application scenarios. With this approach, the very diverse and
system-spanning goals of even large-scale IoT deployments also for industrial IoT
can be defined and securely and reliably orchestrated to meet the required SPDI
properties.
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Chapter 8

Enabling Continuous Privacy Risk
Management in IoT Systems

By Victor Muntés-Mulero, Jacek Dominiak, Elena González
and David Sanchez-Charles

8.1 Introduction

The next-generation IoT systems need to perform distributed processing and coor-
dinated behavior across IoT, edge, and cloud infrastructures; manage the closed
loop from sensing to actuation: and cope with vast heterogeneity, scalability, and
dynamicity of IoT systems and their environments (Ferry et al., 2018). To unleash
the full potential of IoT, it is essential to facilitate the creation and operation of
trustworthy Smart IoT Systems or, for short, TSIS. TSIS typically operate in chang-
ing and often unpredictable environments. Thus, the ability of these systems to
continuously evolve and adapt to their new environment is essential to ensure and
increase their trustworthiness, quality, and user experience. Besides, by 2021, the
number of “connected things” will grow to 25 billion, according to Gartner.1 Thus,
processes that were formerly run by humans will be automated, making it much
more difficult to control data ownership, privacy, and regulatory compliance.

Yan et al. (2014) described the different dimensions of trust for IoT sys-
tems, concluding that risk management is essential to guarantee trustworthiness.

1. https://www.gartner.com/en/newsroom/press-releases/2018-11-07-gartner-identifies-top-10-strategic-iot-
technologies-and-trends
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Poor risk management together with a reactive strategy usually forces companies
to continuously re-factor application architectures to improve software quality
and security, incurring high re-implementation costs (Boehm and Turner, 2003).
In general, there is a lack of solutions to support continuous control of risks through
evidence collection. Companies have little control on actual effectiveness of the
mitigation actions defined during risk management processes. Besides, many com-
panies fill this gap by using manual procedures based on storing all the information
in spreadsheets, by departments and locally (Ahmad et al., 2012). This approach
rapidly turns inefficient as projects or teams grow.

In parallel, GDPR discusses data protection by design and by default, remarking
that it is essential to consider privacy from the beginning to address related issues
successfully. This is especially true in the IoT arena, where technologies are not
consolidated yet and mixing legal requirements with a deep technical understand-
ing is challenging. In particular, understanding privacy-related vulnerabilities and
including privacy considerations in a continuous risk management process is dif-
ficult. On the one hand, knowledge related to vulnerabilities connected to privacy
issues is not so commonplace. On the other hand, continuous evidence collec-
tion to support risk management is usually key, but most monitoring approaches
focus on collecting evidences from the TSIS infrastructure or technical architec-
tural components. However, privacy-related risks are usually detected by analyzing
functional descriptions of the system (Wuyts, 2015) (e.g., data flows). Connecting
this functional level with the components of the architecture that are being moni-
tored is not trivial. Recognizing the overlap between privacy and security is key to
determining when existing security risk models may be applied to address privacy
concerns (Brooks et al., 2017).

In this chapter, we establish the basis to create an Automated Vulnerability
Detector (AVD) for early detection of privacy issues. We also improve continu-
ous risk management in TSIS development by embedding privacy-related risks
explicitly through the combined use of models for both the architecture and the
data flow implemented on the components of the architecture. We present a new
approach that, through linking GeneSIS (Ferry et al., 2019) models and Data Flow
Diagrams (DFDs) (DeMarco, 1979), improves risk assessment process for privacy-
related risks. We achieve this by enabling the use of the information that is typically
collected from the infrastructure to control security, thanks to the link that LIND-
DUN (Wuyts, 2015) establishes between privacy and security threads in STRIDE
(Shostack, 2014).

This chapter is organized as follows. Section 8.2 provides an analysis of the
state of the art. Section 8.3 presents our methodology. Then, Section 8.4 describes
the basic steps to create an AVD taking LINDDUN as the baseline reference.
In Section 8.5, we describe the mapping between the architecture model and DFDs
as well as our risk model. Finally, in Section 8.6, we draw some conclusions.
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8.2 State of the Art

There exist quantitative risk methodologies and tools, like RiskWatch2 or ISRAM
(Karabacak and Sogukpinar, 2005) and qualitative risk methodologies such as
OCTAVE (Alberts and Dorofee, 2002), CORAS (Lund et al., 2010), or STRIDE
(Shostack, 2014). Traditional risk management methodologies focus on the assess-
ment of risks at a singular stage in time and do not address the challenge of man-
aging continuously evolving risk profiles.

Continuous change management in software development has been studied
from different perspectives. As an example, Fitzgerald and Stol (2017) proposed
a roadmap and agenda for continuous software engineering. In particular, there is
a growing interest on security and privacy, and this has motivated work on con-
tinuous security (Merkow and Raghavan, 2011), which was proposed to prioritize
security throughout the whole software development life cycle.

Previous work discussed risk management in complex and evolving environ-
ments. For instance, Omerovic (2016) and Gupta et al. (2015) propose manag-
ing risk related to accountability, assurance, agility, or financial aspects in multi-
cloud applications. Risks analysis is used to guide the selection of cloud service
providers. Shrivastava and Rathod (2017) present a risk management framework
for distributed agile development, studying risks related to software development
life cycle, project management, group awareness, etc. However, they focus on ana-
lyzing risk factors that represent a threat to the successful completion of a soft-
ware development project, rather than risk related to non-functional requirements
such as security or privacy. Aslam et al. (2017) performed a systematic literature
review on risks and control mechanisms for distributed software development.
Moran (2014) explicitly tackles issues related to risk management for agile software
development. Moran proposes a risk modified kanban board and user story map.
Finally, Muntés-Mulero et al. (2018) propose a framework to manage risks that
supports collaboration, agility, and continuous development. In the MUSA Risk
Assessment tool,3 in order to assess the risks in the different components of an appli-
cation, the tool asks users to choose among predefined threats that may potentially
affect each individual component. Once threats are selected, they are automatically
classified in the STRIDE security-oriented framework (Spoofing identity, Tamper-
ing, Repudiation, Information disclosure, Denial of service, and Elevation of privilege).
We take this tool as the baseline for the proposal presented in this chapter. Finally,
Khan et al. (2017) perform a DFD-based analysis of vulnerabilities and threads,
using STRIDE as a framework, in Cyber-physical Systems. Casola et al. (2019)

2. RiskWatch: https://www.riskwatch.com. Accessed: 2019-07-18

3. https://musa-project.eu/node/326

https://www.riskwatch.com
https://musa-project.eu/node/326
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propose an almost completely automated process for threat modeling and risk
assessment.

None of these contributions tackle the automatic detection of privacy-related
vulnerabilities or monitor privacy-related risks for continuous risk manage-
ment. In general, even for security, risks are not analyzed and monitored con-
tinuously, and historical data are not taken into account (Ahmad et al., 2012,
Baskerville et al., 2014). Besides, security risks are assessed based on speculation
rather than evidence (Shameli-Sendi et al., 2016, Webb et al., 2014). The inter-
action between analytics capabilities and Information Security Risk Management
(ISRM) capabilities can help organizations to perform continuous risk assessments
and enable evidence-based decision-making (Naseer et al., 2017).

In parallel, Article 25 in GDPR4 discusses data protection by design and by
default, underlining that considering privacy from the beginning is essential to
address privacy successfully. GDPR establishes binding data protection principles,
individuals’ rights, and legal obligations to ensure the protection of personal data
of EU citizens. However, legal measures need to come along with technical mea-
sures to protect privacy and personal data in practice. PDP4E H2020 project
(Martin and Kung, 2018) focuses on the importance to involve engineers in the
loop, for Privacy-by-design (PbD) to be viable.

GeneSIS Modeling Language

GeneSIS (Ferry et al., 2019), developed in the ENACT H2020 project (Ferry et al.,
2018), facilitates the development and continuous deployment of TSIS, allowing
decentralized processing across heterogeneous IoT, edge, and cloud infrastructures.
GeneSIS includes a domain-specific modeling language to model the architecture
of TSIS as well as the orchestration and deployment. GeneSIS modeling language
is an extension of ThingML (Fleurey and Morin, 2017). We will base our Risk
Management methodology in the GeneSIS domain-specific modeling.

LINDDUN

LINDDUN (Wuyts, 2015) is a threat modeling methodology to support risk ana-
lysts when addressing privacy risks affecting end users in an application. This
methodology provides some guidance to identify and categorize threats under a set
of general risks (Linkability, Identifiability, Non-repudiation, Detectability, Disclosure

4. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protec-
tion of natural persons with regard to the processing of personal data and on the free movement of such data,
and repealing Directive 95/46/EC (General Data Protection Regulation). Official Journal of the European
Union, L119:1–88, May 2016.
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of information, Unawareness, and Non-compliance). LINDDUN can be considered
the privacy-oriented alternative to the STRIDE framework. In fact, LINDDUN
threats are described in the so-called LINDDUN trees which are explicitly con-
nected to STRIDE threats trees (Shostack, 2014). We take this link between pri-
vacy and security as the baseline for our proposal in this chapter. The LIND-
DUN methodology requires to formalize the functionality of the system and
their dependencies with respect to personal data [i.e., the Data Flow Diagrams
(DeMarco, 1979)]. The notation of a DFD is based upon 4 distinct element types:
(i) an external entity (i.e., end users or third-party services that are external to the
system), (ii) a data flow (explains data propagation and dependencies between all
the functional components), (iii) a data store (i.e., a passive container of informa-
tion), and (iv) a process (i.e., a computation unit).

8.3 Model-based Continuous Risk Management
Methodology

In this section, we propose a methodology for risk management for the creation of
TSIS, and we indicate the actors involved in each of those steps. Our methodology
(see Figure 8.1) can be summarized in 6 steps:

• S1: TSIS Assets Definition: First, we edit or load DFDs representing the
functional description of the system. These DFDs are useful to manage risks

Figure 8.1. Proposed model-based risk management methodology. Roles: (O) Risk Man-

agement Owner; (P) Product Owner; (A) Architect; (V) Developer and (R) Risk Analyst.
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related to privacy as described by LINDDUN, although they were initially
used for security risk control (e.g., in STRIDE). Although DFDs and the
elements they consist of represent our primary assets in the risk management
process, our proposal entails the use of a second layer of supporting assets in
the form of TSIS architecture description. Therefore, in S1, GeneSIS Models
(or equivalent architectural models) are also traversed and components are
pre-loaded. This step also includes the definition of the vulnerabilities related
to assets. Use of the AVD defined later in this section would also be part of
this step.

• S2: Threats Identification: In this step, users identify threats that may affect
the components in the described system.

• S3: Risk Assessment: Risk assessment is composed of two different steps: risk
analysis, where risks are evaluated in terms of likelihood and consequence,
and risk evaluation, where risks are accepted, or they are classified as risks
that need to be mitigated.

• S4: Definition of Treatments: Mitigation actions are defined in the form of
treatments.

• S5: Residual Risk Assessment: Once the mitigation controls are defined,
the residual risks need to be reassessed. This involves again two steps: risk
analysis, where likelihood and consequence are updated after the application
of the control(s), and risk re-evaluation, where risks are analyzed again, and
they are classified as accepted or further mitigation actions required.

• S6: Treatment Implementation Control: Finally, we add a last step in the
methodology that goes beyond other previous methodologies. In particular,
it involves the monitoring of the effectiveness of the mitigation actions pro-
posed in the previous step. This step requires the connection to data collectors
or agents that collect evidences from a monitoring system in order to match
them to treatments and risks. Mapping of DFDs and architectural models
will be the key for this to be possible.

Note that this methodology is continuous in the sense that new evidence is con-
tinuously collected to challenge previous knowledge upon which risk-related deci-
sions were made in the past. While immediate triggering of mitigation actions is
not our main focus, conditional options based on the status of the system could
be included in S4 to strengthen the continuous approach. Also, the methodology
is particularly customized for TSIS, specifically in S1, where GeneSIS models are
used as the baseline, and S6, where evidences are collected to consider privacy-
related issues. However, the methodology can be easily adapted to other types of
systems and used generically.
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8.4 Automatic Vulnerability Detection

In order to facilitate an effective identification of privacy-related risks, it is impor-
tant to make it easy for users to detect those vulnerabilities that expose the system
to attacks that may violate data subject’s rights. We establish the methodology and
bases for the creation of an Automatic Vulnerability Detector (AVD). An AVD uses
a set of DFDs to describe an IoT system under development. Based on these DFDs,
it is able to detect potential vulnerabilities to kick off the risk analysis process (see
step S1 in the previously described methodology).

In order to create the AVD, we use the following methodology: (i) for each DFD
component type and for each LINDDUN threat tree, we analyze all the nodes in the
tree (containing vulnerabilities) and examine the conditions for those vulnerabilities
being relevant in the system; (ii) we create a list of conditions that need to hold for
a vulnerability to be effective; (iii) for each instance of each element in every DFD,
we collect information about these conditions when defining the system; and (iv)
for each component in each DFD related to the system, we filter out vulnerabilities
depending on the information collected about these conditions and show those
vulnerabilities that are still relevant.

As an example, in Figure 8.2 we show the threat tree related to detectability
threats of a data flow in a DFD.5 A part from the upper node of the tree, which
represents the threat under analysis (i.e., Detectability in a data flow), the rest of
the nodes refer to vulnerabilities related to this threat. In the figure, we identify sev-
eral areas from A to E that we will use to define conditions that must hold for the
vulnerabilities in those areas to be relevant. Table 8.1 provides an example of some

Figure 8.2. Analysis of vulnerability scope in the LINDDUN threat tree for detectability

in a data flow.

5. LINDDUN Detectability threat tree catalog: www.linddun.org/detectability. Last accessed in Jan 18th 2020.

www.linddun.org/detectability
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conditions that must hold for a subset of vulnerabilities extracted from LIND-
DUN threat trees, related to those areas. For instance, in area C, vulnerabilities
related to steganalysis become relevant if the channel is not encrypted. As a second
example, in area B, depending on the volume of traffic in the channel, “insufficient
dummy traffic” may or may not actually be a vulnerability. In the latter, note also
that this condition may change along time, increasing or decreasing the relevance

Table 8.1. Example of conditions for vulnerabilities related to detectability in a data flow

(as defined in LINDDUN) to be relevant.

Vulnerability/ies
(Wuyts, 2015) Conditions for relevance Rationale

A Side channel analysis
(D_df2) is based on timing
information, power
consumption,
electromagnetic leaks, etc.
It can be used as a source of
information which can be
exploited to detect the
communication.

Do any actions lead to
generate footprints in the
communication channel?
(e.g., Timing information,
power consumption,
electromagnetic leaks)

If there are no actions
generating footprints in
the communication
channel, the
vulnerability is not
relevant.

B Transmitted data can
become detectable when
there is no or insufficient
dummy traffic (D_DF4)
sent at some lower layer of
the communication
network, such that
messages fail to appear
random for all parties
except the sender and the
recipient(s).

Is data traffic in the
channel very low?

If the traffic is not low,
this vulnerability may
not be relevant.

C When weak information
hiding techniques (D_df3)
are used, steganalysis
attacks (D_df8) are possible
(detecting messages hidden
using steganography).

Channel not encrypted? If channel is not
encrypted, low entropy
of unencrypted data
facilitates steganography
attacks.

D Detectability of a data flow
may happen if the system
uses a covert channel in the
wrong way (D_df6, D_df7,
D_df12, D_df13).

Covert channel used to
avoid detectability?

If covert channel is not
used these vulnerabilities
are not relevant.

(Continued)
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Table 8.1. Example of conditions for vulnerabilities related to detectability in a data flow

(as defined in LINDDUN) to be relevant (continued).

Vulnerability/ies
(Wuyts, 2015) Conditions for relevance Rationale

E The detectability threat can
occur because of a weak
spread spectrum
communication (D_df5),
resulting in deficiencies in
the establishment of secure
communications (allowing
eavesdropping (D_df9)),
insufficient resistance to
natural interference and
jamming (D_df10), and
insufficient resistance to
fading (D_df11).

Is the communication
channel wireless?

These vulnerabilities are
relevant if the
communication is
performed on a wireless
channel.

of this vulnerability. Therefore, continuous risk management may also include the
continuous monitoring of metrics that allow measuring the level of relevance of
vulnerabilities or the likelihood of threats to occur.

Note though that Figure 8.2 shows an example for a simple case where the
LINDDUN threat tree is not related to any other threat tree. However, in most
cases vulnerabilities related to a particular LINDDUN threat trees are related to
vulnerabilities detected in other LINDDUN or STRIDE threat trees. Figure 8.3
describes the detail of this connection in the form of a graph, where every node is
one of the LINDDUN threat trees (blue nodes) or one of the STRIDE threat trees
related to LINDDUN trees (red nodes). As it can be observed, Detectability of a
data flow (D_d f ) is one of the rare cases where the vulnerabilities in the threat tree
are not related to those in other trees. In general, most of the trees are related to oth-
ers. In order to understand the vulnerabilities of a particular component in a DFD,
it is important to navigate through these connections. For instance, the analysis
of vulnerabilities related to the Identifiability of an entity (I _e) generates a cascade
analysis of vulnerabilities that may include I _ds, I _d f , I D_d f , I D_ds, S_e, and
T _p, following directed edges in the graph. Note that edges are colored in gray if
threat trees refer to the same DFD element (e.g., I _ds → I D_ds), and they are
colored in red if they refer to different types of DFD elements (e.g., I _e→ I _ds).
For those relationships represented in gray, we assume that we refer to the same
element in the same DFDs. For those relationships represented in red, we have
explored them one by one and established a rule to propagate the analysis from one
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Figure 8.3. Graph describing the relationship between LINDDUN (blue) and STRIDE (red)

threat trees. The first part of the ids stand for each of the categories of LINDDUN (Linka-

bility, Identifiability, Non-repudiation, Detectability, Unawareness, and Non-compliance –

Disclosure of information is not represented as it is understood as the Information dis-

closure already captured by STRIDE) and STRIDE (only for those related to LINDDUN:

Spoofing identity, Tampering, Information disclosure and Elevation of privilege). The sec-

ond part after the “_” represents the type of DFD component (entity, data flow, data store,

process). Labels in the edges represent indications extracted from LINDDUN descriptions

in the corresponding threat trees.

tree to another. For instance, given an entity e in a DFD, for I _e → I _ds, we
refer to the data store where the entity credentials of e or other identifiable account
information are stored. This means that we will need to ask for the data store names
where identifiable account information is stored for each entity. As another exam-
ple, for I _e → I D_d f , we will need to examine all the potential vulnerabilities
for all the data flows in the DFD where the origin of the data flow is e. We repeat
this analysis for all red arrows in the graph.
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8.5 Model-based Risk Management Approach

GDPR establishes a set of duties imposed on the data processors, controllers, and
third parties which are aimed at honoring the corresponding data subject’s rights.
In GDPR, risk is explicitly scoped (Rec. 76) with regard to the rights and free-
doms of the data subject. In order to understand whether these data subject rights
and principles (described in GDPR) are being effectively protected by mitigating
existing risks, current approaches tend to analyze the data flow in the system (e.g.,
LINDDUN and DFDs). However, elements in a DFD tend to be defined at a
functional level (e.g., process to collect profile data from a user or process to merge data
from two existing data sources). In this situation, collecting system data to monitor
a threat related to the identifiability of an entity as defined by LINDDUN, just to
take an example, is not obvious, if we do not understand the relationship of a data
flow in the application with the architecture of the infrastructure that we monitor.
Without a proper connection of these elements to architectural levels that can be
monitored, continuous risk management for privacy becomes much more difficult.
Most monitoring tools monitor the infrastructure level. These tools may monitor
system aspects in a data center or a particular server, tools for network monitoring,
etc, and collect metrics.

The main contribution of the approach proposed in this section is the map-
ping of TSIS architecture models, such as the one proposed by GeneSIS, with data
flows in the application under analysis (e.g., DFDs). In S6, we may assume that
the elements from both models have been mapped establishing a link between the
two types of models. Details on this mapping are provided below. For instance, a
NoSQL data store in our system architecture may be mapped to a data store com-
ponent in a DFD. As another example, a particular process element in a DFD may
be mapped to the server the process is running on. As an alternative, it is possi-
ble that the mapping is not pre-established before starting the risk analysis process.
In this situation, we consider that phase S1 can be extended to allow the user to
establish this mapping manually.

Model Mappings

In order to drive the mapping between the architecture model and DFDs, we take as
the baseline the connection between privacy-related threats studied in LINDDUN
and the vulnerabilities that are related to security aspects of the architecture, as
captured by STRIDE. In Table 8.2, we show a sample of vulnerabilities extracted
from (Shostack, 2014) related to the STRIDE threats in Figure 8.3. The table shows
a brief description and some usual mitigation actions. In the last two columns, we
show examples of metrics that could be used for continuous security monitoring
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and what type of architectural components are being monitored. We would like to
remark that this table is not meant to be an exhaustive list of all the potential threats,
but some examples for illustrative purposes that serve the purpose of analyzing
which DFD components are to be mapped to which architectural components.

Note that these vulnerabilities are specially relevant in an IoT context. For
instance, let us take the example in Table 8.2 related to Information Disclosure of
Data Flow. There may be different vulnerabilities associated in particular to TSIS.
For instance, if we have a device IoT hub, eavesdropping or interfering the commu-
nication between the device and the gateway would be a potential threat. You may
also find similar threats in the communication between devices, where data may be
read in transit, tampering with the data or overloading the device with new con-
nections or even with the cloud gateways, where eavesdropping or communication
interference between devices and gateways may occur.

In general, mappings between architectural models and DFD link:

• Entities in DFDs with the associated network channels in which entity infor-
mation is transmitted or data stores in which the information is stored;

• Data flows in DFDs with the corresponding network channels;
• Data stores in DFDs with the corresponding databases or data stores used in

the system architecture; and
• Processes in DFDs with the corresponding software components executing

tasks related to those processes, especially when these tasks entail some level
of secrecy.

More formally, we define a set of DFDs, which represent a functional descrip-
tion of the system, D = {D1, D2, . . . , Dn}, as a set of graphs Di = (DVi , DEi ),
where DVi = {e1, . . . , em} are the elements in the DFD representing elements of
the system architecture at the functional level. Each element ei can be an external
entity, data store, or a process. DEi = { f1, . . . , fk} represent the data flows connect-
ing elements in DVi . We define a graph A = {VA, E A} where VA = {c1, . . . , cm}

represent the architectural components at the technical level represented in a model
such as those created by GeneSIS and E A = {l1, . . . , lk} represent the connections
between any two components (ci , c j ) in the system architecture. Note that compo-
nents can be both software or hardware components. We define a mapping between
the two models Di and A as a function M : DVi ∪ DEi → VA ∪ E A.

Exploiting Model Mappings

Once the mapping is established, then a final step is necessary to link metrics,
such as those presented as examples in Table 8.2, to the related risks or mitigation
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actions defined in S3 and S4. Once the risk model is developed for each DFD, we
propose two ways to exploit the established mappings to enable continuous risk
management:

• Automatic likelihood recalculation: During risk assessment in S3, an initial
likelihood and consequence values are determined for each risk. However,
a basic principle for continuous risk management is that conditions in our
system may change as time goes by. Let e be an element in a DFD Di , e ∈
DVi ∪ DEi , considered an asset in the risk management process. In S3, we
define risks r1, . . . , r j associated to e. Given a system architecture defined
through a model A = {VA, E A}, we define a set of metrics mc

1, . . . ,mc
h for

each component c ∈ VA ∪ E A. Automatic likelihood recalculation involves
defining a function f for each risk r related to each asset e such that c =
M(e) and f (mc

1, . . . ,mc
h) provide a new value for the likelihood or risk r .

With this, we connect the metrics defined for the architectural components
and use them to calculate the likelihood of risks connected to elements of the
functional description of a system, in the corresponding DFD.

• Treatment effectiveness control : A parallel approach to enable continuous risk
management, involves the definition of a function g for each r related to an
asset e ∈ DVi ∪ DEi such that c =M(e) and g(mc

1, . . . ,mc
h) represents a

KPI that needs to be satisfied for a risk to be considered effectively mitigated.
If g exceeds a particular threshold, then a warning needs to be issued for the
risk plan including mitigation actions to be reviewed.

8.6 Conclusions

Handling privacy-related risks is not well understood in the IoT context. There
is a lack of mechanism to effectively detect vulnerabilities related to privacy and
to collect meaningful evidences and continuously monitor risks. We need to find
the intersection between data protection challenges and the enabling of TSIS. We
have presented a first step towards the enactment of continuous privacy-related
risk control for TSIS, leveraging the link offered by LINDDUN between privacy
and security threat categories and combining functional and architectural models.
As future work, we need to establish a stronger connection between privacy threat
models like LINDDUN and the actual requirements imposed by GDPR, as current
threat models were devised before GDPR and they may not fully cover all derived
requirements. In particular, the relationship between data subject rights and GDPR
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principles and LINDDUN categories is unclear. Besides, we need to understand
how other privacy-related evidences can be collected beyond those collected for
security purposes. In particular in TSIS, where complex and distributed systems
increase system weaknesses and the attack surface.
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Chapter 9

Data Protection Compliance Requirements
for the Internet of Things

By Luca Bolognini, Sébastien Ziegler, Pasquale Annicchino,
Francesco Capparelli and Alice Audino

9.1 Introduction

With the progressive implementation of new technologies, more and more inter-
connected, we are surrounded by an increasingly synchronized, delocalized, and
correlated environment, animated by a continuous flow of data generated by our
choices and behaviors.

The disruptive advent of IoT technologies has profoundly changed the rela-
tionship between human beings and “things.” It is difficult to make a distinction
between online and offline dimensions, because most of the devices used in every-
day life are connected and interact with the surrounding reality in a continuous
exchange of information between material and virtual environments.1

It can be observed, therefore, that a new challenge has opened up for the pro-
tection of the rights and freedoms of Data Subjects and stakeholders in the new
technological environment that has changed since the broader adoption of IoT.2

1. L. Floridi, The Ethics of information, Oxford University Press, 2015.

2. EUROPEAN COMMISSION, The Internet of Things Opportunities and Challenges, 2015. Doc-
ument available at the following link: https://www.europarl.europa.eu/RegData/etudes/BRIE/2015/
557012/EPRS_BRI(2015)557012_EN.pdf . The document defines IoT as “a global, distributed network
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Existing digital and electronic devices have implied the need to strongly focus
on personal data protection safeguards. The more the technologies have evolved,
the more it has been necessary to establish a legislative framework to protect a “per-
sonal” and “private” space. These needs have been at the heart of debates in the
Parliament and in the Commission of the European Union, bringing to the adop-
tion of a legal instrument to be valid in all the European Union Member States, the
Regulation n. 679/2016, the General Data Protection Regulation (GDPR). This
Regulation was introduced into an existing International and European normative
framework protecting fundamental rights and freedoms, which includes, among
others, the Universal Declaration of Human Rights and the Charter of Fundamen-
tal Rights of the European Union.

Even if the Regulation does not explicitly refer to IoT Devices or the IoT Sys-
tem, the principles emerging from the GDPR—first of all, the ones of purpose
limitation, storage limitation, lawfulness, transparency, fairness, integrity and con-
fidentiality, and data protection-by design/by default—are adaptable to any tech-
nological development and deployment, IoT technologies included.

The present document proposes some brief considerations, without claiming to
be exhaustive, on the issues of Data Subject awareness and accountability in the
IoT field, with a focus on technology developers in the light of the GDPR and
cybersecurity international best practices.

9.2 IoT and General Data Protection Regulation:
Awareness as a Key Safeguarding Factor

9.2.1 Awareness and Data Protection

Data subjects’ awareness is a prerequisite in order to enhance their confidence in
new technologies, as well as to ensure that the individuals can always choose, freely
and autonomously, whether allowing or not the collection and further processing
of their data in an IoT environment.

Data protection, privacy, and security are the main key factors to increase trust.
The challenge is, then, to develop technologies that are, by design, inherently
privacy-preserving and transparent, in order to empower end users (and more in
general, the end target of individuals) to understand and to be informed of (and,
where appropriate, to control over) the use of their personal data. The interaction

(or networks) of physical objects that are capable of sensing or acting on their environment, and able to
communicate with each other, other machines or computers”. See also ENISA, Baseline Security Recom-
mendations for IoT in the context of Critical Information Infrastructures, 2017. The document refers to the
concept introduced by Kevin Ashton: “a wide ecosystem where interconnected devices and services collect,
exchange and process data in order to adapt dynamically to a context.”
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between individuals and IoT Devices or the IoT System has been studied in order to
better understand practical and actual dynamics of relationship between individuals
and objects; as a result, it emerged the need to ensure a human-centric IoT envi-
ronment, as the EU project GHOST3 demonstrates.

A new IoT project may involve users and Data Subjects as actors or as factors.
Most of the IoT solutions are considering the possible factorization of people: people
as an entity which interacts with other sensors. Factorization could bring to limit
Data Subjects’ rights and freedom, with the risk of de facto downgrading their role to
the same level of “objects.” A way to empower individuals, without factorizing them,
is to educate and train them on the IoT ecosystem features, risks, and safeguards, so
as to promote the creation and perception of an environment that they can consider
“safe” and “manageable.”

A better education would also imply an increasing awareness of Data Subjects’
skills and rights, related to the adoption of IoT tools, as well as a major attention by
developers and producers to IT security and other technological features, in order
to protect, by default, individuals from possible violations and to enable them to
receive adequate information and to exercise their rights.

Moreover, the way in which personal information is collected and managed, in
an IoT scenario, may affect not only end users’ rights but also the rights of third
subjects which are observed and recorded by the devices.

The processing of personal data carried out through IoT systems is certainly
included in the material scope of application of the GDPR, which sets forth some
conditions for the lawfulness of the processing as listed in Article 6:

“[…] processing shall be lawful only if and to the extent that at least one of the following
applies:

(a) The Data Subject has given consent to the processing of his or her personal data
for one or more specific purposes;

(b) Processing is necessary for the performance of a contract to which the Data
Subject is party or in order to take steps at the request of the Data Subject prior
to entering into a contract;

(c) Processing is necessary for compliance with a legal obligation to which the Con-
troller is subject;

(d ) Processing is necessary in order to protect the vital interests of the Data Subject
or of another natural person;

(e) Processing is necessary for the performance of a task carried out in the public
interest or in the exercise of official authority vested in the Controller;

3. GHOST Safe-Guarding Home IoT Environments with Personalised Real-time Risk Control: “D3.9: Trials
use case specification and report” (1st release).
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(f ) Processing is necessary for the purposes of the legitimate interests pursued by the
Controller or by a third party, except where such interests are overridden by the
interests or fundamental rights and freedoms of the Data Subject which require
protection of personal data, in particular where the Data Subject is a child.”

There are six available legal bases for the processing. No single basis is necessar-
ily more suitable than the others, due to the fact that the most appropriate basis
will depend on the purpose of the data processing and on the possible relationship
between Controllers and Data Subjects.

Among the various bases stated in the aforementioned Art. 6 of the GDPR, the
one that necessarily implies a good degree of awareness and information of the Data
Subjects is described in letter (a): consent.

In particular, according to Article 7 of the GDPR:

1. “Where processing is based on consent, the Controller shall be able to demonstrate
that the Data Subject has consented to processing of his or her personal data.

2. If the Data Subject’s consent is given in the context of a written declaration which
also concerns other matters, the request for consent shall be presented in a manner
which is clearly distinguishable from the other matters, in an intelligible and eas-
ily accessible form, using clear and plain language. Any part of such a declaration
which constitutes an infringement of this Regulation shall not be binding.

3. The Data Subject shall have the right to withdraw his or her consent at any time.
The withdrawal of consent shall not affect the lawfulness of processing based on
consent before its withdrawal. Prior to giving consent, the Data Subject shall be
informed thereof. It shall be as easy to withdraw as to give consent.

4. When assessing whether consent is freely given, utmost account shall be taken of
whether, inter alia, the performance of a contract, including the provision of a
service, is conditional on consent to the processing of personal data that is not
necessary for the performance of that contract.”

Article 4 paragraph 1 n. 11 GDPR rules that “consent of the Data Subject means
any freely given, specific, informed and unambiguous indication of the Data Subject.”
However, as provided by the WP29 in the opinion adopted in 2014 on the “Recent
Developments on the Internet of Things”:4 “In many cases, the user may not be aware

4. ARTICLE 29 DATA PROTECTION WORKING PARTY This Working Party was set up under Arti-
cle 29 of Directive 95/46/EC. It is an independent European advisory body on data protection and pri-
vacy. Its tasks are described in Article 30 of Directive 95/46/EC and Article 15 of Directive 2002/58/EC.
The secretariat is provided by Directorate C (Fundamental Rights and Union Citizenship) of the Euro-
pean Commission, Directorate General Justice, B-1049 Brussels, Belgium, Office No MO-59 02/013.
Website: http://ec.europa.eu/justice/data-protection/index_en.htm14/ENWP223 Opinion 8/2014 on the
Recent Developments on the Internet of Things Adopted on 16 September 2014.

http://ec.europa.eu/justice/data-protection/index_en.htm 14/EN WP 223
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of the data processing carried out by specific objects. Such lack of information constitutes
a significant barrier to demonstrating valid consent under EU law, as the Data Subject
must be informed” pursuant to Article 13 and Article 14 of the GDPR.

In all cases of different legal bases of personal data processing, other than Data
Subjects’ consent (think about the data processing in the legitimate interest of the
Controller or in the public interest), the challenge would be that of adequately
informing Data Subjects and to make them as aware as possible of the activities
carried out and of the related risks to their rights and freedoms.

9.2.2 Awareness of Data Subject as an Instrument for Opt-in
and Free Choices

The processing of information by IoT technologies can involve natural persons. In
this sense, Articles 13 and 14 of the GDPR provide the obligation to inform Data
Subjects about the personal data lifecycle, while Recital 58 of the GDPR underlines
that the principle of transparency requires that “any information addressed to the
public or to the Data Subject be concise, easily accessible and easy to understand, and that
clear and plain language and, additionally, where appropriate, visualisation be used”.

In addition, Recital 60 underlines that the obligation to inform comes from the
application of the principles of fairness and transparency of processing. Precisely,
the latter principle is also the logical basis for a conscious Data Subject’s choice.

The “Guidelines on transparency under Regulation 2016/679”5 issued by WP29
clarified that this principle applies in three main cases (par. 7):

(1) In the information provided to the Data Subjects;
(2) The way in which Data Controllers communicate with Data Subjects the

information;
(3) The way in which Data Controllers allow the exercise of rights by the Data

Subjects.

Therefore, the ratio legis of this principle is to allow Data Subjects to have control
over their data and thus to make a choice about it.

In particular, paragraph 10 of the document states that: “the Data Subject should
be able to determine in advance what the scope and consequences of the processing entails

5. ARTICLE 29 DATA PROTECTION WORKING PARTY This Working Party was set up under Arti-
cle 29 of Directive 95/46/EC. It is an independent European advisory body on data protection and pri-
vacy. Its tasks are described in Article 30 of Directive 95/46/EC and Article 15 of Directive 2002/58/EC.
The secretariat is provided by Directorate C (Fundamental Rights and Union Citizenship) of the Euro-
pean Commission, Directorate General Justice, B-1049 Brussels, Belgium, Office No MO-59 02/013.
Website: http://ec.europa.eu/newsroom/Article29/news.cfm?itemtype=1358&tpaid=6936 17/EN WP260
rev.01 Article 29 Working Party Guidelines on transparency under Regulation 2016/679 Adopted on 29
November 2017. As last Revised and Adopted on 11 April 2018.

http://ec.europa.eu/newsroom/Article29/news.cfm?item type=1358&tpa id=6936
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and that they should not be taken by surprise at a later point about the ways in which
their personal data has been used.”

The Data Controller would therefore be obliged to:

• Provide individuals with information including the purposes for the process-
ing of their personal data, the retention periods for personal data processed,
and with whom personal data will be shared;

• Provide privacy information to individuals at the time the IoT Data Con-
troller collects their personal data;

• Obtain personal data from other sources; the IoT Data Controller shall pro-
vide individuals with privacy information within a reasonable period and no
later than one month; there are few circumstances when the IoT Data Con-
troller does not need to provide people with privacy information, such as, if
an individual already has the information or if it would involve a dispropor-
tionate effort to provide information to them;

• Provide information to people in a concise, transparent, intelligible, easily
accessible manner, and it shall use clear and plain language;

• Regularly review, and where necessary, update its privacy information. The
IoT Data Controller shall provide the individuals with any information
related to the new uses of their personal data, before the IoT Data Controller
starts the processing.

However, in this context, where information is exchanged between Data Subjects
and “Things” and between “Things” and “Things,” it is in many cases very difficult
to make Data Subjects aware of the life cycle of their data. For this reason, it is not
always that easy and effective to provide an ex ante information notice to Data
Subjects, in an IoT scenario, while it could result more effective and efficient to
provide relevant information, in a simplified way, after data collection or, anyway,
in a non-traditional modality.

A way of considering the matter would be, then, the possibility of publishing
a concise, schematic information, similar to labels on the packaging of medicines
or food, to be affixed in proximity of the inter-connected arrangement. This signal
or label […] like the one used for snacks […] would specify which data are being
and/or have been processed and by whom and would show to the Data Subjects
how they could exercise their data rights.

The solution here suggested could be particularly advantageous because the
information on the label/signal will also help non-expert people to understand
which categories of information are involved in the purposes and in the logic
that rules the processing, by clarifying the structure (data, sources, criteria) of the
processing itself, so as to better implement the principles of lawfulness, fairness,
and transparency (pursuant to Article 5 paragraph 1, letter (a) of the GDPR). IoT
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could be equipped with well-visible interfaces, displaying such labels. For example,
an image sensor and an IoT object could be equipped with a screen, to increase
awareness on the presence of the sensor and increase user confidence in using
objects that gather data.

Another option, connected with the information just indicated above, could
result in the obligation to alert individuals about the presence of IoT sensors in a
given environment. Specifically, following the provision set forth by Article 12 para-
graph 8 of the GPDR, where it is expected that “The Commission shall be empowered
to adopt delegated acts in accordance with Article 92 for the purpose of determining the
information to be presented by the icons and the procedures for providing standardized
icons,” Solutions which provide for the use of icons or figurative representations of
other kind, easily understandable by the interested parties, may be considered.

This “alert signals” solution could be even more helpful – in all cases in which
Data Subjects are not “end users,” but simply “non-users,” since there are no inter-
faces and no features for interactivity between things and persons – in order to
prevent negative effects caused by IoT deployments.

Finally, a third option consists in using a dedicated smart phone application to
inform the data subjects about the presence of IoT in their vicinity. Such approach
has been researched and implemented in the European Large Scale Pilot on IoT
for smart cities, the H2020 Synchronicity European research project.6 A dedicated
application, titled Privacy App (www.privacyapp.info), has been developed.

The Privacy Application enables users to discover nearby IoT Devices or the
IoT System on an interactive map. For each IoT device, the app provides the avail-
able information related to the purpose of the data processing, the controllers and
processors involved, as well as information on retention period and cross-border
transfer. The user can also add new IoT Devices or the IoT System on the map and
request for more information. More importantly, the user can directly contact the
Data Protection Officer of the data controller of the IoT device.

9.2.3 IoT Features Enabling Opting-out and Exercise of Data
Subjects’ Rights

Awareness is a prerequisite of Data Subjects’ freedom of choice, as underlined
above; a robust level of awareness may enable individuals to prevent their data
collection (ex ante). However, awareness can empower individuals to control over
their data after processing and to exercise their rights in an opt-out approach
(ex post).

6. The Privacy App was developed by Mandat International in the context of Synchronicity, the H2020 Euro-
pean Large Scale Pilot on the Internet of Things for Smart Cities: https://synchronicity-iot.eu/

https://privacyapp.info/
https://synchronicity-iot.eu/
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Hereinafter, we summarize the provisions of Articles 15 to 22 of the GDPR,
which contain the rights of the Data Subject (all terms in capital letters refer to the
definitions given in the GDPR):

• Right of access: according to the right of access pursuant to Article 15 of
the GDPR, the Data Subject has the right to obtain the confirmation as to
whether Personal Data concerning him or her is being Processed. The right
of access can imply, if requested by the Data Subject, the right to receive a
copy of the personal data being processed.

• Right to erasure is defined as a right to ask for the deletion of personal data.
According to the right to erasure under Article 17 of the GDPR, the Data
Subject has the right to request for and obtain the erasure of Personal Data
or the anonymization of such data, provided that it takes place by means of
techniques which avoid the re-identification of the Data Subject. Subject to
the assessment of the conditions set forth in Article 17 paragraph 1 of the
GDPR, the Data Controller, having considered the technologies at its dis-
posal and the costs, has to promptly notify the erasure, unless it involves a
disproportionate effort, to all Recipients to whom Personal Data have been
transferred. The Data Controller communicates to the Data Subject the era-
sure once completed.

• The right to restrict processing requires that personal data are “marked,” with-
out being processed for purposes other than mere storage, pending further
determinations; therefore, it is advisable for the Data Controllers to include
in their information systems (electronic or otherwise) suitable measures for
this purpose. The request for restriction of the Processing pursuant to Article
18 of the GDPR, with the exception of storage, implies the prohibition of any
type of Processing of the Data Subject’s Personal Data unless the following
circumstances apply: the Data Subject’s Consent has been given; the Process-
ing is necessary for the establishment, exercise, or defense of legal claims; the
Processing is necessary to protect any other natural or legal person’s rights; a
substantial public interest applies. The Data Controller must promptly notify
the request for restriction pursuant to Article 18 of the GDPR to any other
Recipient to whom Personal Data were communicated unless it involves a
disproportionate effort.

• The right to rectification: the interested party has the right to obtain from
the Data Controller the rectification of inaccurate personal data concerning
him/her without unjustified delay. The Data Subject has the right to obtain
rectification/correction of his/her inaccurate Personal Data under Article 16
of the GDPR. The Data Controller, if it is possible and unless it involves
a disproportionate effort, has to notify the rectification/integration to each
Recipient to which it has communicated the Personal Data; once the Data



IoT and General Data Protection Regulation 169

Processor rectifies or integrates Personal Data, it is necessary to notify the
Data Subject promptly.

• Right to portability: the Data Subject shall have the right to receive the per-
sonal data concerning him or her, which he or she has provided to a controller,
in a structured, commonly used, and machine-readable format and have the
right to transmit those data to another controller without hindrance from the
controller to which the personal data have been provided, where:

(a) the processing is based on consent or on a contract; and
(b) the processing is carried out by automated means.

• Right to object: the Data Subject shall have the right to object, at the time
of the processing of personal data, to what is based on the point (e) or (f ) of
Article 6 paragraph 1 of the GDPR, including Profiling based on those pro-
visions. The Data Subject may request to object to Process his/her Personal
Data, including Profiling (except for) in the following cases: the Processing
is necessary to comply with a relevant public interest or in the exercise of
official authority vested in the Data Controller; the Processing is necessary
for the purposes of the legitimate interests pursued by the Controller or by
a third party, except where such interests are overridden by the interests or
fundamental rights and freedoms of the Data Subject which require protec-
tion of personal data, in particular where the Data Subject is a child. In such
cases, the request for objection must be motivated and may be refused by
the Data Controller in the following cases: the Data Controller demonstrates
compelling legitimate reasons for Processing that override Data Subject’s
interests, rights, and freedoms; Processing is necessary for the establishment,
exercise, or defense of legal claims. Save the above cases, the Data Controller
refrains from further Processing Personal Data. The request for objection
determines the termination of the Processing. Personal Data are deleted and
anonymized pursuant to Article 17 paragraph 1 of the GDPR, unless one of
the exceptions above applies.

• Automated individual decision-making, including Profiling: each individual
has the right not to be subject to decisions based solely on automated Process-
ing, including Profiling, which produce legal effects concerning him or her
or similarly significantly affect him or her. Furthermore, the Data Controller
has to guarantee to the Data Subject a human intervention and/or to express
his or her point of view, and as well as to contest the decision. In case an
Automated individual decision-making is carried out, the Controller has the
obligation to provide the Data Subject with meaningful information about
the logic involved, as well as the relevance and the envisaged consequences
of such Processing for him/her.
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9.3 The Principles of Accountability, Data Protection
by Design and by Default as Indirect Requirements
for IoT Technology Producers and Controllers

9.3.1 Controllers vs Producers in IoT: Direct and Indirect GDPR
Requirements

Articles 5 and 24 of the GDPR set one of the fundamental and innovative princi-
ples of the Regulation, the essence of the legislator’s change of approach with the
GDPR, establishing the principle of accountability of the Data Controller. It is the
Controller’s task+ the action to “implement appropriate technical and organisational
measures to ensure, and be able to show, that the processing is carried out in accordance
with the Regulation.” Furthermore, Article 24 paragraph 2 of the GDPR provides
that “these measures shall be reviewed and updated as necessary,” which is intended
to reaffirm the central role of the Controller and its responsibility in adopting
technical and organizational measures.

The principle of accountability is key, in order to better understand the nature
of the activities that the Data Controller must carry out from the earliest stages of
design of new processes, products or services.

Whoever undertakes to process, must ensure that the data must be “accountable.”
Thismeans,ontheonehand,thatControllerswillberesponsible fortheidentification
and choice of the legal bases, the procedures, the modalities of implementation, the
security measures and the operations, which involve the processing of the data, but
also,ontheotherhand, thatControllersmustbeable todemonstrate that theiractions
comply with the provisions of the GDPR, especially with regard to the “effectiveness of
the measures,” keeping records and documentation of such assessments and choices.

Measures to be put in place by Controllers and Processors shall be “adequate,”
but Article 24 of the GDPR does not specify what measures can be adequate: it is
up to Controllers the assessment of possible fitting technical and security measures,
on a case-by-case basis.

The “one-size-fits-all checklist” approach is therefore replaced by a by-design
approach, permeated with contextualization and risk-specific analysis.

The European legislator’s new approach is typical of international standards on
the management of information systems. The determinations deriving from the
knowledge of the internal dynamics of an organization, and its processes/activi-
ties, are potentially more effective than the choices made for the mere purpose of
complying with a norm.7

7. The approach of the International Standard Organization already in 2013, with the ISO/IEC 27001 Stan-
dard, focuses on risk assessment as a source from which to derive the implementation of technical and
organizational security measures.
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The application of the principle of accountability, therefore, should bring IoT
designers, producers, and deployers to weigh and objectively justify their choices, in
matter of personal data processing, while at the same time, allowing them to devote
the necessary resources and effort to achieve the highest level of security and safety
for individuals, considering their dynamics and processes, and not to only refer to
a list of abstract requirements.

With regard to effectiveness, WP29 in op. 3/108 highlights that “there are various
methods available to Data Controllers to assess the effectiveness (or ineffectiveness) of
the measures. For the processing of larger, more complex and higher risk data, internal
and external audits are common verification methods. The way audits are conducted
can also vary, from full audits to negative audits (which can take different forms),”
so to evaluate the effectiveness of the measures. Depending on the type of data
processing activities carried out, it will be needed to use both internal and external
means of evaluation. Article 24 paragraph 1 of the GDPR, additionally, expressly
provides that the measures adopted shall be periodically “reviewed and updated
where necessary.” This is particularly relevant for IoT, in light of the great variety
of possible deployment scenarios of IoT solutions and of the risks to rights and
freedoms of individual that may derive from them.

This approach is, furthermore, compatible with the ISO/IEC 27001 standard,
which obliges those who provide certification of conformity to the standard to carry
out repeated risk assessments over time, planned in such a way as to discover and
adequately mitigate previously ignored risks and to further mitigate the risks already
treated.

The principle of accountability is directly linked to the principles set out in
Article 25 of the GDPR, the “data protection by default principle” and the “data
protection by design principle.”

The latter opens to a pragmatic view: taking into account the state of the art,
the cost of implementation and the nature, scope, context and purposes of process-
ing as well as the risks of varying likelihood and severity for rights and freedoms
of natural persons posed by the processing, the Controller shall, both at the time
of the determination of the means for processing and at the time of the process-
ing itself, implement appropriate technical and organizational measures, such as
pseudonymization, which are designed to implement data-protection principles,
or data minimization, in an effective manner and to integrate the necessary safe-
guards into the processing in order to meet the requirements of the GDPR and
protect the rights of Data Subjects.

8. ARTICLE 29 DATA PROTECTION WORKING PARTY 17/EN WP260 Guidelines on transparency
under Regulation 2016/679.



172 Data Protection Compliance Requirements

The “data protection by default principle” finds substance in all those measures,
technical and organizational, functional to ensure that only personal data necessary
for the purposes pursued are processed. That obligation applies to the amount of
personal data collected, the extent of their processing, the period of their storage and
their accessibility. In particular, such measures shall ensure that by default personal
data are not made accessible without the individual’s intervention to an indefinite
number of natural persons.

In the light of the above considerations, in conclusion, it should be noted that
the GDPR, in its Articles 5-24-25 as analyzed above, does not provide for a merely
formal fulfillment of data protection obligations; quite the opposite, the Regulation
calls for a real assessment, concrete and substantial, by those who are responsible
for the processing of personal data. In this regard, the recent EDPB guidelines on
the topic have specified that (par. 8): “The term measures can be understood in
a broad sense as any method or means that a Controller may employ in the pro-
cessing. These measures must be appropriate, meaning that they must be suited to
achieve the intended purpose, i.e. they must be fit to implement the data protec-
tion principles effectively by reducing the risks of infringing the rights and freedoms
of Data Subjects. The requirement to appropriateness is thus closely related to the
requirement of effectiveness”.9

The GDPR introduces, of course, a cultural change that will inevitably impact
also IoT developers and manufacturers, even if it has to be taken into account that
the “accountability principle,” the “data protection by default principle” and the
“data protection by design principle” refer to actual Data Controllers, while, accord-
ing to Recital 78 of the GDPR, “producers of the products, services and applications
should be encouraged [but not obliged, authors’ note] to take into account the right
to data protection when developing and designing such products, services and applica-
tions and, with due regard to the state of the art, to make sure that Controllers and
processors are able to fulfil their data protection obligations.”

Notwithstanding this, the GDPR combines the mild “encouragement” of pro-
ducers with the principle of accountability to be respected by Data Controllers, thus
elevating data protection by design from an option to a strict parameter of com-
pliance to be assessed by Controllers in the selection of products and/or services
providers. And the mentioned Recital 78 of the GDPR provides that “the principles
of data protection by design and by default should also be taken into consideration in
the context of public tenders.”

9. EDPB, Guidelines 4/2019 on Article 25 Data Protection by Design and by Default. In particular, the concept
of effectiveness is extremely connected with the accountability principle of Article 5 paragraph 2 of the
GDPR. Indeed, the Data Controllers must be able to demonstrate that they have implemented dedicated
measures to protect these principles, and that they have integrated specific safeguards that are necessary to
secure the rights and freedoms of Data Subjects.
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In conclusion, the compliance with the GDPR principles can be considered as
an “indirect requirement” for IoT technology producers, even if they do not directly
process personal data on behalf of Controllers.

To this end, new certification mechanisms, guidelines and standards will be wel-
come, in order to direct the application of such principles in the field of IoT, both
from the side of producers and of Data Controllers and Processors.

9.3.2 Cybersecurity Measures for IoT: Recommendations

IoT Devices or the IoT System can simplify our lives and their adoption is con-
stantly increasing; unfortunately, such devices and applications are not always safe
from the cybersecurity point of view.

The growing number of devices which are connected to the network also raises
the amount of possible vulnerabilities and access points for potential IT attacks. The
fact of being networked objects makes IoT Devices or the IoT System vulnerable
to cyber threats.

In this sense, in 2019 the European Telecommunications Standards Institutes
(hereinafter referred to as “ETSI”) issued a document “to support all parties
involved in the development and manufacturing of consumer IoT with guidance
on securing their products.”10 In particular, the document proposed solutions con-
sistent with the GDPR approach.

From the abovementioned source, it is possible to extract several recommenda-
tions of security measures to enhance security in IoT systems and, thus, Data Sub-
jects’ engagement and trust. In the Table 9.1 below, we can list the cybersecurity
measures envisaged by the ETSI Document.

Table 9.1. Cybersecurity measures for an IoT device and an IoT system (Source: ETSI).

The IoT Devices or the IoT System requires at least one administrative user, that is, a user
having the ability to operate with elevated privileges inside the IoT Devices or the IoT
System (e.g., definition of other users, reset of their passwords).

The IoT Devices or the IoT System requires the passing of an authentication procedure
(e.g., login) before being able to allow the processing of any personal data. This authenti-
cation procedure verifies the username and a password of at least of 8 characters in length
and containing alphanumeric, special, and uppercase characters.

(Continued)

10. ETSI, Cyber Security for Consumer Internet of Things, 2019. Document available at the following link:
https://www.etsi.org/deliver/etsi_ts/103600_103699/103645/01.01.01_60/ts_103645v010101p.pdf

https://www.etsi.org/deliver/etsi_ts/103600_103699/103645/01.01.01_60/ts_103645v010101p.pdf
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Table 9.1. Cybersecurity measures for an IoT device and an IoT system (Source: ETSI)

(continued).

The IoT Devices or the IoT System requires strong authentication e.g., (multi-factor
authentication, possession or biometrics). For IoT Devices or the IoT System that have
stateless systems in general, the IoT Devices or the IoT System generates a token to asso-
ciate to the session. The token associated with the session of the web IoT Devices or the
IoT System or stateless systems is sufficiently long (64 or more alphanumeric characters)
and impossible to guess. The token associated with the session of the IoT Devices or the
IoT System or stateless systems has an expiration time.

The IoT Devices or the IoT System stores the password within its database in encrypted
form.

The IoT Devices or the IoT System uses a hashing algorithm suitable for password encryp-
tion.

The IoT Devices or the IoT System implements automated password selection restrictions
(e.g., a minimum number of characters is set, and it ignores common or user-referenced
passwords). When the user ID is associated to an email address, the IoT Devices or the IoT
System requires such email address to be verified. Email addresses associated with a user ID
are periodically verified to ensure that the email is still valid and in use.

The IoT Devices or the IoT System limits or throttles the availability of logins in the event
of an abnormal number of unsuccessful access attempts occurring within a short time frame.

The IoT Devices or the IoT System allows each of its administrative users to assign different
permission levels to different users.

The IoT Devices or the IoT System prevents any non-administrative user from changing
the permission levels assigned to other users.

The IoT Devices or the IoT System protects the data it allows to be processed through
pseudonymization techniques.

The IoT Devices or the IoT System protects the data that it allows to be processed through
transparent encryption techniques. Data processed through the IoT Devices or the IoT
System are appropriately classified (e.g., common, particular, judicial, subdivisions in per-
sonalized under systems).

The IoT Devices or the IoT System transmits network traffic in a protected from via state-
of-the-art security protocols (e.g., TLS1.2, valid certificates, HSTS). Data processed with
the help of the IoT Devices or the IoT System are backed up at least daily. Data processed
with the help of the IoT Devices or the IoT System can be restored quickly.

The IoT Devices or the IoT System is currently supported (e.g., through the release of
security updates and patches).

(Continued)
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Table 9.1. Cybersecurity measures for an IoT device and an IoT system (Source: ETSI)

(continued).

The IoT Devices or the IoT System is constantly kept up to date. The IoT Devices or the
IoT System is periodically subjected to sessions of vulnerability assessment and penetration
testing to assert its robustness to cyberattacks.

The IoT Devices or the IoT System generates access logs.

The IoT Devices or the IoT System generates logs of critical actions (e.g., creation or
removal of content or users).

The IoT Devices or the IoT System generates logs of the performed processes.

The logs are complete, unalterable, and stored for at least six months; the integrity of the
logs can be verified. If the IoT Devices or the IoT System is connected with smartphones
and requires permissions on the device, it provides policies that describe the purposes of the
processing enabled by each permission. If the IoT Devices or the IoT System is connected
with smartphones, it never uses the Device ID as a key to identify a record. If the IoT
Devices or the IoT System is for smartphones, it uses certified pinning techniques to avoid
MITM attacks.

The IoT Devices or the IoT System code does not contain confidential credential compo-
nents (e.g., passwords, tokens, keys …). The IoT code is developed in accordance with the
guidelines for secure code (e.g., CERT, OWASP …).

9.3.3 Data Protection by Design Measures for IoT:
Recommendations

In accordance with the GDPR principles, in the Table 9.2 below, several privacy
measures have been identified, in order to adequately design IoT product and sys-
tems, fulfilling the obligation under Art. 25 GDPR.

Table 9.2. Privacy measures for an IoT device and an IoT system.

The IoT Devices or the IoT System is accompanied by a specification of the type of data
of which it allows the processing.

The IoT Devices or the IoT System is accompanied by a specification of the data flows
from/to the outside.

The IoT Devices or the IoT System allows to define and modify the retention times for the
various types of data that it stores.

The IoT Devices or the IoT System makes it possible to record the source of the data it
stores (e.g., data supplied directly by the person concerned, data extracted from databases
…)

(Continued)
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Table 9.2. Privacy measures for an IoT device and an IoT system (continued).

The IoT Devices or the IoT System stores only the data necessary for its operation (e.g., it
does not store unnecessary data).

If the process of verifying the accuracy of the data entered by the user identifies incorrect or
suspicious data, the IoT Devices or the IoT System sends an alert to the competent function
or reports it to an administrator (to allow the competent function to be informed).

The IoT Devices or the IoT System retains the date of the last update of each record.

The IoT Devices or the IoT System allows an administrator to “mark” data as restricted
(e.g., providing flags in the database that identify the associated field as restricted).

Where applicable, the IoT Devices or the IoT System prevents the processing of restricted
data fields (the restricted data field must not be read, modified, deleted, transmitted, dis-
played, etc. until it is unlocked by the platform administrator. Neither another user nor
IoT Devices or the IoT System should be able to do this).

The IoT Devices or the IoT System shall enable the Data Controllers to aggregate in a
comprehensible way all the data that it retains in relation to an interested party, allowing
the party the ability to modify and visualize it.

The IoT Devices or the IoT System shall enable the Data Controller to record aggregated
data in one or more common format files (.csv, .xlsx, .xls, .txt, etc.).

The IoT Devices or the IoT System shall enable the Data Controller to transfer aggregated
data relating to a Data Subject in an interoperable format (e.g., XML, CSV, JSON).

The IoT Devices or the IoT System allows to export the aggregated data related to a Data
Subject in an interoperable format (e.g., XML, CSV, JSON), flanking them with useful
metadata in order to identify them correctly.

If the IoT Devices or the IoT System collects data on minors, it requires the consent of the
parental guardians to be entered and given to the Data Controller.

Where applicable, if the IoT Devices or the IoT System collects data on minors, the consent
of the parental guardians shall require an express opt in consent.

If the IoT Devices or the IoT System generates scores relating to a Data Subject (e.g., third-
party data resulting from automatic processing) and the Data Subject did not give his or
her consent to automated processing, the IoT Devices or the IoT System makes it

possible that the decision having legal effects on the Data Subject comes from an operator
and not from an automated process.

(Continued)
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Table 9.2. Privacy measures for an IoT device and an IoT system (continued).

Where applicable, the IoT Devices or the IoT System works in accordance with the consent
given by the Data Subjects (e.g., it informs the operators about the consent given and does
not make certain types of data available for certain processing operations if their consent
was not been given).

Where applicable, the IoT Devices or the IoT System keeps a record of the consent lent or
denied, each with its own timestamp.

Where applicable, the IoT Devices or the IoT System shall keep a record of the requests by
the Data Subjects to exercise their rights.

The IoT Devices or the IoT System does not feed databases and/or does not transfer per-
sonal data to servers not allocated within the European Union in the absence of assessment
of adequacy of the country in which the data are transferred and explicit consent requested
and provided by the Data Subject/IoT Devices or the IoT System user.

If the IoT Devices or the IoT System is public, the Data Controller shall communicate and
ease access to privacy policies in order to allow the Data Subject to review them at any time.

Conclusion and Acknowledgments

Considering the pervasive nature of the Internet of Things, the risk for the rights
and freedoms of data subjects will be higher and higher. Adopting data protection
by design approach will be key for the adoption and compliance of IoT-related
services and applications.

The adoption of the GDPR has raised the level of awareness on data protection
regulations. However, ensuring compliance will require to bring together experts
in technology and in law in order to build a bridge between these two worlds.

The present chapter has been redacted in the context of the European Research
Project NGIoT in the context of the Horizon 2020 European Research Program.
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Chapter 10

Cybersecurity Certification
in IoT Environments

By Sara N. Matheu and Antonio F. Skarmeta

This chapter will present and analyze current standardized IoT security certification
approaches and their lacks in terms of security certification challenges, such as the
security dynamicity or the life cycle management. Furthermore, the chapter will
present a methodology combining security risk assessment and testing to address
some of the challenges and to serve as a basis for future security certification schemes.

10.1 Introduction

The technology of the Internet of Things (IoT) is increasingly invading our daily
lives. The high scope involves devices of all kinds, such as the washing machine, traf-
fic lights, the car, the fridge, the surveillance camera, the smart band, the heart mon-
itor, or even the clothes. These smart devices connect to the internet and exchange
data in order to make our lives easier. This great interaction and exchange of infor-
mation is plagued in the definition of IoT given in [1], where it is defined as “an
open and comprehensive network of intelligent objects that have the capacity to
auto-organize, share information, data and resources, reacting and acting in face of
situations and changes in the environment.” However, the advantages of the inter-
connectivity of these devices pose a big challenge associated in terms of security
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and privacy. On the one hand, IoT devices gather a high amount of personal and
sensitive data that could be exposed to attackers. On the other hand, the attack
surface has been increased in such a way that a network of these devices can be
used to attack more juicy targets. This is clearly seen in attacks such as the Mirai
IoT Botnet [2], which causes several money loses to big companies such as Spo-
tify or Microsoft. This network was composed by different kinds of typical devices
(e.g., IP cameras, video cameras, routers, thermostats, and even computers), and
although the creators were arrested, new variants of the Botnet have been devel-
oped, leveraging to a worse menace, capable of performing Distributed Denial of
Service (DDoS) attacks at 1 terabyte per second. This gets still worse in situations in
which human life is involved, for example, in ehealth devices or automated vehicles,
as demonstrated in [3].

Being aware of this situation, the scientific community, companies, standardiza-
tion bodies, and, especially, the governments try to respond to this challenge, work-
ing together to build a next generation of more secure and standardized devices.
In this sense, it is needed a suitable security certification scheme to assess and com-
pare different security technologies, in order to provide a more harmonized IoT
security view to be leveraged by end consumers. The term “certification” is defined
by the National Institute of Standards and Technology (NIST) as “a comprehen-
sive assessment of the management, operational, and technical security controls in
an information system, made in support of security accreditation, to determine
the extent to which the controls are implemented correctly, operating as intended,
and producing the desired outcome with respect to meeting the security require-
ments for the system.” This way, the main aim of the security certification is to
validate and verify the security of the product. In Europe, this initiative is led by the
European Union Agency for Cybersecurity (ENISA), as established in the Proposal
for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE
COUNCIL on ENISA, the “EU Cybersecurity Agency,” and repealing Regula-
tion (EU) 526/2013 and on Information and Communication Technology cyber-
security certification (“Cybersecurity Act”). As described in the Cybersecurity Act,
the main objective is to create a common cybersecurity certification framework
for digital products, including IoT, in a way the certificates could be valid inside
the whole European Union. However, while the current heterogeneity existent in
terms of security standards and certification schemes makes difficult the compari-
son between products certified by different standards and schemes, the dynamism
associated to security leverages on an out-of-date certificate that does not show the
security level in a realistic way. In this sense, agile and automated certification mech-
anisms are needed, implying a revolution of the current certification schemes that
are usually static, time costly, and expensive.

This chapter analyses in Section 10.2 the main challenges associated to cyber-
security certification and how current certification standards deal with them. As a
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response, Section 10.3 details the European Telecommunications Standards Insti-
tute (ETSI) standard [4] assessment proposal, in which our security certification
proposal, described in Section 10.4, is based. The proposal aims to combine security
testing and risk assessment to assess in an automated and objective way the security
of an IoT device. Finally, the chapter ends by highlighting the key points discussed.

10.2 Security Certification Challenges in Current
Schemes

One of the main challenges associated with security certification is the harmoniza-
tion of the wide variety of security certification schemes that coexist together [5].
The current heterogeneity makes difficult the comparison of different solutions
and processes, especially when a product is evaluated under different certification
schemes at national levels. Currently, there is no unified solution that copes with
these issues; therefore, the process of comparing and assessing the cybersecurity level
of different IoT solutions is challenging. ENISA already remarked the need for har-
monization of security certification that could help to increase the trustworthiness
and competiveness of European products [6]. Following the recommendations of
ENISA, there are some elements that should be harmonized. This is the case of the
different assurance levels, the elements considered during the certification process,
and the roles of the involved stakeholders. Regulatory bodies have an important
role here, promoting the creation of cybersecurity framework through the consen-
sus of the main stakeholders and orchestrating its development and deployment.
In particular, the certification meta-scheme proposed by European Cyber Security
Organisation (ECSO) [7] represents an ambitious initiative that homogenizes and
aggregates different certification approaches under a common framework.

Another challenge is related with the standardization of the cybersecurity
scheme. Despite the limitations of the current approaches, a cybersecurity certi-
fication scheme should adopt the main concepts, terms, and operational aspects of
existing standard approaches [such as Common Criteria (CC) [8]]. The usage of
standardized concepts helps to a common understanding and to the harmonization
of the cybersecurity certification.

Existing approaches are usually expensive, slow, and complex, requiring many
documentation and processes [9, 10]. This could imply that a small company could
not afford the costs of the certification process or even a delay on the market release
of the product, with high money losses.

Cybersecurity is a very dynamic concept. Taking into account the frequency
of updates and patches of certain devices, a lightweight recertification process is
necessary to ensure an updated security certificate. Automated procedures are also
necessary to ensure the scalability of the (re)certification process. In this sense, the
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cybersecurity certification scheme should deal with the changes of the certificate.
On the one hand, the product should be monitored during its lifecycle in order
to detect new vulnerabilities and update its security level. On the other hand, the
security level should be modified when a cybersecurity recertification is required
due to an update/patching.

Another key point is that a system composed by IoT devices could be composed
by several components with different levels of security. Security composition could
be a desirable design feature in cybersecurity certification and deployment at least
for some security properties (e.g., confidentiality, authentication), but it is usually
hard to perform in a way that all the layers and threats are correctly weighted [11].
The security certification process should also take into account the protocol stack
to cover vulnerabilities at different layers. Indeed, RASEN project [12] proposes
a mechanism to aggregate risks from different layers. However, physical aspects
remains as a challenge, due to the context dynamicity of the IoT, which means that
security properties are difficult to separate from other layers of an IoT component.

As a result of the certification process, a label should be generated to provide
a simple, clear, and visual level of the security certified [13]. Companies such as
Bosch [14] add that customers need to compare the security of different prod-
ucts without feeling overwhelmed with technical details. In this sense, the label
has to address an important trade-off between the simplicity of the label and the
non-ambiguous and complete representation of the results of such process. This is
rather difficult, because in comparison to the energy label, which measures a phys-
ical quantity, the measurements of security are far more complex. In addition, the
label design should also take into consideration the dynamicity of the security. As
pointed out by ECSO WG1,1 a visual static cybersecurity label is not enough, since
it should also cope with the dynamism of the IoT paradigm to reflect changes on
the current security level. For this reason, the usage of a digital QR code, which can
be regenerated, can help to check the status of the cybersecurity label in a fast and
easy way, as it could also be easy to update.

The context in which the product will operate must be considered, in order to
make products comparable among each other and to specify the boundary condi-
tions of the context where the cybersecurity certification was applied. This aspect
is specially challenging, because it could not be known a priori.

To address the issue of label significance and the need to measure the security
properties, security metrics must be established. However, some of such metrics,
such as likelihood or impact, are difficult to be measured, due to its complexity,
which is reported in [15].

1. https://www.ecs-org.eu/working-groups/wg1-standardisation-certification-labelling-and-supply-chain-
management
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https://www.ecs-org.eu/working-groups/wg1-standardisation-certification-labelling-and-supply-chain-management
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While some of the previous challenges are being currently addressed by Euro-
pean organizations, the security dynamism of the IoT paradigm and the burden
of existent schemes make the adoption of an IoT cybersecurity certification frame-
work challenging. The next section gives a brief overview of the main current cer-
tification schemes and how they deal with these challenges. For a more detailed
description, [5] poses a complete source of information of the security certification
and standards.

10.2.1 Current Security Certification Schemes

The most well-known cybersecurity certification standard is CC [8], in which the
security requirements are specified in Protection Profiles (PPs) for a Target of Eval-
uation (TOE), which is a set of software, firmware, and/or hardware. CC permits
the mutual recognition between the Common Criteria Recognition Arrangement
(CCRA) [16] through the definition of Collaborative Protection Profiles (cPP). CC
uses Evaluation Assurance Levels (EAL) to describe numerically the depth and rigor
of an evaluation. However, CC has some limitations [10, 17] such as the time and
effort required to document and evaluate, in special at high EALs, or the man-
agement of changes in the certified product. This means that any change over the
TOE could invalidate the result of the certification, something that is quite critical
in frequent updated products.

The Commercial Product Assurance (CPA) [18] is the UK national scheme
in charge of assessing the security level through a series of security characteristics
published in [18]. If a product passes the CPA assessment, it is awarded with the
Foundation Grade certificate, valid for two years, and allowing any type of update
required, dealing in some way with the dynamicity of the security changes [18].
However, recertification has to be initiated by the manufacturer and takes about
6 months. The main barrier is that there is no Mutual Recognition Agreement
(MRA), so the certificate is not recognized outside the UK.

Cybersecurity Assurance Program (UL CAP) is a certification scheme that ver-
ifies the compliance against the UL 2900 standards [19], developed by UL. How-
ever, these standards were created by a for-profit enterprise, and they were not pub-
lished in order the research community could validate them. This has supposed a
high amount of critics, as the standard has three parts, but only the first one has been
published. Regarding recertification, in case there is a major change, the product
must be certificated completely; there is no lightweight alternative process.

The Certification de Sécurité de Premier Niveau (CSPN) [20] is a French stan-
dard created by the Agence nationale de la sécurité des systèmes d’information
(ANSSI) in 2008. CSPN ensures independence through the auditors, which have
to be accredited by the ANSSI. The evaluation includes conformity analysis (verify
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that the product complies its security specifications) and efficiency analysis (measur-
ing the strength of the security functions and mechanisms). One of the key points
of CSPN is that the evaluation is performed in a short period of time through the
adaptation of the product development lifecycle, reconciling time needs of the man-
ufacturing with the security assessment. CSPN is complementary to CC and can
be used as a previous short and non-expensive assessment to CC certification [21].

The IoT Security Testing Framework [22], developed by International Com-
puter Security Association (ICSA) Labs, specifies security testing requirements for
different types of IoT systems. The approach is based on a periodic assessment and
update of the certification criteria, addressing the dynamicity inherent to IoT. To
strengthen the assessment process, ICSA Labs (or associated accreditation bodies)
also carry out random assessments of the current product, and a short period of time
(2 to 4 weeks) is given to fix any flaw encountered or the certificate may be revoked.
The certificate is renewed annually by repeating the whole process. However, there
is no MRA, and the criteria and processes are not standardized.

The European Privacy Seal2 certifies if an IT product is compliant with the Gen-
eral Data Protection Regulation (GDPR) [23]. Other legislative documents from
the Member States could be also taken into account. For the certification pro-
cess, the regulatory requirements are translated into questions to be answered or
addressed. However, the process is done manually by experts answering the related
questions, meaning that the assessment can be affected by personal judgments.
In addition, it is focused on the privacy aspect.

The Singaporean National IT Evaluation Scheme (NITES)3 is mandatory for
manufacturers that provide IT products to governmental agencies in Singapore.
Although the specifications are private, it is based on a customization of CC stan-
dard v3.1 [5] at the approximate level of EAL4+ with some additions, which are
mostly targeted to the vulnerability analysis. Therefore, they share similar flaws,
such as the heavy documentation and the management of the security changes.

The ULD Datenschutz-Gutesiegel4 is a German IT certification scheme used by
German public authorities in order to verify the compliance with the data protec-
tion and data security rules. Although for minor changes it considers a lightweight
certification process, for major changes, the overall assessment has to be repeated.

Finally, the Cellular Telecommunications Industry Association (CTIA) is a
recent IoT certification scheme for LTE and/or WiFi devices [24]. The certification
process takes into account security aspects such as authentication, encryption, patch

2. https://www.european-privacy-seal.eu

3. https://www.csa.gov.sg

4. https://www.datenschutzzentrum.de/guetesiegel

https://www.european-privacy-seal.eu
https://www.csa.gov.sg
https://www.datenschutzzentrum.de/guetesiegel
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management, and threat monitoring. The valuation is conducted by an accredited
laboratory, which executes a series of tests based on the security aspects mentioned.
However, it is still too early to evaluate this scheme, since currently there are no
systems or devices certified with it.

From the analysis done, there is certifiably not silver bullet security certification
scheme able to cope with the challenges inherent to the IoT. IoT paradigm poses
a series of challenges that current certification schemes have to address by adapting
their processes, especially to deal with the security changes.

10.3 The Two Perspectives of the ETSI Approach
for Security Risk Assessment

The proposed IoT cybersecurity certification framework is based on the ETSI
approach described in [4]. This approach establishes two different ways to per-
form the security assessment based on security risk assessment and security testing.
Figures 10.1 shows the two perspectives proposed on the ETSI methodology. The
one on the left is the so-called test-based risk assessment perspective, and the one
on the right is a risk-based testing perspective.

Both perspectives share a common initial phase, Establishing the context, which
includes preparatory activities like Understanding the Business and Regulatory Envi-
ronment as well as the Requirements and Process Identification or Test Planning. The
first activity is meant to identify and fix the high-level security objectives. After
that, the Requirements and Process Identification activity is focused on analyzing and

Figure 10.1. The two views of the ETSI methodology.
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documenting the technical context of the TOE. In the parallel perspective, risk-
based testing, the Test Planning activity is intended to determine the test strategy
specifying the testing techniques and test phases. This perspective integrates the
test planning with the risk assessment process by using security risk assessment to
identify high areas of risk and optimize the testing efforts needed in consequence
(see 1 in Figure 10.1, right). Moreover, the ETSI proposal points out that a previ-
ous assessment process could be useful to establish the test strategies necessary to
deal with the critical risks.

The main part called Security Assessment, also common in both perspectives, rep-
resents the integration between the security risk assessment and the security testing
work streams. In particular, it combines typical activities considered in the ISO
31000 (Risk management—Guidelines) and ISO 29119 (Software and systems
engineering—Software testing) standards. The two perspectives differ in the way
these two streams interact between them.

On the one hand, in the test-based risk assessment perspective, security risk assess-
ment is composed by three activities. The first one, risk identification, is meant to
find, recognize, and analyze the associated risks of the TOE. Here, the expert opin-
ion, historical data, and stakeholder’s needs can be considered. In this perspective,
risk identification is improved by security testing, which is able to identify actual
vulnerabilities or areas particularly vulnerable (see 1 in Figure 10.1, left). This can
be done through the usage of network discovering techniques or vulnerabilities
scanners. The second one, risk estimation, determines the risk level, understanding
the origin of the risk and its consequences. However, risk estimation is usually a
hard activity, as the information for the estimation is often imprecise and subjective,
relying on the expert judge. This perspective tries to solve this issue by providing
additional input from the security testing process with the objective to improve the
confidence of the risk measurement (see 2 in Figure 10.1, left). Finally, risk evalu-
ation determines if the risk obtained in the risk estimation activity is acceptable or
not, depending on the context established at the beginning of the process.

On the other hand, and following the risk-based testing perspective, security
testing is also composed by three activities. Firstly, test design and implementation
is meant to design, implement, and derive the test cases that are going to be per-
formed over the TOE. Here, security risk assessment can provide information about
the potential vulnerabilities to systematically determine the test purposes. Also, the
risk estimation obtained from the risk assessment can be used to prioritize the test
cases (see 2 in Figure 10.1, right). Test environment setup and maintenance sets up
the environment in which the tests are going to be executed. Finally, test execu-
tion, analysis, and summary executes the tests and analyses their results. One of the
main challenges in this activity is the extension of the testing process taking into
account the budget, the time, and the likelihood of discovering new vulnerabilities.
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Especially during regression testing, which is focused on discovering security flaws
after an update or patch, risk assessment can help to prioritize the execution of the
tests based on their likelihood of discovering flaws (see 3 in Figure 10.1, right).

Both perspectives share an additional activity as part of the security assessment
phase: the treatment. This activity is focused on providing countermeasures to the
risk encountered in the previous processes. In this sense, four strategies can be per-
formed. If it is possible, risk can be reduced through management controls and
procedures to validate that the controls are correctly implemented to avoid the con-
sequences of an attack. However, if the risk cannot be avoided, it can be transferred
from one place to another, insuring an activity with major risks, or it can be diver-
sified, spreading the risk to other activities in order to not loss the entire project.
A more drastic action is to elude the risk by not going ahead with the project or
activity that is involved in the risk. However, this may imply money loses or a major
risk over a human life in case the activity is essential for it.

In parallel to the phases mentioned, the ETSI proposal also considers two activ-
ities, communicate and consult and monitoring and review, to provide the contextual
and management-related information for both work streams. In particular, they aim
to control, react, and improve all relevant information and results of the process.

Based on the ETSI proposal, next section details the proposed instantiation of
the integration of the two perspectives to foster the development of an efficient and
lightweight security certification framework.

10.4 Proposed Approach for a Cybersecurity
Certification Framework

The proposed IoT cybersecurity certification framework is based on the ETSI
approach described before, by combining the risk-based testing approach with
the test-based risk assessment approach. As a result, risk assessment metrics can
be obtained from testing results in an objective way, and risk assessment can be
used to prioritize the implementation and execution of the security tests. In addi-
tion, we added additional aspects inherent to the security certification, such as the
labeling process. This process is further considered by regulatory and security orga-
nizations, and it is explicitly mentioned in the Cybersecurity Act [7, 25]. The label
obtained as a result of the labeling is meant to show in a visual way the result of
the certification process in a way a non-expert consumer could understand it. To
homogenize the terms, we refer to the objective of the evaluation as TOE, following
the same definition of CC. Nevertheless, our approach also considers in the def-
inition a specific configuration (i.e., cryptographic suite and security parameters,
libraries, protocols, etc.) and the context in which it operates. Figure 10.2 shows an
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Figure 10.2. Proposal instantiation with an example.

example of the proposal instantiation. The different steps of the figure are going to
be described in the next subsections to clarify the insights of the process. For more
detailed examples, the reader can refer to [26–28].

As a starting point, the certification approach considers a set of five general secu-
rity properties obtained from the literature, in which more specific vulnerabilities
and threats are mapped (e.g., from existing vulnerabilities databases such as the
National Vulnerability Database (NVD)) [32]:

• Lack of authentication. The endpoints should be legitimate.
• Lack of integrity. Received data is not modified during the communication;

if data is modified, it should be detected.
• Lack of confidentiality. Transmitted data only should be readable by the legit-

imate endpoint.
• Lack of authorization. Services should be accessible only to endpoints who

have the right to access them.
• Lack of availability. Exceptions and errors should be controlled to avoid faults

that affect the system.
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It should be noted that the proposed mapping is designed to measure the risk
associated with the lack of each property, so the resulting security label can be spec-
ified by using such properties to provide a multidimensional security description.

10.4.1 Establishing the Context

This phase is in charge of gathering all the information related with the context of
the TOE, in a way it could be reflected during the security assessment. In the first
activity, named Understanding the Business and Regulatory environment, the focus is
to determine which level of security is required in a particular domain. To this end,
it requires a deep analysis of the laws and the regulatory environment. Experts from
the different domains could be required to give a common comprehension of the
laws and regulation environment.

Once the regulatory and business requirements of each domain have been ana-
lyzed, the second activity, Requirements and Process Identification, is in charge of
defining a set of profiles (A. B, C, and D) to reflect the different security levels
(low, medium, high) for a specific domain, in a similar way to the energy labels.
The profiles are meant to indicate the risk acceptable associated to each security
property to obtain a profile. For example, if the profile A for home building needs
a lack confidentiality low, only a TOE with a low risk in confidentiality is going
to be able to obtain the profile A. It is worth noting that if the TOE fulfils a spe-
cific profile, it will fulfill also the lower profiles, that is, higher profiles indicate
higher requirements in the security. Figure 10.2 shows an excerpt of a set of profiles
defined for a specific domain. In the example, the profile A requires a low risk in
confidentiality, whereas in profile D a high risk is acceptable.

The third activity, Test Planning, is in charge of analyzing the TOE security
requirements and to design a testing strategy according to it. This activity could
be also used to prioritize the tests during a regression testing phase. Additionally,
the establishing the context process interacts with the additional Communicate and
Consult and Monitoring and Review processes. The objective of this interaction is
to keep updated the profiles according to the expert’s judgment, the current regu-
lation, and the encountered vulnerabilities.

10.4.2 Security Testing

In contrast to the ETSI proposal, the instantiation of this phase is intended to use
specific methodologies and tools for test generation and execution with the objec-
tive of automating as much as possible the security testing. At the same time, the
automation of security testing aims to link the security updates with the security
label, coping with the changing conditions of the TOE and reflecting the real secu-
rity level in any moment.
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The first activity, Test design and implementation, designs a test suite to test the
risk of each vulnerability. With the objective of automating this process, we use a
Model Based Testing (MBT), which generates the tests from a high level model of
the TOE [29]. Indeed, MBT has shown its benefits and usefulness for systematic
compliance testing of systems [30]. On the one hand, our approach uses the Unified
Modeling Language (UML) class diagrams to model the architecture of the TOE,
that is, the entities involved and their relations. Figure 10.2 shows an example of
an architecture modeled in UML. Specifically, the figure shows two main entities
(smart object and server) that are connected with other two entities (request and
response), by the relations “receiveRequest”, “sendRequest”, “receiveResponse,” and
“sendResponse”. On the other hand, the TOE behavior is expressed in Object Con-
straint Language (OCL),5 using the CertifyIt tool [31]. It is worth noting that other
tools can be used to automate this process [32]. The high-level tests are defined in
CertifyIt by means of test purposes, referred to the high level model. Figure 10.2
shows an example of test purpose, in which any operation can be used any number
of times with the objective of reaching a specific tag called “smart_object_ends_ok.”
The power here resides on the tags we can specify in OCL and the ability of Cer-
tifyIt for generating all the steps of the test necessary to reach the tag. This way, it
is not necessary to specify step by step the test, implying less time to program and
more time to think about security.

The generated tests can be exported in several languages (XML, PDF, JUnit, and
TTCN3). In particular, we export the tests in Testing and Test Control Notation
(TTCN) v.3 language, as it is a standardized testing language whose aim is to sys-
tematically execute the test, improving efficiency and scalability. Figure 10.2 shows
an excerpt of a test exported in TTCN-3 language. To cope with the particulari-
ties of each IoT device, CertifyIt also produces some interfaces, called adapter, as a
middle interface between the TTCN-3 and the real device. The adapter has to be
implemented to link the operations and the types defined in the high-level model
with the real code.

In the Test environment set up and maintenance activity, the execution environ-
ment is set up (e.g., a local device or a large-scale platform). Our proposal con-
siders the usage of the FIT IoT-LAB platform, a large-scale infrastructure (about
2000 IoT nodes) for testing purposes without the need of cumbersome deployment
tasks [33]. In this case, the setup of the environment consists of the reservation of
the resources and the upload of the code to the remote devices.

Finally, the tests are executed in the Test execution, analysis, and summary activity.
To do so, we use the tool TITAN. TITAN is a TTCN-3 compilation and execu-
tion environment for different platforms that in combination with CertifyIt creates

5. http://www.omg.org/spec/OCL/2.4
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executable tests. TITAN sends the test commands (TTCN3 language) to the real
device through the adapter in order to execute the tests. As a result of this process,
it generates a test report indicating the tests that have passed or failed as well as
additional information (e.g., time, number of devices, errors, sniffer information).

The automation of the testing process implies that if a new vulnerability is dis-
covered, the recertification process can be done in a non-expensive, fast, and easy
way, which is key to address the dynamic nature of cybersecurity in IoT.

It is worth noting that the proposed tools for the automation are independent of
the methodology used to automate the process. This chapter proposed a particular
combination but other one is also possible.

10.4.3 Security Risk Assessment

Security risk assessment aims to measure the risk using the results of the testing
process in order to obtain a numerical value that could be used to compare the
security obtained by different devices. The obtained risk value is used to select the
profile fulfilled by the TOE, defined in the establishing the context phase.

The first activity of the Security risk assessment phase, Risk identification, ana-
lyzes and selects according to the TOE the applicable vulnerabilities that should
be tested. For example, if the scenario considered does not interact with resources,
and therefore, authorization does not make sense, it is not considered. These non-
applicable general vulnerabilities are labeled with a low risk by default, as the vul-
nerability cannot be exploited. The vulnerabilities are mapped to the five general
vulnerabilities enumerated at the beginning of the section to aggregate their risk
marks after the individual risk calculation. Finally, the selected vulnerabilities are
used as input for the testing process, to define the test purposes and model the
necessary elements in the TOE model.

After the security testing phase, the test report is used in the risk estimation
activity, to obtain a risk measure for each vulnerability considered. We use the
Common Vulnerability Scoring System (CVSS) [34] to perform the risk estima-
tion. CVSS consists of three metric groups: Base, Temporal, and Environmental.
The Base group represents the intrinsic qualities of a vulnerability, the Tempo-
ral group reflects the characteristics of a vulnerability that change over time, and
the Environmental group represents the characteristics of a vulnerability that are
unique to a user’s environment, dealing with the context influence challenge. The
Base metrics produce a score ranging from 0.0 to 10.0, which can be modified by
scoring the optional Temporal and Environmental metrics (they include a metric
value that has no effect on the score). The CVSS metrics to measure the risk of
each vulnerability are obtained from the test results. This way, the risk is measured
in an objective and empirical way. Figure 10.2 shows an example of how the test
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results are mapped into CVSS metrics. There, the percentage of non-ciphered data
is assigned to the attack vector, and the complexity of the attack is based on the
ciphersuite used (algorithm and key length). The metrics are combined using the
CVSS formula [34].

Finally, the risk evaluation activity compares the obtained risk in each general
vulnerability with the profiles available for a specific context. To do so, the numeri-
cal risk is mapped to a risk interval (low, medium, high and critical), and the profile
fulfilled is obtained by comparing the risk interval with the risk interval of the pro-
file. Figure 10.3 shows the process of mapping the risk intervals and comparing the
result with the profiles (A, B, C, and D). In this case, for the lack of confidentiality,
the TOE obtained a high risk, which fulfils profiles C and D. As the chosen profile
is always the highest one, the profile obtained for that general vulnerability is C.
This process is repeated for each general vulnerability.

10.4.4 Communicate and Consult: Labeling

One of the main results of the security certification process is the obtaining of a
security label. We considered the labeling phase as part of the communicate and
consult phase described in the ETSI proposal. The label has to take into account
the context in which the TOE will be deployed, the security level achieved, and
how the security has been assessed. For the last one, we propose the EALs specified
in CC, from EAL1 (functionally tested) to EAL7 (formally verified, design, and
tested).

To provide a simple label that could be understood by non-expert consumers
and that could be able to transmit enough information about the security obtained,
we propose a spider chart diagram as a label (a pentagon). The label has the five
general vulnerabilities as vertex and the profiles as edges. This way, the intersection
of the vulnerabilities with the profiles shows the security level achieved for each
vulnerability. Figure 10.2 shows an example of label. Lack of confidentiality has
the profile C, lack of authorization, authentication and integrity has the profile A,
and lack of availability has the profile B. As the profiles are organized from the lower
to the higher, a major area means more risk, facilitating through a visual concept
the comprehension of the label.

In addition, and following the ECSO recommendations, we propose the usage
of a QR code to update the label after a recertification process, coping with the
security dynamism.

10.4.5 Monitoring and Review

Although the Monitoring and review activity is not addressed in our proposal,
certain mechanisms could be used to manage the security changes of the TOE.
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One of the main sources of information to detect a security change is a vulnerability
database. Monitoring the activity of the databases and analyzing if the vulnerabili-
ties added are applicable to the TOE could be used to initiate a recertification pro-
cess. Updates and patches are also mechanisms that could imply a security change
and should be monitored.

10.5 Conclusion

This chapter has discussed the main challenges that have to be addressed towards
the creation of a cybersecurity certification framework, and how current certifica-
tion schemes fail to deal with some of them. As a response, we have proposed a
methodology based on the ETSI proposal that combines risk assessment and test-
ing to assess IoT devices in an objective and automated way, coping with one of the
main challenges: the security dynamism. The methodology proposed is intended
to serve as a basis for the development of a common security certification scheme,
with the aim of supporting the implementation of the Cybersecurity Act.
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Chapter 11

Firmware Software Analysis at Source
Code and Binary Levels

By Franck Vedrine, Florent Kirchner, Basile Starynkevitch,
Andrea Battaglia, Mario Villiani and Konstantinos Loupos

The CHARIOT design method is oriented to bridge the systems engineering gap
that currently exists between (a) the formal safety engineering techniques applied in
the development and testing of safety critical systems and (b) the rapidly evolving
and ad hoc manner in IoT devices are developed and deployed. In this direction,
CHARIOT started with a classification and usage guidelines of relevant standards
and platforms to align the project developments with existing guidelines, standards,
and industrial challenges on Industrial IoT Security. A free software compilation
toolset is also being developed (based on existing open source technologies) targeted
towards IoT engineers designing IoT systems and developing source code running
on devices in Industrial IoT networks. This introduces new methods and tools for
more secure and safer IoT software development with static source code analyses
to help avoid safety and security defects and risks targeting the firmware developer
during the building steps and the software security engineer before the firmware
deployment. Source code analyses are executed offline and are strongly bound with
the CHARIOT Security Engine to online check results. For that purpose, the static
analyses add meta-data (cryptographic signature, static analysis results, and sup-
port for “proof-carrying code” approach [1]) into the binary, hence permitting that
binary executable to be suitably “filtered” or “authenticated” by the CHARIOT
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Security Engine and the IoT devices and, in turn, shielding against cyberattacks at
source code (compilation and run-time) level.

At the same time, CHARIOT recognizes security vulnerabilities present at
devices producers’ level underestimating the potential risks to which they are
exposed to, since the latter are connected almost continuously to the internet. Great
risks are created by superficial behavior conducted by the manufacturers themselves
who are oriented to release the firmware updates with an excessively low frequency
and sometimes, fortunately only in extreme cases so far, the updates are not released
at all. Existing challenges related to the actual firmware running in IoT devices
include reverse-engineering of the entire firmware, extracting the file system and
understanding how the entire device works, including knowing the possible use of
known-to-be-vulnerable out-of-date API/libraries or unknown exploitable vulner-
abilities in the firmware code itself. They also include backdoor insertion, change
of the device behavior, altering its performance, without altering the telemetry val-
ues reported to administrators, finding hard-coded private symmetric-cryptography
keys/passwords/user-names or private certificates used to encrypt communications
between the device and other systems and rolling back the firmware to a previous
legitimate version with known vulnerabilities (to be exploited). This attack is par-
ticularly insidious because the pushed firmware is authentic, so it can easily survive
most of the in-place controls, as usually, they tend to check just the firmware source
and/or the firmware integrity.

CHARIOT introduces a firmware checking approach comparing the individual
functions that make up the firmware, looking for similarities between the functions
themselves (according to certain parameters to be extracted and analyzed) and the
behavior of the firmware according to statistical surveys. The firmware update pro-
cess is also affirming compilation level warnings (metadata), firmware hashing and
versioning through the blockchain system, as well as the firmware analysis results.

The CHARIOT firmware checking is multiple from the development of the
first firmware components to the deployment and the upload of the firmware at
the level of sensors, gateways, and other nodes. To prepare an industrial deploy-
ment, some verification steps are optional and depend on the Security Policy of
the Industrial. The mandatory firmware verification concerns the one performed
by the Security Engine in the Fog Node, just before the firmware deployment.
Hence, the Security Engine has the responsibility of the firmware deployment on
the sensors, gateways, and other nodes. Since the Security Engine has few times to
take a decision for the acceptance of the reject of an update, the firmware needs to
exhibit detailed information about its content. The different verification steps are
registered in the blockchain that gives insurance about the origin and the integrity
of the verification process.

The CHARIOT architecture is based on the deployment of Fog Nodes that
are the entry point of all the communications to the sensors, gateways, and other
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Figure 11.1. Firmware development and deployment (in green) in the CHARIOT

architecture.

notes. The Figure 11.1 defines the firmware development and deployment path on
the architecture of CHARIOT.

11.1 Scope, Business Orientation, and Purpose

The cybersecurity challenges relating to IoT firmware development and deploy-
ment relate to the application of security rules on the firmware of IoT devices dur-
ing its source code development as well as at the binary (executable) levels. This is
directly aligned to the, on-purpose or not, vulnerabilities commonly (and recently)
found in IoT devices including pre-installed firmware. For instance, this could pre-
vent sending confidential data to public addresses. The Static Analysis technolo-
gies will also reduce the number of vulnerabilities present in IoT Software like the
absence of Run-time Execution errors (such as memory overflows) that are a tar-
get of the CHARIOT Static Analysis Component. Automated source code analysis
techniques provide significant advantages as compared to current state of practice
in IoT involving firmware source code manual inspection, while the current state
of the art in critical embedded systems is the application of formal methods.

The source code analysis with static analyzers is targeting specific security rules
(increased verification with decreased human resources) providing formal guar-
antees (at the firmware level) validating thus the developed firmware through its
whole cycle, from development to deployment, through embedding of static anal-
ysis results (warnings during code compilation) in the binary of the device (under
update). CHARIOT also provides an extra protection by affirming the specific
source code hashing (created during the compilation time) through blockchain and
thus eliminate risks even from attackers having access to the firmware development
and attach meta-data (analysis results) claiming a safe firmware although it includes
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introduced backdoors. A blockchain-enabled, firmware versioning system is also
enhancing the update process robustness.

Automation of the registration of the analysis results and their evolution over the
full development process (BISMON scope) removes human involvement needs in
removing all warnings issued by the analysis as currently done at the end of the
development process. By doing it incrementally in connection with the developer,
it is expected to increase speed and precision while decreasing development costs.
Increased Integrity (link between the source code and the running binary firmware)
is ensured via analysis done within the compiler that generates the final code.

For industrials that have not access to the firmware source code or that review the
source code at the end of the development process, CHARIOT offers an alternative
to add some analysis results in the firmware meta-data. This alternative process
should motivate firmware suppliers to do more analysis and to add certification in
their firmware.

At the same time, at binary (executable) level, CHARIOT provides a solution
of processing firmware binaries and identifying security vulnerabilities (e.g., code
injection, jumps inside the code) by cross-referencing historical software updates
and vulnerability databases as an execution layer affirmation. The presence of ade-
quate meta-data in the firmware is considered to help in the decision of firmware
update approval/rejection.

11.2 Technological Innovation and Security Alignment
Per Outcome

11.2.1 Securing Firmware Through Rule-based Code Analysis
and Injection of Analysis Results and the Source Code
Hash Within the Binary Code

Syntactic-rule-based code analysis supports improvement of the security of
firmware during the development process and during the firmware update through
embedding of the analysis results, a firmware hashing and version in the firmware
binary (as meta-data). At the same time, the produced source code hashing and
version are included into the blockchain system (for later verification during the
firmware update process). Security properties targeted by the static analyses include
Rule-based Security properties and minimization of common vulnerabilities based
on Run-time Errors (memory overflows, stack overflows, index overflows). These
contribute to the global security of the system. CHARIOT also provides means for
preventing a malicious firmware developer from adding a backdoor and attaching
artificial meta-data (plus a correct hashing) to hide his backdoor. For this purpose,
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the crucial analysis results will be checked by the Security Engine without any
assumptions on their origin (inspired from proof-carrying code approaches).

11.2.2 Securing Firmware During the Development Process

For the firmware’s developer, CHARIOT has developed an open source tool BIS-
MON [2] that follows the development process to incrementally register the analy-
sis results as soon as they are available. BISMON contains a document-/graph-based
database and a server that centralizes the Static Analysis Result with the code. As
depicted on the Figure 11.2, BISMON comes with GCC plug-ins that do the static
analysis during the compilation of the source files/translation units. This ensures
that the object code produced by the source files is completely consistent with the
analysis results—this is ensured by the compiler. Another interest is that the analy-
sis does not require a specific build process. It just requires some additional options
to the compilation process, which are easy to add in existing makefiles.

The compiler scans the source code only once to produce the object code. That
has a consequence on the BISMON analysis done during the compilation: the anal-
ysis’ messages at this step only concern intra-procedural analysis and are based on
syntactic rules. The plug-ins then send the analysis results and the code to the BIS-
MON server that will perform additional verification since it has more caller/callee
information about the functions in the code—hence, the inter-procedural part of
the analysis is done on the server’s side. To implement this inter-procedural analysis,
BISMON provides a Domain-specific Language that is compiled into algorithms
in the server. These algorithms follow the call-graph and consolidate the analysis

Figure 11.2. Static verification during the development process—detailed process.
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results with caller/callee information. All this work operates incrementally on the
analysis data provided by the developer.

We present now an example of BISMON usage. It concerns both safety and
security. To ensure some integrity for the analysis results, the developer needs to be
identified in the BISMON server as explained in Figure 11.2. Then, it launches
the compilation command, which produces the analysis results and send them to
BISMON. Let us see how it works on for an analysis that computes the maximal size
of the stack usage during the firmware execution. For Safety and Security reasons,
when the firmware runs, it should guarantee that the stack memory that it uses will
not overflow over the available memory. This can be ensured by a static analysis at
source code level. During the compilation process, the BISMON analysis computes
the maximal stack frame of every function. Such an analysis is only possible in the
compiler that produces the final binary firmware since the compiler knows these
data—it needs them to call and return from functions (update of the stack frame
registers). In the gcc plug-in = BISMON client, it is implemented as a gcc low-
level pass. The BISMON analysis also produces the couples caller/callee to be able
to produce the complete call graph. Then, BISMON sends these data: maximal
stack frame by function and the couples caller/callee to the BISMON server. At
the server side, BISMON detects the absence of recursive functions that could lead
to an infinite stack usage. It transforms the call graph into a call tree by “inlining”
the function calls at the caller site. It then incrementally update the call tree each
time the developer sends a new translation unit. When the developer operates the
link edition that generates the final executable, it sends this information to the
BISMON server. At this point, the server knows that it has the entire source code.
So it computes an overestimate of the stack height for every leaf of the call tree and
defines the maximal value as the result for the stack usage. It then converts this result
into CHARIOT meta-data and attaches them at the end of the binary firmware—
in the CHARIOT meta-data section. It informs the blockchain of its work. Later,
the firmware will be uploaded: the Security Engine can look if the meta-data are
present and if the stack usage is bounded. If it is the case, it authorizes the sending to
the CHARIOT Gateway. The gateway extracts the meta-data from the firmware:
it knows the sensors to update; so if the stack usage is greater than the available
memory it will not send it for the update; instead, it informs the CHARIOT Fog
node that the update has not occurred.

BISMON can automatically verify (safety and security) coding rules (some
buffer overflows, Insecure random numbers, etc.) and identify the lines of source
code that break a particular coding rule (no recursive function, no stack overflow)
as safety properties. As an example, BISMON security properties can check that
every call to a communication library should have URL addresses that are statically
well known with identified corporate prefixes. Such coding rules might prevent
some developer’s mistakes but it will not prevent an attacker from introducing
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malicious code – this problem is more the scope of existing formal methods (e.g.,
axiomatic semantics, operational semantics, and abstract interpretation) developed
in the next section.

â Securing firmware before the deployment process

In the CHARIOT approach, additional specific static analyses embed semantic and
formal analyses (to check the absence of memory overflow, of Cross-site scripting).
If a formal analysis generates no alarm, then the firmware execution cannot expose
the vulnerability. Such type of analysis is conducting by a Security Engineer that
inspects the source code, the binary code to look for security vulnerability. Formal
analysis has also the advantage that their results are objective. Hence, the Security
Engineer does not need to sign that his analysis is correct, since the results can be
checked again by the Security Engine.

Consider the example of memory overflow: In some cases, they create security
breaches since an attacker can exploit a memory overflow to take the control of the
machine by executing own (external) code with an overflow of one or two bytes,
jumping between codes (code injection vulnerability). If a formal analysis generates
some alarms, the Security Engineer will perform different actions depending if the
alarm is a true one or a false one. For a true alarm, he will ask or do a code correction;
For a false alarm, he will write/generate a formal reasoning that complements the
analysis’ reasoning and so removes the false alarm for the security engine. At the end
of this process, the running system should not have any vulnerability targeted by the
analysis. The natural vulnerabilities targeted are Run-time Execution Errors (mem-
ory overflows, integer overflows, invalid pointers, undefined behaviors). Security
involves other risks and new software vulnerabilities will be investigated (tainting,
impact analysis) in accordance with the Security policies of industrial IoT players.

Some tools like Frama-C [3] can perform such formal analysis for IoT code [4].
Current development work in CHARIOT concerns a way to save such formal
results in the firmware meta-data to check these results again with the Security
Engine. It addresses formal source code verification and formal binary code verifi-
cation, depending on the presence on source code or not. It is an innovative chal-
lenge in both cases: the link between the source code and the binary code needs to
be established for source code verification; the formal analysis at binary code needs
to recover the data structures, the control, and data flows.

â Security Engine: processes firmware binaries and identifies security vul-
nerabilities (e.g., code injection) by cross-referencing historical software
updates and vulnerability databases

The Security Engine aims to keep the firmware (binary) of IoT devices secure
through the CHARIOT environment as an important attack vector and a highly
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vulnerable point of the technological infrastructure (IoT Network). Its scope is
to maintain them updated/secure considering threats and exploitations that could
tamper their security, compromising the functionality and the safety of the entire
IoT system (and devices).

The Security Engine service scans binary files of the pre-OS (firmware) of new
releases of firmware devices against older, valid versions before they get flashed on
target devices (IoT devices and gateways). The Engine will check if newer versions
may have unexpected behavior leading to security issues. This is achieved using
a heuristic approach by observing behavioral variations from a “reference” version
of the firmware, by analyzing the instruction pattern and calculating their change
within the different versions. This feature is combined with preventive researching
of vulnerabilities (like arbitrary Memory Access, Buffer Overflows, Format String
Vulnerabilities) by searching code signatures for the target architecture that may
lead to security issues.

This solution makes the Security Engine an innovative automated mechanism
for checking and updating IoT devices firmware able to provide attack surface min-
imization, decreasing all threats that could be used in a remote way by a potential
hacker, such as:

• Reverse engineer the entire firmware, extract the file system, and understand
how it would be used for known-to-be-vulnerable out-of-date API/libraries
or unknown exploitable vulnerabilities in the firmware code itself;

• Insert a firmware backdoor, making the device controllable by remote;
• Change the device behavior, altering its performance and the telemetry val-

ues;
• Find hard-coded private symmetric-cryptography keys/passwords/user names

or private certificates used to encrypt communications between the device
and other systems; the attacker may be able to eavesdrop these private com-
munications.

â Security Engine: filter firmware based on rules applied on the injected
analysis results

During the software update process, the security engine extracts the static code
analysis results (meta-data) from the firmware binary as inserted earlier at the
binary compilation stage. The extracted static code analysis results are then cross-
referenced with a local security policy that dictates the tolerated static code analysis
limits, and if the firmware passes these limits, the binary analysis process is initiated.
During binary analysis, insight to the internal workings of the firmware is provided
by comparing jump addresses with historical firmware update data, when avail-
able, and databases of common vulnerability jump patterns. This binary analysis
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is then consumed by the security engine to approve or reject the firmware update
and provide contextual messages to the initiator of the update, such as the type of
vulnerability pattern identified. The overall workflow achieves two things: firstly,
it prohibits anyone to issue a firmware update that possesses warnings that were
ignored from the static code analysis if they do not satisfy the criteria set forth in
the local security policy; and secondly, it prevents any firmware update of going
through if a vulnerability or erratic pattern in comparison to its previous versions
is identified in the jump registers of the binary file.

â Comparing firmware by heuristic method approach

The heuristic approach first treats the system as different sub-systems so that the
sub-system’s solution must spread widely at the solution space. Similarly, following
this approach, the analysis was addressed by considering different aspects of the
characteristics of the firmware and its typical behavior.

So, the optimal sub-system solutions in the heuristic approach for CHARIOT
firmware devices are found:

• In a first stage, by comparing the individual functions that make up the
firmware;

• In a second stage, going to look for a similarity between the functions them-
selves, according to certain parameters to be extracted and analyzed;

• After that, as the further sub-system solution, the behavior of the firmware
according to a statistical survey will be taken into consideration.

Finally, the optimal solution will be determined by matching all the sub-system
solutions, calculating a final reference for the statement of security of the new
firmware, finding the global optimal solution more efficiently.

First phase is the Data Collection; the scope of this stage is to parse the ELF,
BIN, and HEX firmware images using RADARE2 opensource tool to load images,
collect data, parse an image with tool analyzer in order to get names and addresses
for functions, build a map of function names and extract the CFG (Control Flow
Graph), and perform initials automatic analysis.

Once each firmware function is extracted (together with basic information like
addresses, names and sizes), each function is disassembled to:

• Get all the instructions used inside the function, classify the commands based
on their behavior, get conditional/unconditional jumps, loops, etc.;

• Count the number of each type of instructions (standard and classified),
jumps, etc.;

• Note offsets of commands.
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In the second phase, the scope is to analyze the function structures taking care
marginally the order of instructions inside each function, as well as the offsets,
parsing the divided code in a function-by-function manner without any correlation.
Then, a fingerprint sha256 for each function (a sort of UID) has been calculated,
so that we are able to make a comparison between functions by matching their
fingerprint.

If they match (independently from their correlation), there would be a rea-
sonable confidence assurement for the possibility of a complete correspondence
between them. A function-by-function match allows the algorithm to map all
the instructions inside the two examined firmwares and perform an effective
comparison.

In addition, in order to give greater reliability to the algorithm, fingerprints that
take into consideration offsets have been created. This can be added as a separate
parameter in the implementation. Multiple options can be considered as contri-
butions to finger print: statistics, instructions’ order, and offsets. Obviously, these
options influence the final comparison results. Some functions may have the same
number of instructions but a different order. Some functions may be considered as
equal by these parameters, but have different offsets, etc.

Then, the generated fingerprints from two images are compared to define which
functions have been changed. It is noted that only fingerprints are compared. Func-
tions are considered “equal” if fingerprints match. If fingerprints do not match,
functions are considered as “removed” or “new,” depending on whether or not, it
is present in the first reference firmware.

Eventually, a similarity threshold is used to perform a more in-depth analysis;
two firmware images are compared function by function based on the number
of instructions. The number of differences for each instruction is calculated. If
this number is bigger than the similarity threshold, then the function is marked as
“removed” or “new.” If smaller, it is then marked as “similar.”

At the end of the process, the comparison algorithm calculates the confidence
rate which shows whether numerous changes were made. This rate can be used
like a useful but not final reference to establish if gross potential vulnerabilities can
affect the new release of the firmware and if it needs to be further analyzed to verify
other critical issues.

â Vulnerabilities check by features

The security vulnerabilities recognition (that can be exploited by potential attacker)
present in IoT firmware is implemented by using 3 different features:



206 Firmware Software Analysis at Source Code

• Format String Vulnerability Detection

Based on the signatures, it is made by looking for all the printf functions in
the firmware code and analyzes the first parameter that is passed to it. If this is
a formatting string like “%s” or “%d”, then the code is safe. If we see a memory
address or a parameter of the function that has initially called the printf function,
then we have a potentially vulnerable place.

• Arbitrary Memory Access Detection

This feature provides functionality for looking through code and detecting all the
read and write memory accesses. After such places are detected, analysis is per-
formed to detect whether the address value was changed using some relative value,
i.e., whether it has increased or decreased comparing to the base address. Next the
obtained offset values are analyzed, and it is determined whether it is allowed to go
beyond the boundaries of the allocated memory. Due to the peculiarities of static
analysis, values of the parameters from which the functions are called cannot be
given and cannot return an exact answer whether this place is vulnerable or not.
This leads to false positives. If a metadata provided by the offline static analysis
provides a symbolic offset, then the security engine checks the formal reasoning
that ensures this metadata and it then uses this metadata to remove the alarm. This
can optionally be turned off via analysis options.

• Buffer Overflow Detection

This feature uses signatures to look for the vulnerable functions (strcpy, strcat,
memcpy, etc.). After such functions are detected, all the places where these func-
tions are called are determined. Next, the parameters that are passed to them are
analyzed to determine if an overflow is possible in this place or not.

11.3 Conclusions and Future Work

As a conclusion, the verification of Security properties in CHARIOT is taken at
three levels: offline by the developer, offline by the security engineer, and online and
automatically by the CHARIOT Security Engine. Each level does its own verifica-
tion. An interesting added-value is that the verification done at some level can help
the next level to obtain more conclusive results. For example if the Security Engine
rejects a firmware because it has doubts about a portion of code, the CHARIOT
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dashboard can alert the Security Engineer. Then, the Security Engineer can inspect
the code again and add in the meta-data formal explanations about why the code
is correct. The next firmware upload should be accepted because the CHARIOT
Security Engine will now check the formal reasoning of the Security Engineer in
relation with the incriminated portion of code.
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Chapter 12

End-to-End Security for IoT

By Paul-Emmanuel Brun and Guillemette Massot

According to market forecasts, Internet of Things (IoT) products and services are
spreading very quickly in all professional and mass-market usage scenarios in terms
of revenues and volumes of devices and services. In the meantime, lots of pilots and
commercial deployments are demonstrating the added value of IoT-based solutions
in real scale, and in all market segments, from the transportation industry to the
utility sector but also in smart building, factory of the future, or healthcare appli-
cations. The use of historical and live data in big data lakes will allow recognizing
anomalies, implementing alert functions, calculating solutions and optimizations
for a more efficient digitalized world. In order to build trustable services and solu-
tions, devices information needs to be trusted. This can only be ensured if IoT
systems are end-to-end protected, ensuring protection against corrupted third par-
ties. Indeed, while state-of-the-art IT communication protocols such as HTTPS
ensure end-to-end security, many IoT communication protocols have strong con-
straints in terms of bandwidth, power, and computation capabilities that do not fit
state-of-the-art security protocols. In this context, BRAIN-IoT project has tested an
innovative approach to ensure end-to-end security on constrained protocols with
limited impact on bandwidth and power consumption.
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12.1 Introduction

While in the past we had hardware and software in charge of monitoring devices
and/or processes in a separate Operational Technology (OT) network, today’s IoT
systems are directly connected to IT networks that fuel data lakes with historical
and real-time data. This in return allows the recognition of anomalies, the imple-
mentation of alerts, the finding of solutions, and the dynamic optimization of the
overall resources allocation. As modern networks are now formed by hundreds or
thousands of connected nodes, the threat of cybersecurity breaches has increased
too. To reduce this threats coming from small sensors connected to the cloud and
then to the entire network, the IoT devices need to be protected.

Researchers have pointed out security vulnerabilities of Low Power Wide Area
Network (LPWAN). Applying traditional IT technologies on Cyber-Physical Sys-
tems (CPS) is not a solution as it creates many single points of failure that could
lead to data flow disruption and exposure. Another challenge is the use of corrupted
edge equipment, which could lead to secret leakage and device identity spoofing.

Moreover the huge number of devices and their specificities lead to complex
management activities with high operating costs, especially regarding device iden-
tity and security management. Last, LPWAN devices often make trade-offs between
cybersecurity and calculation and battery power to reach the promised battery life
time, which is typically around 10 years. Indeed, the technological advances in
network architectures, operational technologies, Cyber-Physical Systems, and mat-
uration of cloud services have opened new business opportunities for critical and
privacy sensitive application. However, the lack of software-based security embed-
ded in the sensors and the proprietary provisioning methods delivered by network
providers are preventing the commercial deployment from booming.

In this chapter, we will first have an overview of IoT systems architecture and
associated challenges, especially regarding LPWAN technologies introduction in
existing architectures.

After the architecture and security challenges overview, we will present relevant
associated countermeasures that are available at the state of the art.

Finally, we will describe an innovative approach, allowing to secure very low
power devices, which are currently the weakest point to infiltrate an IoT system.

12.2 IoT Systems Architecture and Security Challenges

The search of cost-effective networks covering wide geographical areas combined
with the sunset of 2G and the late arrival of the new NarrowBand-IoT (NB-
IoT) networks have prompted the emergence of Low Power Wide Area Networks.
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Figure 12.1. Bandwidth versus range capability.

Figure 12.2. LPWAN & 802.15.4 devices deployments.

LPWAN are a low cost and a reliable alternative to link low battery consump-
tion sensors with long-range (>2 km) as shown in Figure 12.1. At the moment,
LoRaWAN and SigFox are the well-known LPWA Networks. However, less known
LPWA Networks also exist, such as RPMA, Symphony Link and Weightless.

In 2017, LoRaWAN claimed to have 52 networks publically announced, 350+
ongoing trails and city deployments and presence in over 100 countries worldwide.
For its part, SigFox has presence in 36 countries and a coverage of more than 85%
of the population in 17 countries. The latest forecasts report that the accumulated
number of LPWAN devices shipment between 2018 and 2023 will be approxi-
mately 600 Millions as it is highlighted by Figure 12.2.

Those new architectures based on LPWAN communications, combined with
OT and Cyber-Physical Systems, open a wide range of new opportunities for busi-
ness critical and privacy sensitive applications. An exemple of a multi-networks IoT
system is presented in Figure 12.3 IoT Industrial Cloud systems are rapidly matur-
ing as packaged systems that can sense, collect, analyze, and action on edge devices.
However, the software-based device security and manual/proprietary provisioning
methods delivered by platform providers are preventing deployments from scaling.
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Figure 12.3. Multi-networks IoT systems.

In order to turn those opportunities into reality, some issues need to be
addressed:

• End-to-end security: Confidence in data is key for services based on IoT.
In order to have a “robust” & “trustable” system, data need to be secured,
from the IoT sensor to the cloud (or server)-based service applications, in
terms of confidentiality, integrity, and availability.

• Heterogeneity of devices: LPWAN use the potential of very low power and
low-cost CPU, with limited bandwidth and memory but long battery life-
time. Legacy IT protocols do not suit those devices constraints.

• System integrity as a whole: The integrity of the system is a key factor to
ensure the security and safety of CPS systems. Bootstrapping process and net-
work latency are key issues: devices identities which feed the system services
with their data need to be guaranteed and managed.

LPWAN and mesh short-range radio networks today sacrifice security require-
ments in order (i) not to overload the limited memory and CPU power of very light
micro-controllers and (ii) to save energy so that they can reach the promised bat-
tery lifetime. Many researchers have pointed out security vulnerabilities of those
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Figure 12.4. Pain points in IoT.

networks. Applying traditional IT technologies on CPS is not a solution as IoT
architecture inspired from IT architecture creates many single points of failure.
It leads to flow disruption (from the identity and secure channel point of view)
and exposes data, device, and application to many threats, such as intermediary
equipment corruption, application secret leakage, device identity spoofing, etc ….
Moreover, the huge number of devices and their specificities lead to complex man-
agement activities with high operating costs, especially regarding device identity
management and security management.

In addition to those cyber-security limits, the Figure 12.4 above gives an
overview of some technical and financial pain points that need to be addressed
to unlock the full potential of low-power and battery-driven IoT.

12.3 State-of-the-Art Mitigation Measures

In order to address the security threats highlighted in the previous section, industri-
als set up mitigation measures to limit the impact of cyberattacks on those systems.
In this section, we will classify mitigation measures in 3 main categories:

• Device management
• Endpoint protection
• Communication security
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12.3.1 Device Management

As mentioned in Section 12.2, devices management, and especially security man-
agement (identity, cryptographic keys and right management), is very complex
within IoT systems, thus leading to high operating costs. In order to reduce those
costs and optimize management operations, IoT-related companies such as SigFox,
Device Authority, MOCANA, … offer their own solutions.

However, those solutions are limited to the state-of-the-art technologies in place
and do not provide a two-factor authentication according to which one unique
element (ID or encryption key) is provided by the sensor itself and another unique
element is flashed to the sensor from an external library. Solutions offered today
for low-power devices are still very complex (no standard for bootstrapping), can
fairly easily be attacked, and cause high manual operation cost due to deployment,
registration, and maintenance of devices spread over a large geographical area.

12.3.2 Endpoint Protection

In order to enhance the protection of end devices, especially to secure the cryp-
tographic keys, many providers offer secure elements or Trusted Platform Mod-
ule (TPM) to be put aside the main Micro Controller Unit (MCU). While this
approach offers a good solution in terms of security, it also has 3 main drawbacks:

• Updating of keys is more complex
• Secure Elements, as dedicated hardware components, increase the final cost

of the device or could be complex to integrate if not anticipated on the PCB
• There are low-power MCUs out there which have hardware cryptographic

optimization – to put extra TPMs would not add value and will burden their
lifetime.

In the area of LPWAN, end devices have many constraints such as hardware cost,
lifetime duration, bandwidth, and computation power that are not compatible with
the use of a dedicated hardware component.

12.3.3 Communication Security

State-of-the-art communication security solutions are mainly based on Trans-
port Layer Security (TLS) or Datagram Transport Layer Security (DTLS) pro-
tocols. Combined with the use of certificates Public Key Infrastructure (PKI),
those protocols perfectly fit to the constraints of web-based communication with
high bandwidth and high power computation. Indeed, the use of certificates
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(and asymmetric cryptography) limits the need to share secrets to establish end-
to-end secure channel.

The arrival of LPWAN, however, reveals the limits of those technologies:

• Low-power devices don’t offer enough computation power to implement
asymmetric cryptography or certificate management. As an example, the key
negotiation requires more than 600 ms of intensive MCU computation using
a Cortex M0/M0+, and the full establishment of the TLS session takes 3.2
seconds (using ECDHE for key negotiation protocol).

• LPWAN protocols have a limited bandwidth. As an example, the estab-
lishment of a secure channel based on TLS uses around 6000 b, while the
maximum size of a packet on LoRaWAN network is limited to 250 b.

To overcome those limitations, LPWAN providers added a dedicated security
layer in order to protect the transmitted data. Therefore, such solutions result in
data security being closely linked to the network protocol. As a result, no end-to-
end protection can be applied to the data in cross-technologies networks. In the Fig-
ure 12.5 below, any successful cyberattack on the network provider infrastructure
or IoT platform concentrator HUB will lead to a leak or a corruption of cleartext
data.

Figure 12.5. IoT communication threats.

Figure 12.6. Mitigation overview.
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The Figure 12.6 above provides an overview of each IoT management solution.
We can see that the only solution offering end-to-end protection is highly power
consuming and therefore cannot be used to secure low power devices.

12.4 Bring End-to-End Security Layer to Low-power IoT
Devices

To overcome the current state-of-the-art limitation, Airbus, through BRAIN-IoT
project, is proposing an end-to-end security layer for low power devices, which is
independent from the network providers. It brings 3 security features under patent
application:

1. Strong authentication of devices
2. End-to-end encryption of data
3. Optimized key management

12.4.1 Strong Authentication of Devices

As a root of trust, any device needs to be secured and authenticated within the
system; even the simplest sensors could be the open door to the whole system.

Thanks to Airbus technology, smallest devices, such as cortex M0/M0+ sensors,
will be able to encrypt and authenticate any data sent over the network in a stateless
mode, dividing by 10 the time needed to establish a secure channel.

The security layer allows aggregation of the device identity and characteristics
(such as hardware serial numbers, memory and MCU footprint) into a unique
digital ID, which is then combined with a unique cryptographic element for each
device to authenticate the data sent by the device and therefore applies the two-
factor authentication principle illustrated in Figure 12.7. This in return reinforces
the data integrity to build trustable digital services on top of it. To optimize the

Figure 12.7. Two-factor authentication.
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security footprint and to guarantee its robustness, the security layer relies on well-
proven authenticated encryption algorithms such as AES-CCM* and AES-GCM
and tends to integrate lightweight security protocols such as SPECK to go a step
further in energy consumption impact.

Regarding the device authentication, this technology offers the following state-
of-the-art advantages:

• For the IoT manufacturer, to add trust at the device layer at reasonable cost
by providing a “super-slim” security software

• For the IoT operator, to simplify IoT device deployment with self-registration
capabilities and thus to reduce the time and cost necessary to deploy a secure
IoT system.

12.4.2 End-to-End Encryption Data

In previous sections, it has been highlighted that edge equipment can have access
to the data flow. This potential weak point of the architecture is due to the limits of
existing end-to-end security protocols. To prevent this, Airbus security library on
edge devices will secure any data sent over the network at application level using
the authenticated encryption, as illustrated in Figure 12.8. Therefore, intermediary
equipment which use a different protocol will no longer have access to the cleartext
data, if not requested by the use case. If requested by the use case, Airbus technology
can be applied on edge to cloud authentication as well.

Regarding the end-to-end data security, this technology offers:

• Simple establishment of need-to-know principles for any intermediary
equipment.

Figure 12.8. Security components.
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• Simple end-to-end security layer by providing a security library for devices
and a gateway to be transparently deployed in front of applications.

• If necessary, security function able to decrypt and check data for edge com-
puting.

12.4.3 Optimized Key Management

IoT systems are complex to manage because of their “cyber physical” nature, and the
huge number of devices and nodes involved. To enable the power of IoT, operating
costs need to be reduced.

In Section 12.2 and 12.3.1, we have described the IoT system security manage-
ment issues. From the security perspective, cryptographic keys and device identity
are critical for the trust of the whole system. Therefore, managing millions of secret
keys in centralized database on IoT platform and application could lead to expen-
sive security measures to guarantee their security. Using Airbus security manager
to generate and manage the key lifecycle will allow applications and IoT platforms
to compute each device key on the fly based on one master key which could be
secured using a legacy vault.

Our innovative key management method is fully based on key hierarchy tech-
nologies using well-proven derivation algorithms such as HKDF (HMAC-based
Key Derivation Function) and is illustrated in Figure 12.9.

This enhances the key management system in order to support symmetric cryp-
tography and therefore, according to Airbus tests, allows to gain about 50% of
battery lifetime in regard to PKI performance. A comparison of Airbus solution
capabilities compared to other existing solutions is described in Figure 12.10.

Figure 12.9. Key derivation approach.
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Figure 12.10. Solution overview.

Moreover, the security manager will store identity information combined
with associated privileges, allowing fine grain control of edge device access to
applications. Such security functions also limit propagation of cyberattacks on the
IoT systems by suspending suspicious devices from this security management ser-
vice.

This solution enhances device security management and operation, thanks to
the security management service allowing:

• Accelerated bootstrapping with simplified key and identity provisioning
through Airbus key generation technology based on master key derivation

• Fine grain access control from devices to application
• Fast reaction to cyberattack through interconnection with the security oper-

ation center.

To conclude, this solution combines well-proven algorithms with an innovative
approach in order to solve the issue of end-to-end security for large number of
constrained devices, spread into constrained radio protocols such as LPWAN or
802.15.4.

12.5 Conclusion

This security solution unlocks the potential of LPWAN applications in Machine to
Machine (M2M), device to edge, edge to cloud, and device to cloud communica-
tion by providing end-to-end security for IoT systems independently of networks
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including slim encryption layer to ensure trustable and optimized data transmis-
sion. This solution also allows self-registration of devices in a plug & play mode,
ensuring automatic key renewal over constrained protocols.

This solution combines perfectly with existing security measures such as use of
secure element and network security capabilities to ensure the trustability and the
confidentiality of data, which is key to build new digital services.
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Chapter 13

Blockchain Ledger Solution Affirming
Physical, Operational, and Functional

Changes in an IoT System

By Alexandros Papageorgiou, Konstantinos Loupos
and Thomas Krousarlis

CHARIOT aims to introduce a novel methodology for maintaining security
throughout all endpoints of an IoT network. To achieve this, a blockchain-based
adaptation of the traditional Public Key Infrastructure (PKI) protocols have been
formulated to satisfy the needs of industrial IoT and enhance it as necessary to
simultaneously be as abstractive as possible in its design and fulfill the require-
ments set forth by the enactors of the CHARIOT technology stack. The current
technological landscape of identity security in the context of IoT lacks in several
areas, even more so when analyzed under the pretense of low-resource devices. The
most common solution applied in these scenarios is the use and deployment of a
PKI. However, it fails to address the core issues of identity security in high-value
low-resource distributed environments since PKI has its shortcomings in certain
security aspects by design.

The first and foremost shortcoming is that of the single point of failure [1],
a trait shared among any software design implementation that relies on a one-
to-many server-to-client interaction. By introducing a single source of truth for
cross-verification of identities, it enables an attacker to devote his resources into
compromising that single source instead of relying on other more complex attack
strategies. Additionally, should a network-wide disruption occur, it is relatively
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easier to spoof a single entity rather than a distributed system and validate mali-
cious identities. As more trust and value, informational or otherwise, is placed in
IoT networks, these types of attacks will become much more widespread as the ben-
eficial yield would outweigh the resources required to take such a network down.

To address this, the abstraction of the PKI stack is proposed to a distributed
layout with the aid of blockchain technology [2]. In PKIs, Certificate Authorities
(CA) act as the validation oracles for any identities in the network by issuing identity
certificates and subsequently validating them cryptographically. These authorities
possess a single cryptographic keypair that, if compromised, can result in devastat-
ing consequences as the possessor of the keypair would be able to issue, adapt, and
revoke an unlimited number of identities, thus resulting in the compromisation of
the whole network.

CHARIOT decided to break down the components that make up the issuance
and verification process of a CA, simplifying them where possible and finally re-
implement them using blockchain-based smart contracts. As an initial step, the
bare necessities of a PKI network were defined in association with a cryptographic
identity, thus an identifier, with a set of metadata that could either reside in on-
chain data or simply act as a validator of off-chain data, such as a cryptographically
secure hash. To enhance the basic indications of a PKI identity, which are “valid,”
“expired,” or “revoked,” an additional field is added to signal the status of the iden-
tity. This field takes the form of an unsigned integer, which is utilized in CHAR-
IOT solution as a binary abelian group code. This code can be used to represent an
arbitrary amount of statuses and, being a simple representation of ones and zeroes,
depends on the software implementation for assigning a binary group to a status
code. This results in a modular system that can easily be expanded in scope.

By using smart contracts, we ensure that all on-chain computations will
be relayed across the network and ensure that any alterations to the underly-
ing database will be available to queriors of the blockchain instance from any
blockchain node on the network. This allows the network to remain operational
even if a percentage of the network is compromised. Although in the CHARIOT
implementation, the IoT gateways were utilized as nodes in the blockchain net-
work, as the forthcoming technological advancement in the IoT’s computational
capabilities will enable them to become blockchain nodes themselves, empowering
verification of identities in a bilateral format (both gateway and sensor identities
verified) rather than a unilateral format (only sensor identities verified).

With regard to the actual invocation process of a contract’s identity issuance,
revocation, and adaptation method, a multi-signature protocol has been imple-
mented rather than a single-signature one. As the acceptance policy is precon-
figured during the setup of the CHARIOT solution, it is possible to construct
an n-out-of-m scheme that would satisfy even the most rigorous security policies.
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For instance, for the installation of a sensor, the four-eye principle could be applied
by requiring signatures by both the installer of the sensor and the manager of the
site in which the sensor is installed.

13.1 CHARIOT Blockchain Requirements

In parallel, a custom-built cryptographic protocol was utilized rather than a readily
made one as that allowed greater freedom in the implementation approach as well to
ensure that it would be able to be adapted if it is necessary in the future. To construct
cryptographic signatures that would be accepted by the CHARIOT blockchain sys-
tem, one needs to sign a payload that matches the CHARIOT blockchain require-
ments. These requirements are as follows:

(a) All members of the payload utilize the hyphen character “-” with ASCII
code 45.

(b) The first member of the payload is a shorthand for the type of operation.
These shorthands are defined in the smart contract directly and represent
actions on the types of assets stored on the blockchain. Here, assets refer
to the types of identities handled in the blockchain. For the purposes of
CHARIOT, a set of assets have been defined that are applicable in this
case: “Software”, “Sensor,” “Service,” and “Administrator.” These assets have
been assigned the following shorthands: “sw,” “ss,” “se,” and “ad,” respec-
tively. The types of assets and their corresponding shorthands are entirely
implementation dependent and are in no way restraint by the underly-
ing implementation of CHARIOT. By following the conventional Create-
Read-Update-Delete operations, commonly referred to as CRUD, the types
of operations are defined as the initial of the operation followed by the short-
hand of the asset type, e.g., css means (c)reate (s)en(s)or, whereas usw means
(u)pdate (s)oft(w)are.

(c) The second member of the payload is the nonce of the identity signing
the payload. If we simply sign a static payload that would not differenti-
ate between subsequent signatures of the same action on the same asset,
an attacker would be able to intercept a signature and replay it across the
network to, for example, re-instantiate a previously decommissioned sen-
sor. To prevent this, the same nonce-based system has been adopted in use
by the Ethereum blockchain [3], a linearly incremental unsigned integer
that begins at zero and increases by one after each transaction accepted in
the network. This nonce is directly stored on the blockchain itself and is
retrievable by all nodes to enable proper validation of incoming signatures
at all endpoints.
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(d) The third and final member of the payload is the identifier of the asset we
wish to alter. This identifier usually takes the form of the encoded public key
of the identity, although the protocol we have devised supports an arbitrary
identifier.

The aforementioned specs lead to the creation of a pseudo-language, also known
as a Domain-specific Language (DSL), that is machine-readable and easily convert-
ible to a human-readable format. Additionally, the nonce-based scheme heightens
the security of the overall solution as it provides protection against a wide variety
of attacks, inclusive of replay attacks as well as race conditions, two issues that exist
inherently in any cryptographic signature-based scheme.

In order to ensure that the specifications of the blockchain platform comply with
the requirements of the testbeds the CHARIOT project has already been deployed
to, feedback was gathered during the blockchain’s design from the owners of the
testbeds and incorporated them to the CHARIOT blockchain when necessary in
collaboration with the other components of CHARIOT. One such requirement
was the increase of security at the services themselves, as the initial vision was for
the CHARIOT services to run in a non-distributed server device that still suffered
from certain types of vulnerabilities. The new requirement of distributed deploy-
ment was tackled by introducing the services as identities within the distributed PKI
network formed by the blockchain and subjects them to the same stringent secu-
rity workflows identities on the blockchain are put through. In turn, this enabled
greater control and security of the services running in the CHARIOT network. As
an additional enhancement, the presence of metadata was introduced within the
identities in the blockchain network to indicate the cryptographic keys that would
be used to encrypt data payloads in an end-to-end fashion to accommodate for the
privacy requirements of the data, as is the case when the Privacy engine of CHAR-
IOT processes data flows in the network.

13.2 CHARIOT Technology Stack

13.2.1 Administrator Keypair Manager

To streamline interoperability integrations of the blockchain service of CHARIOT,
several tools and services were developed and are included in the CHARIOT tech-
nology stack, the first being the Golang CLI CHARIOT administrator keypair
manager. As the scheme that has mentioned above might be slightly complex to
implement, prone to human error and difficult to carry out in a manual way, a tool
was developed that allows simple command-line arguments to be parsed and gener-
ate keypairs and signatures with. Additionally, it is capable of both outputting and
consuming CHARIOT keypairs as exported to the .chrt file format, a file format
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devised in CHARIOT that is a purely textual document structured similarly to
conventional keypair files, as in the keypairs are enclosed within multiple dash
delimiters with a word in between. Apart from the thorough documentation pro-
vided alongside the tool, it was also used to directly implement an externally query-
able JSON-RPC 2.0 API to allow ease of integration with existing tools of the
CHARIOT technology stack that reside within the main CHARIOT network. As
the tool itself is stateless, it is possible to easily scale it out as necessary by spawning
more processes running the same software.

13.2.2 RESTful API

Another tool that was developed for the purposes of integration with the blockchain
of CHARIOT is the RESTful API coded for the Node.JS runtime environment.
Interfacing with the Hyperledger Fabric blockchain instance is notoriously difficult
to non-blockchain-versed developers, and as such, it is naïve to expect both users
and other members of the CHARIOT consortium to integrate the blockchain eas-
ily without additional assistance [4]. To amend this, the Fastify framework was used
along with Hyperledger Fabric’s own Node.JS libraries to create a bridge between
the externally facing API and the internally facing blockchain interface. The Fastify
server essentially transforms the RESTful requests it receives to actionable items
on the blockchain instance and returns the results where applicable. While the
blockchain itself contains an additional layer of traditional PKI, this was abstracted
by not deploying a CA for the blockchain network and instead generating and uti-
lizing a singleton administrator keypair when interacting with the blockchain via
the API. While one may argue the storage and utilization of a single keypair for
interacting with the blockchain may be vulnerable to security issues, this is not the
case with the CHARIOT blockchain implementation as the validity of the trans-
actions themselves is processed directly on the smart contract without any reliance
on the blockchain’s native PKI system. This means that, even if a malicious trans-
action was crafted with the keypair, it would immediately be rejected by the smart
contract as its code is immutable. Even if an attacker attempts to alter the code-
base and create a new version of the contract, which would be possible if he had
possession of the administrator keypair, he/she would still fail to compromise the
network as Hyperledger Fabric’s versioning system prevents the replacement of a
contract’s chaincode with another’s.

13.2.3 New Genesis Transactions

Another limitation of the Hyperledger Fabric blockchain implementation was
the non-dynamic structure of the network. By default, version 1.0.6 of the
Hyperledger Fabric runtime lacks the dynamic network restructuring subsequent
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versions inherently support. To emulate this capability, CHARIOT took advantage
of some of the configuration tools of the blockchain to set new genesis transactions
that would replace the initial genesis transaction of the network and thus allow
dynamic addition and removal of Orderers, the nodes responsible for maintaining
the blockchain network’s state synchronous and without any reconciliation issues.
This case arises when the CHARIOT network needs to scale out by adding numer-
ous more IoT gateways and generic network participants, as maintaining a single
Orderer for an extensive network would prove cumbersome and ultimately unsup-
portable.

13.2.4 Cryptographic Implementation

The underlying cryptographic implementation used for the CHARIOT keypairs
and general signature protocol is based on Elliptic Curve cryptography, specifically
the ecdsa package of the Golang programming language which the smart contract
codebase is programmed in. An exhaustive analysis of the available state-of-the-art
cryptographic suites was conducted at the time of CHARIOT’s initiation period
and pinpointed that the ideal suite for the purposes was, at the time, the ecdsa
package. However, this is not an inhibitor of the future relevance of the CHAR-
IOT blockchain solution as the implementation itself is suite-agnostic provided that
the relevant components are properly updated and/or altered to utilize a different
cryptographic suite. For example, one could introduce a quantum-secure digital sig-
nature algorithm in the future to ensure that the blockchain solution remains secure
even when put under attack by quantum computers. This extensibility capability
expands to all other aspects of the implementation. The CHARIOT implementa-
tion uses certain technology stacks to carry out its vision of a distributed PKI sys-
tem, namely Hyperledger Fabric, a Node.JS-based RESTful API, and a Golang CLI
tool. These software restrictions are irrelevant to the logic of the overall blockchain
workflow, as it can be ported to any programming language one wishes. This type
of abstraction is detailed within the project and one can use a completely differ-
ent blockchain implementation, e.g., Ethereum, to achieve the same results as one
would with Hyperledger Fabric.

The rationale behind the software-dependent choices were made based on
research conducted over the lifetime of the CHARIOT project coupled with
hardware limitations of the CHARIOT gateway built within the project. As is
the case with most industrial grade IoT gateways, the CHARIOT gateway oper-
ates in a real-time operating system environment, meaning that it does not pair
well with event-driven or asynchronous software. This proved to be a strong
obstacle for the blockchain implementation of CHARIOT, since it was aspired
to boast a distributed network of blockchain participants inclusive of the IoT
gateways. For this purpose, a System-on-Module device was integrated that would
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be capable of operating a conventional operating system and create it as an adapter
between the real-time environment of the gateway and the asynchronous nature
of the blockchain. By forming a wired bridge between the System-on-Module
and the motherboard of the CHARIOT gateway using Universally Asynchronous
Receivers-Transmitters, were able to relay data gathered from the blockchains’ lat-
est state to the gateway whilst also being able to respond to actuations made by the
IoT gateway and properly convey the result of these actuations, such as on-demand
queries of a sensor’s identity.

The System-on-Module itself needed to satisfy the bare minimum operational
requirements of a blockchain instance which meant that a powerful yet com-
pact System-on-Module has to be attached to the gateway. Power to it was pro-
vided through direct tapping of the gateway’s power source. A new issue that
arose with using a System-on-Module was the available software implementations
of the blockchain in specific architectures. The software runtime of the Hyper-
ledger Fabric project did not include the ARM family of architectures, and as such,
CHARIOT had to resort to building its own implementation from the source
code. This proved to be a hindrance, as no one had compiled the Hyperledger
Fabric runtime for ARMv8, the 64-bit architecture of the System-on-Module.
Significant alterations have to be done to the build instructions and choose a
specific Hyperledger Fabric version to continue with to ensure full compatibility
with the API of the blockchain. In the end, CHARIOT went forward with the
1.0.6 version as the 1.1.0 version, the latest available one at the time, appeared
incompatible with the ARM architecture after attempts at compiling it inside the
environment, meaning it required heavy alterations that were out of scope of the
project.

13.3 Scalability, Integration, and Testing

While the blockchain itself is inherently scalable due to its segregated structure, the
overlaying services needed to be somehow adapted to exemplarily operate under a
scalability scenario. To this end, deployment scripts were coded to automate the
process of spawning an instance of the software and used these scripts to create
deployment pipelines that contain instructions on how to deploy the various com-
ponents of the CHARIOT blockchain in the Docker environment. By storing the
code of the components in virtualized containers, overlay services were set up to
manage the life cycle of these containers automatically and scale the network as
necessary, ensuring that the systems remain operational even under extreme net-
work load. Additionally, load-balancing services can easily be appended on top of
the architecture to properly delegate network load to the containers spawned under-
neath the load balancer.
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The environments the CHARIOT project is and will be deployed in are
extremely time-sensitive, as even a minor delay in the measurement of a critical
sensor can lead to catastrophic results. To properly conduct tests on the blockchain
solution and ensure that it does not become the bottleneck of the overall solution,
multiple unit tests have been devised that thoroughly check the correct operation
of the underlying logic. These unit tests were coded with a framework that simul-
taneously produced coverage reports, enabling us to identify which segments of the
codebase were not thoroughly tested and required extra test suites. While these unit
tests provided us with an indicator of the correct operation of the logic, they failed
to provide any insight as to how the solution fares under extreme load. For this pur-
pose, load-testing tools produced multiple HTTP requests under a multi-threaded
context and tracked the resulting response times, codes, and other such metadata.
The results gathered from the tests indicated that the blockchain provides a small
yet non-negligible overhead, and as such, optimization techniques opted to speed
up the identity validation process of the solution.

One such optimization was the introduction of an in-memory table of recently
verified identities that are retrieved and retained on boot time at the gateway level.
This method acts similarly to how popular cache-based data stores work such as
Redis. The resulting speed was near real time, as the codebase migrated for extract-
ing the public key of a signature payload from the System-on-Module to the gate-
way’s codebase in C thus decreasing the necessary execution time and allowing the
gateway to self-sufficiently verify an identity provided that it exists in its cache table.

13.4 Conclusions and Future Work

The blockchain solution of CHARIOT acts as proof of a viable blockchain inte-
gration in the context of IIoT security, and it paves the way for wider adoption
of this novel technology; if utilized correctly, it can resolve certain issues faced by
contemporary solutions. As future steps, we aspire to enhance the solution over the
course of the CHARIOT project with the requirements from the other services of
the solution stack as well as the requirements of the pilot cases themselves.
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Chapter 14

Leveraging Interledger Technologies
in IoT Security Risk Management

By Dmitrij Lagutin, Yki Kortesniemi, Vasilios A. Siris,
Nikos Fotiou, George C. Polyzos and Lei Wu

There are security vulnerabilities in all technological systems but particularly in
many Internet of Things (IoT) solutions. Responsible disclosure has been the estab-
lished approach for the security community to deal with the discovered vulnerabil-
ities, but this approach does not fare well in the modern fast-paced world and, in
particular, in the low-cost, often highly constrained, long-expected usable lifetime,
yet highly volatile IoT space. This chapter proposes a Distributed Ledger Technol-
ogy (DLT) and interledger-based Automated Responsible Disclosure (ARD) solution
that provides stronger incentives to the involved parties to address the vulnerabili-
ties in a timely manner, better accountability of all parties, and, as a result, better
security for the public at large.

14.1 Introduction

Responsible disclosure is a model to disclose security vulnerabilities in a way that
allows the vendor some time to create a fix before the vulnerability is publicly
revealed. Responsible disclosure is best known and associated with software prod-
ucts and bugs in software, but it applies to both software and hardware, and more
generally any products with security features. Most security experts use this model
to report vulnerabilities [1].
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This model is of particular interest in the context of the Internet of Things
(IoT) for several reasons. First, there have been many significant security vulner-
abilities in IoT devices. Not only are many IoT devices relatively unsophisticated
and often very limited in capabilities, but they are also often more exposed yet less
frequently or even completely unmonitored during their operation for extended
periods of time. Furthermore, because of the relatively low price and margin of IoT
devices, and often fast progress in the domain, many manufactures are disinterested
in addressing vulnerabilities publicised in their products. Many of the products have
only short market lifetimes and all compete for very fast time to market, leading
to an abundance of security issues in products. Finally, because of all these prob-
lems, IoT devices have been exploited and have caused recently highly publicized
security problems with significant impact [2, 3], and these problems are unlikely
to significantly diminish in the near future.

The idea behind the responsible disclosure is sound, but unfortunately it often
does not work that well in practice. In many situations, there are no clear and
enforced time limits after which the vulnerability will be disclosed, and the vendors
behind vulnerable products often request extensions to the disclosure if they are not
able to provide fixes in time. Also, there have been several cases where the security
experts have been pressured, threatened, or even sued by vendors to not release
the vulnerability within a reasonable time frame [4, 5]. As a recent example from
August 2019, a security researcher found a vulnerability in Valve’s Steam gaming
client, but as the vendor was not interested in fixing the issue, the researcher then
wanted to publish the findings, and the vendor promptly banned the researcher
from the HackerOne1 bug bounty platform [6]. Furthermore, due to the lack of
transparency to the details of the vulnerability, the vendor may release a fix that
does not properly address the vulnerability merely to appear as security conscious.
And finally, it is impossible for the customers and the public in general to know
how many vulnerabilities in each vendor’s products have been identified and how
many of them remain unfixed.

Even if most vendors put emphasis on security in their advertising, in reality
vendors often do not have clear incentives to create secure products or fix their
vulnerabilities quickly, which is apparent from a simple cost-benefit analysis:

1. Vendors are typically companies that aim to maximize their profits, which
can be expressed as: revenue-expenses.

2. It is not possible for a vendor to generate significant extra revenue by improv-
ing the security of its products, since proving or measuring security of the
product is practically impossible (it cannot be practically proved that a prod-
uct is secure, only that it is insecure).

1. https://www.hackerone.com/

https://www.hackerone.com/
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3. Similarly, insecure products will not make the vendor lose a significant
amount of revenue, since the current Responsible Disclosure scheme does not
reveal the number of vulnerabilities to the general public and allows the ven-
dor ample time to fix its products. Since most of vulnerabilities are released
to the general public only after a long period of time, most of customers do
not suffer too much or too often from using insecure products, and therefore,
they do not have a clear incentive to switch to another vendor.

4. Creating more secure products is expensive (it requires more development
time, more experienced developers, better processes, more time for testing,
etc.); the vendor will often rather minimise the costs by making less secure
products.

Per 2 and 3 above, vendor revenue will not be adversely affected by insecure
products, yet per 4, creating less secure products reduces expenses. Therefore, per
1, providing less secure products tends to maximise the vendor’s profits.

Now, if the vulnerabilities would be disclosed in more strict and transparent
manner, the situation would change. Vendors behind insecure products would lose
reputation and would have a harder time selling products. Customers could, for
instance, demand agreements from vendors with bad security history that in the
case a serious vulnerability is found in the product, the vendor would pay compen-
sation to the customer, etc. As a result, vendors would have strong incentives to
improve the security of their products, and overall, there would be financial incen-
tives to provide more secure products and fix vulnerabilities quickly, which in turn
would lead to more secure products in the market.

Transparency of vulnerabilities is also important because even if the vulnerability
has been found and responsibly disclosed by a one expert, it does not mean that
no one else in the world knows about it. In fact, it is very likely that the same vul-
nerability has already been found by other actors, such as criminal organisations,
which do not have any incentives to disclose it to the vendor and commonly trade
vulnerabilities on black markets [7]. From the customers’ point of view, it is cate-
gorically better to know that a vulnerability exists (even if the whole world knows
about it), compared to the situation where the vulnerability exists but the customers
do not know about it. At least in the former case the customers can take actions to
mitigate the risk (stop using the vulnerable product temporarily, install additional
safeguards, etc.), while in the latter case the customers cannot predict or mitigate
attacks in any way since they are not aware of the possibility of the attack. Therefore,
a long time between the vulnerability discovery and the related public disclosure
increases the possibility of security breaches and decreases the overall security.

To succeed, any practical implementation of Responsible Disclosure also has
to be able to deal with the scale of vulnerabilities, so because of the huge num-
ber of IoT devices with diverse capabilities and operations, a fully—or almost
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fully—automated set of procedures for recording vulnerabilities and their corre-
sponding patches in a transparent and non-repudiated way is necessary to ensure
the security and ultimately the success of IoT deployments.

Distributed Ledger Technologies (DLTs) and interledger mechanisms can be
leveraged to immutably record when a vulnerability is disclosed to authorities
and/or vendor, and after a certain time period (which should be the same regard-
less of the vendor in question) the vulnerability is then automatically revealed to
the public (regardless of wherever it has been fixed or not), or at least the meta-
data would be revealed (that vendor X did not fix the vulnerability within a certain
timeframe). On a technical level, this would be implemented by putting the vul-
nerability disclosure, V, to a private ledger for security authorities and vendor or
vendors, and recording the hash of the vulnerability along with the vendor, prod-
uct, and time information on a public ledger. As a result, the vendors would have
stronger incentives to improve the security of their products.

This chapter is organised as follows: Section 14.2 provides background on
DLTs, smart contracts and chaincode, the corresponding functionality in per-
missioned blockchains, interledger technologies, and Decentralized Identifiers
(DIDs). Section 14.3 then briefly presents the history of and the state of the
art in vulnerability disclosure approaches. Section 14.4 gives an overview of the
proposed Automated Responsible Disclosure (ARD) approach of IoT risk man-
agement through interledger-enabled disclosure with accountability. Section 14.5
provides an evaluation of the design, and Section 14.6 presents the conclusions
and proposed future work in order to establish, promote, and practically evaluate
the approach in the real world.

14.2 Background

The Automated Responsible Disclosure (ARD) solution proposed in this chapter
builds on four key technologies: distributed ledger technologies, smart contracts
and chaincode, interledger functionality, and Decentralised Identifiers.

14.2.1 Distributed Ledger Technologies (DLTs)

Distributed Ledger Technologies (DLTs), such as blockchains, offer decentralised
solutions for collaboration, interoperability, and trust. One of the main features of
DLTs is the immutability of data: ledgers are append-only databases where existing
data cannot be modified and only new data can be added. Another major feature of
DLTs is a distributed consensus mechanism [8], which controls what and how data
are added to the ledger. Finally, DLTs also replicate data to participating nodes thus
improving availability. Because of these three properties, DLTs avoid single points
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of failure and offer resilience against many attacks. It is relatively easy to determine
if any of the participating nodes in the DLT are misbehaving and even in an extreme
case, where an attacker manages to control the majority of the DLT’s resources, the
attacker still cannot modify the existing data, only control the addition of new data.

DLTs can be implemented with different levels of openness. They can be fully
open (permissionless), which means that anyone can join the DLT and propose
transactions; most well-known DLTs such as Bitcoin and Ethereum are based on
this principle. However, DLTs can also be permissioned, which makes them either
semi-open, in which case read access is open to everyone but write access is restricted,
or closed, in which case both read and write access are restricted.

The main practical innovation of DLTs is the enablement of distributed trust.
While there have been multiple proposals for distributed databases in the past,
they have mostly concentrated on the distributed implementation, while the trust
model has remained firmly centralised. In contrast, DLTs allow various entities that
may not fully trust each other, such as individuals, organisations, and companies, to
collaborate in a safe and transparent manner, with only a low risk of being cheated
by others.

14.2.2 Smart Contracts and Chaincode

Smart contracts [9] are another important feature provided by several DLTs: they are
distributed applications that are executed on the ledger. Whenever an entity inter-
acts with a smart contract, these operations are executed by all (full) nodes in the
DLT network in a deterministic and reliable way; one of these nodes is then selected
to store the contract’s execution outcome (if any) in the ledger. Smart contracts can
verify DLT identities and digital signatures, perform general purpose computations,
and invoke other smart contracts. The code of the smart contract is immutable and
cannot be modified even by its owner. Moreover, since all transactions sent to a
contract are recorded in the DLT, it is possible to obtain all historical values of
the contract. Smart contracts typically refer to code running on the Ethereum (in
which case they are Turing-complete), but similar functionality is available in other
DLTs. In particular, in the permissioned Hyperledger Fabric, similar functionality
is called chaincode, and simpler, more constrained scripts can also be run on Bit-
coin. Smart contracts or similar functionality is critical for automating processes
and will be exploited in the techniques described later.

14.2.3 Interledger Functionality

There exists a large number of DLTs each offering different trade-offs in terms
of latency, throughput, consensus algorithm, functionality, etc., thus rendering
them suitable for different types of applications. For example, a DLT can focus on



234 Leveraging Interledger Technologies

cryptocurrency payments, recording of IoT events, or access authorisation. In com-
plex systems, it is therefore often not feasible of efficient to use only a single DLT for
everything; hence, the interledger approach that allows different DLTs to exchange
data with each other is required in many situations. Using multiple ledgers is also
beneficial for privacy reasons: participants within a DLT need to be able to access
all data stored in that DLT to independently verify its integrity, which encourages
the participants to use private ledgers and store only a subset of the data to the
main ledger used for collaboration with others. A concrete example of the use of
interledger is the following: data are stored in a closed ledger and simultaneously
related information (e.g., a hash of the original data) is stored to a semi-open or
open ledger. At a later time, the original data are revealed and the hash in the (more)
open ledger guarantees that the original data have not been modified.

Multiple ledgers are also necessary for crypto-agility, as cryptographic algorithms
used by DLTs (such as SHA-256) will not stay safe forever; thus, it is necessary
to have a mechanism to transfer data from one ledger to another. Siris et al. [10]
present a review of interledger approaches, which differ in their support for trans-
ferring and/or trading value between ledgers, whether they support the transfer of
information in addition to payments across ledgers, the balance between decen-
tralized trust and cost (which can include both transaction cost and delay), the
level of privacy, and their overall scalability and functionality that can facilitate the
innovation of the DLT ecosystem. Finally, interledger functionality may also utilize
hash-locks, which are cryptographic locks that can be unlocked by revealing a secret
whose hash matches with the value configured in the hash-lock. By using the same
secret value on two or more ledgers, it is possible to achieve cross-ledger atomic
operations, where the first transaction reveals the secret, which in turn is used to
unlock the transaction on the other ledger(s). If the secret is never revealed, none
of the transactions will succeed.

Interledger mechanisms, which in the above example involve the hash of data
stored in a private ledger, allow securely linking information and/or transactions
stored on multiple ledgers. Such mechanisms can be used to create a dependence
relation that allows the execution of smart contracts functions on one ledger only
if some data has been recorded or transactions have been performed on another
ledger. As discussed in Section 14.4 that describes the ARD approach, the above
feature ensures that the time dependency and order of events on the public and
private ledgers are automatically and transparently enforced.

14.2.4 Decentralized Identifiers (DIDs)

Currently, an identity technology receiving much attention is the Decentral-
ized Identifiers (DIDs). A key aspect of DIDs is that they are designed not to
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be dependent on a central issuing party (Identity Provider or IdP) that creates
and controls the identity. Instead, DIDs are managed by the identity owner
(or a guardian on the owner’s behalf ), an approach known as self-sovereign
identity [11].

There are several different DID technologies in development [12], some of the
most prominent being Sovrin, uPort, and Veres One. These technologies started
with similar but individual goals in mind, but lately many of them have adopted
the approach and format of the W3C DID specification [13] thus rendering them
more and more interoperable. The specification defines a DID as a random string,
often derived from the public key used with the identity. If a new DID is allocated
for every party one operates/communicates with, correlating one’s activities with
different parties would be significantly harder to achieve. This property can be fur-
ther enhanced by replacing existing DIDs with new ones at suitable intervals, even
after just a single use.

Yet, DIDs alone do not suffice, as some means of distributing the related public
keys, any later changes to the keys, or other identity-related information is required.
To this end, many of the DID solutions rely on a DLT for public DIDs (used by
parties that want to be known publicly), whereas for private DIDs (e.g., used by
individuals or their personal IoT devices) an application specific channel is used to
distribute the information. Some DID technologies, e.g., Sovrin and Veres One, are
launching their own permissioned DLTs, while others rely on existing blockchains
(e.g., uPort is built on top of Ethereum). All three example technologies originally
intended to use DLTs/blockchains for distributing information about private DIDs,
but the emergence of the General Data Protection Regulation (GDPR) [14] in the
EU and other similar changes have made storing personally identifiable information
on a non-mutable platform such as a DLT/blockchain problematic. For this reason,
Sovrin and Veres One have already excluded individuals DIDs from the ledger,
and similar treatment may face the DIDs of IoT devices if they reveal personal
information about their owner.

In ARD, DIDs are used to protect the privacy of security experts discovering the
vulnerabilities to prevent any undue pressure to suppress the findings.

14.3 Previous Work

Disclosure of vulnerabilities has long been an important challenge in software
industry, because security vulnerabilities are among the major reasons for security
breaches [15], and vulnerabilities have been extensively exploited in many success-
ful attacks [16]. Since IoT devices interact with the real world, there are poten-
tially high risks with severe impacts (in particular with actuation directly leading
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to safety concerns). At the same time, the growing number of IoT devices intro-
duced in recent years and the new types of data coming with them have increased
the security risks both for the industry [17] and the in consumer IoT domain [18].
As an example, a case study on baby monitors [19] details how many baby mon-
itors ship with static credentials and other vulnerabilities allowing access to the
confidential information provided by the devices. Together, the above-mentioned
risks in software systems and the flaws in the IoT systems can be highly danger-
ous and cause significant economic losses [20], which draws considerable discus-
sion on how such risks can be controlled and how related vulnerabilities should be
disclosed [21].

Over time, many different approaches have been proposed for the mechanisms
of vulnerabilities disclosure. Traditionally, the so-called full vendor disclosure has
been used; there the vendor has full control over how and when a vulnerability
is disclosed, which leaves many vulnerabilities totally unfixed or fixed only after a
long delay [22, 23]. In order to solve the problem of full vendor disclosure with
public at risk, the immediate public disclosure has been proposed, which introduces
a direct and strong incentive for the related vendor to fix the released issue as fast
as possible [24]. Even though early disclosure of the vulnerabilities can drive faster
fixing and uptake of mitigating measures by related parties to reduce the risk, the
attackers can also exploit the released vulnerability to attack already before a patch
is delivered by the vendor [25]. To address the conflicts between vendor and users,
a hybrid disclosure approach, responsible disclosure, was introduced: the vendor is
allowed some time to develop a patch before the vulnerability is disclosed by the
finder [26]. This way, the vendor is given the opportunity to fix the vulnerabil-
ity in time without the dangers of immediate exposure, but the public can still
learn about the existence of the vulnerability in case the vendor fails to deliver
a patch.

To coordinate the process between vendors, finders, and users, often a Com-
puter Emergency Response Team/Coordination Center (CERT/CC) is used as
a trusted third party. The economics of the vulnerability disclosure process
has been studied [27] to shed light on the interaction between participat-
ing parties. There was a trend of using market strength to achieve the opti-
mization of social benefit in the vulnerability disclosure process [28], though
many [29, 30] criticize that the market solution performs no better than existing
solutions.

Different vulnerability disclosure approaches have been compared and evaluated
in their efficiency [31], and with the corresponding cost, benefits and risks provided
in [32]. The work in [33] offers another angle for the life cycles of software vul-
nerabilities, which is based on analysis in seven dimensions for more than forty
thousand vulnerabilities reported in the past few decades.
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14.4 Automated Responsible Disclosure (ARD)

The parties to responsible disclosure, and the proposed Automated Responsible Dis-
closure (ARD) mechanism, can be divided into the following categories, as shown
in Figure 14.1.:

• Vendors provide software and hardware-based (IoT) solutions to customers.
• (Consortia of ) Authorities are in charge of managing security vulnerabilities;

there may be multiple such authorities in a single country or region.
• Security Experts discover new vulnerabilities.
• General public, press, etc. who may be customers of the Vendors, or otherwise

interested in the security of available services.

To improve responsible disclosure, the ARD solution has been designed with the
following goals and assumptions:

1. The Security Experts cannot be intimidated to prevent the disclosure of vul-
nerabilities.

2. The Authorities can validate the reported vulnerabilities to prevent false
reports.

Authority

Expert

Vendor

General 
Public

1. Full vulnerability
no�fica�on

2. Full 
vulnerability

no�fica�on

3. Vulnerability
confirma�on

2. Existence of 
vulnerability

4a. Patch

4b. Full disclosure 
of vulnerability

Public ledger

Private ledger

1. Meta-data 
of vulnerability

Interledger

4a. Patch 
informa�on

Figure 14.1. Entities of the interledger-enabled ARD solution.
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3. The Vendor is clearly notified about each vulnerability and has to agree to
fix it within the grace period; otherwise, the vulnerability is immediately dis-
closed.

4. Releasing a fix results in automatic disclosure of the vulnerability.
5. If a fix has not been released before the grace period has expired, the vulner-

ability is automatically disclosed.
6. Authorities are trusted to try to operate correctly, e.g., to prevent uninten-

tional leaks of vulnerability information, correctly screen reported vulnera-
bilities, etc., but disclosure cannot be prevented by the Authority.

The solution is designed to utilize two distributed ledgers, a private one main-
tained by the Authority and used for storing the details of the vulnerability during
the disclosure process, and a public one for first disclosing the existence of a vulner-
ability and later the details of the vulnerability. A key element is then the interledger
functionality, which facilitates the automatic disclosure of the information from the
private ledger to the public one once the conditions for disclosure have been met.
In the basic case, the interledger functionality is run by the Authority or some other
trusted party, but for additional security and resilience, the interledger functionality
can be implemented in a distributed manner over a consortium of parties.

Technically, the public and private ledgers can utilize any suitable ledger tech-
nology (permissioned for the latter, and permissionless or permissioned for the for-
mer). The public ledger is readable by all, while some of the write operations are
restricted. Anyone has a permission to store metadata of the vulnerability informa-
tion (including its hash), which can be achieved, e.g., by a smart contract owned
by the Authority. Additionally, write operations related to confirmation of vulnera-
bility, notification of patching the vulnerability, and full disclosure of vulnerability
information are limited to the Authority, Vendors, interledger, and the Security
Expert who reported the vulnerability.

The private ledger can be implemented, for example, using Hyperledger Fab-
ric, a permissioned DLTs, and a separate chaincode (which corresponds to a smart
contract in Fabric) per Vendor. In Fabric, the vulnerability information is stored as
a private data collection and the chaincode controls the access to the vulnerability
using a hash-lock (see Siris et al. [10]). The hash-lock’s secret is generated by the
Security Expert and also known by both the Authority and Vendor and is revealed
as necessary to the interledger, after which the interledger functionality can retrieve
the vulnerability information from the private ledger and write it to the public
ledger. The same secret is then used to lock the functionality Vendor is using for
notifying of fixing the vulnerability, so Vendor’s notification would reveal the secret,
which would then allow the interledger functionality to retrieve and publish the full
vulnerability information.
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1. Vulnerability reported to authori�es,
hash, secret, and meta-data 
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Figure 14.2. State diagram of the ADR mechanism.

If there is a bounty mechanism for discovering vulnerabilities, the Security
Experts can be identified using ephemeral decentralized identifiers (DIDs) or simi-
lar anonymous identifiers thus allowing them to claim the bounty while preventing
the vendor from intimidating the Experts. The other parties in the solution can uti-
lize longer term public identifiers including public DIDs.

ARD functions as follows, as described in Figure 14.2.:

1. The Security Expert, who has discovered a vulnerability V, generates the asso-
ciated secret s and reports the vulnerability (together with the secret s) with a
sufficient detail to the Authority, and optionally to the Vendor. The Security
Expert also calculates the hash over the vulnerability information and stores
this hash, H(V ), along with hash over the secret, H(s), and other relevant
metadata (Vendor’s name, product name, affected version, etc.) to the public
ledger, using a previously published mechanism, e.g., a smart contract.

2. The Authority, once they have ascertained the report is not bogus, stores the
details of the vulnerability in the private ledger. The interledger functionality
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then commits a transaction to public ledger stating that the Authority con-
firms that the previously reported vulnerability (with hash H(V )) is valid.
If the report is a duplicate of a previous report, this is noted in the confirma-
tion and the disclosure will follow the timeline of the original report.

3. The Vendor is notified of the new vulnerability. They now have a fixed time
period (e.g., two weeks) to fetch the details of the vulnerability from the
private ledger and either:

a. confirm and agree to fix the vulnerability by storing their agreement to
the public ledger, in which case they are accorded the grace period of, e.g.,
six months,2 or

b. deny/ignore the vulnerability and do nothing, in which case the Authority
will reveal the secret s3 to the public ledger and the interledger function-
ality will automatically disclose the vulnerability from the private ledger.

4. If the vendor has agreed to fix the vulnerability, and then

a. releases a fix and stores a corresponding notice on the public ledger to
indicate the vulnerability is now fixed, after which the interledger func-
tionality will publish the full vulnerability information, which in turn
will mark the vulnerability resolved. If the vendor wants its customers to
have some extra time to update their systems, it can first indicate the fix
is upcoming, and then after some time period marks the vulnerability as
fixed. If, however the grace period runs out with no fix,

b. the interledger functionality automatically discloses the vulnerability as
above.

5. After the vulnerability has been disclosed, the security expert can claim the
vulnerability report for credit and any bounty offered.

In Steps 1 and 2, the vulnerability report has to identify the Vendor (e.g., with
their DID) and the product (e.g., with a vendor-specific identifier provided by the
vendor). The same vendor and product ids are then included in the notice on the
public ledger, which allows general public to know the number of known but not
yet fixed vulnerabilities per vendor and per product.

In Step 3, if the vendor acknowledges the vulnerability, the vendor signs a proof
of delivery (with their private key, tied to the public DID) containing the times-
tamp, the hash of vulnerability disclosure H(V), and the relevant metadata (affected
product name and version, etc.). This acknowledgement is stored in the publicly
accessible ledger.

2. The Vendor can also mark the vulnerability as a duplicate of the previously reported one, in which case it
will be disclosed simultaneously with the original vulnerability, as mentioned above.

3. If the Authority does not reveal the secret s in a timely manner, the Security Expert can also do the same.
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Therefore, in the solution the vulnerability is always automatically disclosed by
the interledger functionality in one of the three possible moments depending on
the actions of the vendor:

• Immediately (if the vendor does not acknowledge it)
• After a fix has been released
• After the grace period if no fix has been released

The periods for acknowledging the vulnerability, after a fix has been released, and
the grace period can be customized by the authority based on country, necessary
security level, etc. For instance, for critical products, the period can be shorter.

Similarly, the bounty system can be customized: it can, e.g., contain a fixed com-
pensation by the authority and an additional compensation by the vendor or by
third parties for select products.

14.5 Analysis

The solution meets the five requirements listed in the beginning of Section 14.3:

1. The security experts cannot be intimidated to prevent disclosure.
All vulnerabilities are reported under ephemeral anonymous identifiers thus
maintaining the anonymity of the security expert throughout the process and
preventing any intimidation.

2. The authorities can validate the reported vulnerabilities to prevent false reports.
The authority vets all vulnerabilities before they are accepted to a suitable
level to weed out bogus reports.

3. The vendor is clearly notified about each vulnerability and has to agree to fix it
to gain the grace period; otherwise, the vulnerability is immediately released.
The existence of a new vulnerability related to a product of the Vendor is
clearly published on the public ledger to provide the vendor sufficient time
to agree to or deny the vulnerability. If the Vendor does not agree to fix the
vulnerability, the Authority publishes the secret s on the public ledger after
which the vulnerability is automatically disclosed.

4. Releasing a fix results in an automatic disclosure of the vulnerability.
Publishing the fix on the public ledger triggers the automatic disclosure after
a short wait period.

5. If a fix has not been released before the grace period has expired, the vulnerability
is automatically disclosed.
The Authority (or the Security Expert) will reveal the secret s after the grace
period has run out, after which the interledger functionality will automati-
cally disclose the vulnerability.
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To further evaluate the solution, the potential dishonesty of each party has to be
considered.

If the Security Expert reports a non-valid vulnerability. There is the potential risk
that the system is flooded with irrelevant information, e.g., to make the product
appear to contain more vulnerabilities than it actually has. To prevent that, the
Authority vets all reports, which can help prevent the obvious bogus reports, but
non-trivial fakes may pass depending on the level of scrutiny. However, in this
respect, the solution is not worse than existing solutions.

Duplicate reports of the same vulnerability. Valid but duplicate reports (either
intentional or unintentional) of the same vulnerability can make the product appear
of lower quality due to the increased number of reported vulnerabilities. To avoid
this, duplicate reports can be marked by either the Authority or Vendor as duplicates
of a previous report. Thus, they will not affect the number of individual vulnerabil-
ities discovered, but each report will be eventually disclosed using the same timeline
as the original report.

The Authority does not accept valid reports. This is always a potential issue as one
can either have a mechanism to vet the reports to prevent spamming or have guar-
anteed acceptance of reports with a related spam issue. To reduce the risk of valid
reports not being accepted, in addition to reporting the vulnerability to the Author-
ity and optionally to the Vendor, the Security Expert stores the hash of vulnerability
with associated metadata in the public ledger. If the Authority has not accepted a
valid report, the Security Expert can then publicly reveal the vulnerability,4 which
together with the previously stored hash will make it obvious that the Authority
did not handle the reported vulnerability properly.

The Authority does not disclose the vulnerability after the grace period has expired.
In this case, both the Security Expert and general public will know that the vul-
nerability information has not been disclosed properly by the Authority, and the
disclosure process can also be triggered by the Security Expert, who also possesses
the secret needed.

The Vendor denies the existence of a valid vulnerability. In that case, the vulnera-
bility is automatically disclosed thus providing a clear incentive to remain truthful
or risk lose customers’ trust.

The Vendor claims the fix is effective when it’s not. Releasing a fix triggers a disclo-
sure, which would reveal the fix is not effective thus providing a clear incentive to
remain truthful.

4. This can be performed either using the same smart contract used for reporting vulnerability metadata, or
any other channel.
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The Vendor tries to extend the grace period. All time periods are automatically
enforced preventing any extensions.

Furthermore, it is important to note that the actions performed by all par-
ties, including the actions of the entity providing the interledger functionality,
are transparently and immutably recorded on the public ledger. Hence, the trans-
parency is increased and any attempts for misbehavior can be identified in a
non-repudiable manner. The general public will also know the number of found,
confirmed, but unpatched vulnerabilities per Vendor and product. This provides
incentives for Vendors to patch vulnerabilities quickly and create more secure
products.

14.6 Conclusions and Future Work

This chapter has introduced the Automated Responsible Disclosure (ARD)
approach to automate the process of vulnerability disclosure for products and sys-
tems, designed a mechanism to implement it, and presented an initial analysis con-
firming the achievement of the design. This approach is motivated by, and addresses
in particular, IoT systems risk management.

The solution is an interledger-enabled automated responsible disclosure provid-
ing accountability and appropriate incentives to the involved parties. The solution
relies on DLTs, smart contracts and chaincode, interledger technologies, and decen-
tralized identifiers, and extends the state of the art in responsible disclosure. The
analysis of the design shows that the goals set are achieved automatically, even with
external forces trying to disrupt the normal operations. Immutable recordings of
actions of the involved parties on a public blockchain provide additional assurances
(and incentives for the involved parties) in the case the design assumptions do not
hold (or in case of various failures).

The designed mechanism does not include any mechanisms to automatically
compensate the expert(s) who found and reported the vulnerability. However, DLTs
and interledger mechanisms are very appropriate for providing this functionality as
well. It was omitted from this discussion in order to simplify the design and avoid
obscuring the key functionality and properties of the solution. This would be an
expected extension after the approach has been accepted in the community, but it
could also be an added feature and advantage for the approach to become accepted.

Further work is required in order to establish, promote, and practically evaluate
the approach in the real world. Relevant authorities, responsible for public security
and safety should probably push for the establishment of such a solution and the
ecosystem around it.
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Epilogue

The rise of the IoT paradigm provides enterprises with significant opportunities
to implement novel systems that improve the automation and intelligence of their
business processes. However, it also comes with a host of new cybersecurity chal-
lenges, which can compromise the ability of organizations to benefit from advanced
IoT capabilities. Most of these challenges stem from the unique characteristics of
IoT systems that differentiate them from other IT systems. Specifically, the cyber-
physical nature of IoT systems obliges organizations to deal with OT (Opera-
tional Technology) and IT (Information Technology) security at the same time.
Furthermore, IoT systems include new types of assets, such as IoT devices and
cyber-physical systems, which introduce novel vulnerabilities and threats that are
not covered by existing security knowledge bases. Likewise, industrial IoT systems
(e.g., digital automation platforms in industrial plants) are increasingly becoming
interconnected, which opens new opportunities for adversaries to attack industrial
platforms. Moreover, organizations that deploy IoT must make sure that they com-
ply with existing and emerging regulations, including general purpose regulations
(such as the GDPR) and sector-specific regulations. In the light of these challenges,
conventional cybersecurity methods must be enhanced with new tools for IoT sys-
tems and services.

In this book, we have introduced a range of novel IoT security systems and tech-
nologies that can cope with the above-listed challenges. The presented IoT secu-
rity systems take advantage of leading-edge digital technologies in order to provide
novel security tools and capabilities that are hardly possible based on conventional
cybersecurity techniques. Prominent examples of such digital technologies include
machine learning and blockchain technologies. Likewise, the novel techniques that
are presented in the book include techniques for IoT data modeling, cybersecu-
rity risk assessment, mapping of technical security measures to GDPR compliance
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requirements, techniques for security information data sharing, security interoper-
ability solutions, and more. Specifically, the following research methods and tech-
niques are presented in the various chapters:

• Security data models for risk assessment in IoT systems, as well as for the
configuration of the associated IoT security platforms and mechanisms, and
ambient assisted living.

• Deep learning techniques based on Variational Autoencoders (VAE) for
anomaly detection in IoT applications that comprise intelligent and semi-
autonomous smart objects such as drones and robots.

• Privacy awareness techniques for IoT systems, along with methodologies and
approaches for data protection that boost privacy compliance.

• Policy-based approaches for risk mitigation of IoT networks and devices,
including approaches that leverage machine learning for detecting risks in
real time.

• Architectures and platforms for end-to-end security, privacy, and safety in
Industrial IoT systems, notably platforms that following popular edge/fog
computing architectures for securing IoT systems. The presented platforms
provide end-to-end security solutions, which address all types of IoT assets
from the device up to the services and applications levels.

• Pattern-driven approaches for ensuring Security, Privacy, Dependability and
Interoperability in IoT applications. The interoperability solutions include
semantic interoperability for security data and mechanisms.

• Use of the LINDDUN privacy threat modeling methodology and of the
STRIDE threat model towards evidence-based risk management and data
protection, as a means of facilitating GDPR compliance.

• Approaches for cybersecurity certification, which combine certification with
testing in order to alleviate the limitations of conventional certification tools
for IoT environments (e.g., their inability to cope with dynamic and volatile
environments).

• Device level security techniques, including techniques based on analysis of
the source code and the binaries of the firmware of IoT nodes (e.g., gateways,
sensing devices, smart objects).

• Decentralized (blockchain-based) solutions for boosting data legitimacy, pri-
vacy, and trust in industrial IoT infrastructures.

• Interledger technologies comprising multiple blockchain infrastructures
towards federating different IoT platforms and performing combined risk
assessments, i.e., risk assessments across different IoT platforms.
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Most of the above-listed technologies and techniques are innovative and hold
the promise to increase the security and resilience of next generation large-scale
IoT systems, including systems that will comprise smart objects. The chapters of
the book present how these security techniques are used to protect IoT systems and
applications in a variety of sectors including, for example, transport, healthcare,
and industry. These applications are in several cases indicative of the future IoT
environments and their security challenges.

The solutions of the book are collectively presenting some of the main char-
acteristics of future IoT security environments. The latter are expected to play an
important role for the rapid adoption and wider use of IoT systems in the scope
of the fourth industrial revolution (Industry 4.0). The wave of Industry 4.0 sys-
tem will comprise large number of IoT devices, including different IoT assets (e.g.,
smart objects, IoT services, next generation networks (e.g., 5G)) in complex and
dynamic configurations. The solutions listed in the book could greatly boost IoT
adoption in the Industry 4.0 era, through lowering barriers associated with security,
privacy and data protection.

The solutions and technologies of the book will play a significant role in address-
ing security, privacy, and data protection in future IoT systems, notably systems that
are characterized by semi-autonomous behaviors, integration between physical and
cybersecurity, expanded use of AI as part of IoT functionalities, as well as richer and
more frequent security information sharing across IoT stakeholders. Even though it
is not easy to predict the future, we can safely assume that IoT security will be a chal-
lenging, yet very exciting journey for security experts, consultants, security research
organizations, IIoT solution providers and many other stakeholders. In this book,
we have provided knowledge and insights about where we stand in this journey. We
also attempted to develop a vision for the future. We really hope you will enjoy the
journey and will appreciate our ideas to help you start it on the right foot.
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