
Interdomain User Authentication and
Privacy

Andreas Pashalidis

Technical Report

RHUL–MA–2005–13

23 December 2005

Royal Holloway
University of London

Department of Mathematics
Royal Holloway, University of London
Egham, Surrey TW20 0EX, England

http://www.rhul.ac.uk/mathematics/techreports

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway Research Online

https://core.ac.uk/display/78876459?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract

This thesis looks at the issue of interdomain user authentication, i.e. user
authentication in systems that extend over more than one administrative
domain. It is divided into three parts. After a brief overview of related
literature, the first part provides a taxonomy of current approaches to the
problem. The taxonomy is first used to identify the relative strengths and
weaknesses of each approach, and then employed as the basis for putting into
context four concrete and novel schemes that are subsequently proposed in
this part of the thesis. Three of these schemes build on existing technology;
the first on 2nd and 3rd-generation cellular (mobile) telephony, the second on
credit/debit smartcards, and the third on Trusted Computing. The fourth
scheme is, in certain ways, different from the others. Most notably, unlike the
other three schemes, it does not require the user to possess tamper-resistant
hardware, and it is suitable for use from an untrusted access device. An
implementation of the latter scheme (which works as a web proxy) is also
described in this part of the thesis.

As the need to preserve one’s privacy continues to gain importance in the
digital world, it is important to enhance user authentication schemes with
properties that enable users to remain anonymous (yet authenticated). In
the second part of the thesis, anonymous credential systems are identified as
a tool that can be used to achieve this goal. A formal model that captures
relevant security and privacy notions for such systems is proposed. From this
model, it is evident that there exist certain inherent limits to the privacy that
such systems can offer. These are examined in more detail, and a scheme
is proposed that mitigates the exposure to certain attacks that exploit these
limits in order to compromise user privacy. The second part of the thesis
also shows how to use an anonymous credential system in order to facilitate
what we call ‘privacy-aware single sign-on’ in an open environment. The
scheme enables the user to authenticate himself to service providers under
separate identifier, where these identifiers cannot be linked to each other,
even if all service providers collude. It is demonstrated that the anonymity
enhancement scheme proposed earlier is particularly suited in this special
application of anonymous credential systems.

Finally, the third part of the thesis concludes with some open research
questions.

1



Interdomain User Authentication and Privacy

Andreas Pashalidis

Thesis submitted to the University of London
for the degree of Doctor of Philosophy

Information Security Group
Department of Mathematics

Royal Holloway, University of London
2005



Declaration

These doctoral studies were conducted under the supervision of Chris J. Mitchell and Peter
Wild.

The work presented in this thesis is the result of original research carried out by myself, in
collaboration with others, whilst enrolled in the Department of Mathematics as a candidate
for the degree of Doctor of Philosophy. This work has not been submitted for any other
degree or award in any other university or educational establishment.

Andreas Pashalidis
June, 2005

2



Acknowledgements

I would like to thank my academic supervisor, Chris J. Mitchell, for his invaluable guidance
and support throughout my studies at Royal Holloway. Without his insightful ideas, his top-
quality comments and feedback on my work, our stimulating discussions and his constructive
criticisms, this thesis would never come into existence. I am deeply grateful for the patience
and dedication he showed to me. I am also indebted to my academic advisor, Peter Wild,
for his continuous support throughout my studies.

I am grateful to all the lecturers, administrative and technical staff, and students in the
Mathematics department. They provided me with an excellent research environment during
my studies. Many people, some outside the department, have contributed to my studies.
While everyone’s contribution has been different, I feel that they have all been important.
The list of people to whom I owe thanks is quite long (and is still changing). As any effort to
write it down would be incomplete, I hope that they accept my apologies for not attempting
to do so. You know who you are; thanks.

Finally, I owe thanks to the State Scholarship Foundation of Greece for sponsoring me during
a significant part of my studies, and, most importantly, my family, my wife, and God for
self-evident reasons.

3



Abstract

This thesis looks at the issue of interdomain user authentication, i.e. user authentication in
systems that extend over more than one administrative domain. It is divided into three parts.
After a brief overview of related literature, the first part provides a taxonomy of current
approaches to the problem. The taxonomy is first used to identify the relative strengths
and weaknesses of each approach, and then employed as the basis for putting into context
four concrete and novel schemes that are subsequently proposed in this part of the thesis.
Three of these schemes build on existing technology; the first on 2nd and 3rd-generation
cellular (mobile) telephony, the second on credit/debit smartcards, and the third on Trusted
Computing. The fourth scheme is, in certain ways, different from the others. Most notably,
unlike the other three schemes, it does not require the user to possess tamper-resistant
hardware, and it is suitable for use from an untrusted access device. An implementation of
the latter scheme (which works as a web proxy) is also described in this part of the thesis.

As the need to preserve one’s privacy continues to gain importance in the digital world,
it is important to enhance user authentication schemes with properties that enable users
to remain anonymous (yet authenticated). In the second part of the thesis, anonymous
credential systems are identified as a tool that can be used to achieve this goal. A formal
model that captures relevant security and privacy notions for such systems is proposed.
From this model, it is evident that there exist certain inherent limits to the privacy that
such systems can offer. These are examined in more detail, and a scheme is proposed that
mitigates the exposure to certain attacks that exploit these limits in order to compromise user
privacy. The second part of the thesis also shows how to use an anonymous credential system
in order to facilitate what we call ‘privacy-aware single sign-on’ in an open environment.
The scheme enables the user to authenticate himself to service providers under separate
identifier, where these identifiers cannot be linked to each other, even if all service providers
collude. It is demonstrated that the anonymity enhancement scheme proposed earlier is
particularly suited in this special application of anonymous credential systems.

Finally, the third part of the thesis concludes with some open research questions.

4



Contents

1 Introduction 13
1.1 Security constructs and terminology used throughout the thesis . . . . . . . . 14

1.1.1 Nonces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.1.2 One-way hash functions . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.1.3 Key derivation functions . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.1.4 Symmetric cryptosystems . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.1.5 Asymmetric cryptosystems . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Publications and origins of contributions . . . . . . . . . . . . . . . . . . . . . 22

2 An introduction to interdomain user authentication 24
2.1 Elements of SSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.1 Secure communication . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.2 Entity authentication and key establishment . . . . . . . . . . . . . . 26
2.1.3 Human user authentication . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1.4 Identity management . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.1.5 Single sign-on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3 Review of existing literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4 Overall structure and summary of contributions . . . . . . . . . . . . . . . . . 35

I Interdomain User Authentication 38

3 A taxonomy of distributed authentication architectures 39
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 How SSO works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 The taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1 Local pseudo-SSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.2 Proxy-based pseudo-SSO . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.3 Local true SSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.4 Proxy-based true SSO . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Properties of user authentication schemes for distributed systems . . . . . . . 45
3.4.1 Privacy protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.2 Anonymous network access . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.3 User mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.4 Use in an untrusted environment . . . . . . . . . . . . . . . . . . . . . 48
3.4.5 Deployment and maintenance costs . . . . . . . . . . . . . . . . . . . . 49
3.4.6 Running costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.7 Trust relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.8 Conflict resolution and lawful access . . . . . . . . . . . . . . . . . . . 50
3.4.9 Open versus closed environments . . . . . . . . . . . . . . . . . . . . . 50

3.5 Some examples of SSO schemes . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5.1 Kerberos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5



CONTENTS

3.5.2 The Liberty Alliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.5.3 Microsoft Passport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 An SSO scheme based on GSM/UMTS 57
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 The GSM security services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.1 The GSM data confidentiality service . . . . . . . . . . . . . . . . . . 59
4.3 Using GSM for SSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.1 System entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3.2 The authentication and SSO protocol . . . . . . . . . . . . . . . . . . 62

4.4 Threat analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4.1 Stolen SIM attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4.2 SIM cloning attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4.3 Compromise of privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4.4 Forwarding attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4.5 Attacks on the SP/AuC Link . . . . . . . . . . . . . . . . . . . . . . . 67
4.4.6 Replay attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4.7 Attacks against the authentication centre . . . . . . . . . . . . . . . . 67

4.5 Advantages and disadvantages . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.6 Using UMTS/3GPP for SSO . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.7 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5 An authentication scheme based on credit/debit smart cards 73
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2 Review of EMV security services . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2.1 Dynamic Data Authentication (DDA) . . . . . . . . . . . . . . . . . . 76
5.2.2 Cardholder verification . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3 Using EMV cards for SSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3.1 System entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3.2 Trust relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3.3 The registration protocol . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3.4 The SSO protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.4 Threat Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.4.1 SP collusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.4.2 Man in the middle attack . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.4.3 Traffic analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.4.4 Attacks using a malicious Cardholder System . . . . . . . . . . . . . . 84
5.4.5 Stolen EMV card . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.4.6 Service denial attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.4.7 Signature oracle attacks . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.5 Advantages and Disadvantages . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.5.1 Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.5.2 Disadvantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.6 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6 An authentication scheme based on trusted computing 90
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.2 Review of TCG security services . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2.1 TPM Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.2.2 Integrity Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6



CONTENTS

6.2.3 Secure Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.3 Using Trusted Platforms for SSO . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.3.1 A local pseudo-SSO scheme . . . . . . . . . . . . . . . . . . . . . . . . 97
6.3.2 A local true SSO scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.4 Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.4.1 Privacy under TCG 1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.4.2 Privacy under TCG 1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.5 Other issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.5.1 Significance of benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.5.2 Man in the middle attacks . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.5.3 Cross-platform mobility . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.5.4 Complexity of managing trusted states . . . . . . . . . . . . . . . . . . 106
6.5.5 Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.5.6 Open source software . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7 A user authentication scheme suitable for use from untrusted devices 110
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.2 What is an untrusted network access device? . . . . . . . . . . . . . . . . . . 111
7.3 Description of the SSO scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.3.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.3.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.3.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.4 The Impostor prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.4.1 The RequestRecognizer interface . . . . . . . . . . . . . . . . . . . . . 117
7.4.2 The ChallengeResponseManager interface . . . . . . . . . . . . . . . . 118
7.4.3 The UserManager interface . . . . . . . . . . . . . . . . . . . . . . . . 118
7.4.4 The ContentFilter interface . . . . . . . . . . . . . . . . . . . . . . . . 119

7.5 Other issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.5.1 Relaxing the assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.5.2 Some technicalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.6 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

II Anonymous Credential Systems and Single Sign-On 124

8 Anonymous credential systems and timing attacks 125
8.1 An introduction to credential systems . . . . . . . . . . . . . . . . . . . . . . 125

8.1.1 Anonymous credential systems . . . . . . . . . . . . . . . . . . . . . . 127
8.1.2 Pseudonym systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.2 Timing attacks against anonymous credential systems . . . . . . . . . . . . . 130
8.2.1 Encoding freshness into credentials . . . . . . . . . . . . . . . . . . . . 132
8.2.2 Timing attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
8.2.3 Countermeasures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.3 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

9 A security model for anonymous credential systems 138
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

9.1.1 Universal composability and pseudonym systems . . . . . . . . . . . . 140
9.1.2 Motivation for the new model . . . . . . . . . . . . . . . . . . . . . . . 141
9.1.3 What the new model does not do . . . . . . . . . . . . . . . . . . . . . 142

9.2 Security of pseudonym systems . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7



CONTENTS

9.2.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
9.2.2 The games and soundness . . . . . . . . . . . . . . . . . . . . . . . . . 147
9.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
9.2.4 Unlinkability of pseudonyms . . . . . . . . . . . . . . . . . . . . . . . . 152
9.2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
9.2.6 Indistinguishability of pseudonyms . . . . . . . . . . . . . . . . . . . . 158
9.2.7 Anonymity of users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

9.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

10 A peer-to-peer system that improves privacy of electronic transactions 163
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
10.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
10.3 The scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

10.3.1 High level description . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
10.3.2 Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
10.3.3 Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
10.3.4 The protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

10.4 Security and privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
10.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
10.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

11 Introduction to privacy-aware single sign-on 179
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
11.2 Privacy-awareness in different architectures . . . . . . . . . . . . . . . . . . . 180

11.2.1 Local pseudo-SSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
11.2.2 Local true SSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
11.2.3 Proxy-based pseudo-SSO . . . . . . . . . . . . . . . . . . . . . . . . . 182
11.2.4 Proxy-based true SSO . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

11.3 Privacy-awareness in existing schemes . . . . . . . . . . . . . . . . . . . . . . 183
11.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

12 Constructing privacy-aware single sign-on systems 185
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
12.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
12.3 Privacy-aware proxy-based true SSO systems . . . . . . . . . . . . . . . . . . 187

12.3.1 A general privacy-aware SSO scheme . . . . . . . . . . . . . . . . . . . 189
12.3.2 A simplified privacy-aware SSO scheme . . . . . . . . . . . . . . . . . 190

12.4 Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
12.4.1 Trust issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
12.4.2 Security versus usability . . . . . . . . . . . . . . . . . . . . . . . . . . 192
12.4.3 Privacy versus security . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
12.4.4 Usability versus privacy . . . . . . . . . . . . . . . . . . . . . . . . . . 196

12.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

III Conclusions 198

13 Conclusions and directions for further research 199
13.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
13.2 Directions for further research . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Bibliography 203

8



CONTENTS

IV Appendices 223

A Impostor source code 224
A.1 ChallengeResponseManager . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
A.2 ContentFilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
A.3 EmptyManager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
A.4 Impostor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
A.5 LoginHandler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
A.6 RequestHandler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
A.7 RequestRecognizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
A.8 Servant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
A.9 UserManager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

B Source code of peer-to-peer system 243
B.1 Protocol Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
B.2 Plain Member . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
B.3 Discovery Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
B.4 Group Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
B.5 Issuer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
B.6 Other classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

9



List of Figures

3.1 Information flow of a generic SSO system. . . . . . . . . . . . . . . . . . . . . 41
3.2 Pseudo-SSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3 True SSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 PC as network access device. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2 Combined mobile equipment and network access device . . . . . . . . . . . . 62

6.1 Local pseudo-SSO system based on TCG-conformant platform . . . . . . . . 98
6.2 Local true SSO system based on TCG-conformant platform . . . . . . . . . . 101

7.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8.1 Example for k = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

9.1 Pseudonym establishment protocol of Chen’s system . . . . . . . . . . . . . . 146
9.2 Credential issuing protocol of Chen’s system . . . . . . . . . . . . . . . . . . . 146
9.3 Credential showing protocol of Chen’s system . . . . . . . . . . . . . . . . . . 147

10.1 Convergence delay for a group of nine peers . . . . . . . . . . . . . . . . . . . 176
10.2 Arrival time of issuing requests for a group of nine peers . . . . . . . . . . . . 176
10.3 Screenshot of Group Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

12.1 Average number of credentials issued per unit time (vertical axis) vs. accuracy
of timestamp τ (horizontal axis). . . . . . . . . . . . . . . . . . . . . . . . . . 194

10



List of Tables

3.1 Properties of SSO systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

9.1 Example scenario 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
9.2 Example scenario 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

11



Abbreviations
AA: Authentication Application
AS: Authentication Service
AuC: Authentication Centre
BIOS: Basic Input Output System
CA: Certification Authority
CS: Cardholder System
DAA: Direct Anonymous Attestation
DDA: Dynamic Data Authentication
DNS: Domain Name Service
EK: Endorsement Key
EMV: Europay Mastercard Visa
FTP: File Transfer Protocol
GSM: Global System for Mobile Communications
HTTP: Hypertext Transfer Protocol
HTTPS: Hypertext Transfer Protocol Security
ICC: Integrated Circuit Card
IMSI: International Mobile Subscriber Identity
MAC: Message Authentication Code
ME: Mobile Equipment
PAPTS: Privacy-Aware Proxy-based True Single sign-on
PCR: Platform Configuration Register
PIN: Personal Identification Number
PKI: Public Key Infrastructure
PRV-CA: Privacy Certification Authority
PVDE: PIN Verification Data Element
SAML: Security Assertion Markup Language
SIM: Subscriber Identity Module
SP: Service Provider
SPID: Service Provider Identifier
SSL: Secure Sockets Layer
SSO: Single Sign-On
TCG: Trusted Computing Group
TLS: Transport Layer Security
TP: Trusted Platform
TPM: Trusted Platform Module
TTP: Trusted Third Party
UMTS: Universal Mobile Telecommunications System
URL: Uniform Resource Locator
USB: Universal Serial Bus

12



Chapter 1

Introduction

Contents
1.1 Security constructs and terminology used throughout the thesis 14

1.1.1 Nonces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1.2 One-way hash functions . . . . . . . . . . . . . . . . . . . . . . . 15

1.1.3 Key derivation functions . . . . . . . . . . . . . . . . . . . . . . . 15

1.1.4 Symmetric cryptosystems . . . . . . . . . . . . . . . . . . . . . . 16

1.1.5 Asymmetric cryptosystems . . . . . . . . . . . . . . . . . . . . . 17

1.2 Publications and origins of contributions . . . . . . . . . . . . . 22

This chapter briefly introduces the concept of interdomain user authentication and introduces

a number of security constructs which the remainder of the thesis makes use of.

In many situations, users are required to identify themselves in order to access some service

or resource. The identification takes place by means of a piece of information, called an

identifier, that is unique to each user. Sometimes it is not sufficient for the user to simply

provide an identifier and claim to be its legitimate owner; the user is required to somehow

convince the service provider that he is indeed the legitimate owner of the stated identifier,

as claimed. This process, called authentication, is achieved by means of an authentication

scheme. Most such schemes require the user to maintain and have available some additional

information. This information, called the user’s authentication credential, is typically de-

signed to be user-specific and hard for others to guess or replicate1.1. As such, it allows the

user to authenticate himself as the legitimate owner of the associated identifer. The user

typically needs to maintain an authentication credential for each of his identifiers.

Different service providers may have different ways to identify users, and use different meth-

ods to authenticate the corresponding identifiers. As the number of service providers a user

has a relationship with grows, so does the number of his identifiers and thereby the burden

imposed on him by the requirement to maintain the associated authentication credentials.
1.1Perhaps the most common user authentication credential is a username/password pair.

13



1.1 Security constructs and terminology used throughout the thesis

The purpose of the schemes considered in this thesis is to relieve the user from this burden.

There are three distinct advantages one can potentially gain by using such a scheme. Firstly,

one can gain a usability advantage, because the scheme removes the necessity for the user to

(manually) maintain as many authentication credentials as the number of service providers

with which he has a relationship. Secondly, the management of user accounts can be simpli-

fied in certain scenarios. Thirdly, the overall level of security is potentially increased because

the user is required to maintain a smaller number of authentication credentials and he may

be able do so securely with a reasonable amount of effort.

A scheme that enables the user to authenticate himself to more than one service provider

using only a single authentication credential, is also called a ‘Single Sign-On’ (SSO) scheme.

We use this term throughout the thesis.

1.1 Security constructs and terminology used throughout
the thesis

This section gives a brief and informal introduction to certain well-established cryptographic

terminology and mechanisms used throughout the thesis. We do not analyse these constructs

and their operation here; the reader interested in a more comprehensive introduction is

referred to [142, 188].

1.1.1 Nonces

The term ‘nonce’ means ‘number used once’. It is a finite sequence of bits that is used only

once within a given context, and is discarded afterwards. Nonces are typically employed by

entity authentication schemes in order to provide a guarantee of freshness, or ‘liveness’, to

an interested party. This works as follows. The interested party A generates a nonce and

sends it to the party (B) of whose liveness A wants to be convinced. Party B then performs

a computation with the nonce and returns the result to A1.2. Party A checks the correctness

of the result; if it is correct, A concludes that his communication partner is ‘alive’, i.e. must

have responded to A’s original message.
1.2This computation is typically of a cryptographic nature and may involve other data, such as keys.

14



1.1 Security constructs and terminology used throughout the thesis

It is a typical requirement that the nonces employed in the execution of an authentication

protocol should never occur again in future executions. Furthermore, in order to prevent

certain types of attack, nonces typically have to be hard to guess by an attacker. Typically,

nonces are randomly generated when needed. Some of the protocols introduced in this thesis

make use of nonces.

1.1.2 One-way hash functions

A one-way hash function h is a function that maps an arbitrary-length message m to a

fixed-size sequence of bits, called a digest d = h(m). A secure one way hash function is

required to satisfy the following requirements.

• (Being one way:) Given d it should be infeasible to find an m such that d = h(m).

• (Second pre-image resistance:) Given any m it should be infeasible to find an m′ 6= m

such that h(m′) = h(m).

An additional property that one way functions may be required to satisfy is that of ‘collision

resistance’. This property states that it should be infeasible to find values m, m′(m 6= m′)

such that h(m) = h(m′).

More rigorous definitions, as well as examples of one way hash functions, can be found

in [139, 142, 188]. A widely used hash function, called the ‘Secure Hash Algorithm 1’ (SHA-

1) is specified in [147]. It is worth noting that one way hash functions are a fundamental

building block for many cryptosystems. In order to facilitate the analysis of such systems in

the setting of ‘provable security’, a theoretic abstraction of one way hash functions, called

the ‘random oracle model’, has been proposed and used in the literature. The interested

reader is referred to [16, 42]. Whenever we use a one way hash function in this thesis, we

assume that it is collision-resistant.

1.1.3 Key derivation functions

A key derivation function is a function that generates a cryptographic key from input ‘keying

material’. This keying material typically consists of a secret value such as another crypto-

15



1.1 Security constructs and terminology used throughout the thesis

graphic key, a password, or the result of some cryptographic computation, and may also

include material such as an algorithm identifier or a random value. Key derivation functions

are typically based on one way hash functions or on pseudo-random functions. A specifi-

cation for password-based key derivation can be found in [100]. The reader interested in

pseudo-random functions is referred to [11].

The remaining security constructs we use can be classified as either symmetric or asymmetric

cryptosystems.

1.1.4 Symmetric cryptosystems

Symmetric cryptosystems, in general, make use of a single finite sequence of bits, called a

‘key’. This key is typically shared among, and kept secret by, two or more communicating

partners.

1.1.4.1 Encryption schemes

A symmetric encryption scheme provides two algorithms, namely encrypt and decrypt.

The encrypt algorithm takes as input a plaintext message m and a key k and outputs a

ciphertext message c. The decrypt algorithm takes as input a ciphertext message c̄ and a

key k̄ and outputs a plaintext message m̄. For an encryption scheme it should hold that

• if c̄ = c and k̄ = k, the decrypt algorithm outputs m̄ = m, and

• without knowledge of k, and given c, it is infeasible to infer any information about the

message m (apart from its length).

In practice, encryption schemes are used to protect the confidentiality of a message. There

exist several, well defined, security notions for symmetric encryption schemes [13, 111].

16



1.1 Security constructs and terminology used throughout the thesis

1.1.4.2 Message authentication codes

A message authentication code (MAC) scheme provides two algorithms, namely compute

and verify. The compute algorithm, on input a message m and a key k, outputs a MAC µ.

The verify algorithm, on input a message m̄, a key k̄ and a MAC µ̄, outputs either accept

or reject. For a secure MAC scheme it should hold that

• if m̄ = m, k̄ = k and µ̄ = µ the verify algorithm outputs accept, and

• without knowledge of k̄, it is infeasible to generate a message/MAC pair (m̄, µ̄) such

that the verify algorithm outputs accept.

A stronger notion of security for a MAC scheme, which is called ‘existential unforgeability’,

is said to be satisfied if the second of the above conditions holds even if one is given access

to an ‘oracle’ that outputs µ for messages m of one’s choosing, and where m̄ is different

from all m that were given to the oracle. A MAC scheme that satisfies this notion is said

to be ‘existentially unforgeable’.

In practice, MACs are used in order to protect the integrity of a message. Several schemes

exist and have been standardised [67]. The security of MAC schemes in general is discussed

in more detail in [15, 142]. Whenever we make use of a MAC scheme in this thesis, we will

indicate which security notion it is required to satisfy.

It is perhaps worth noting at this point that certain subtle issues arise when, in order to

simultaneously protect both the integrity and the confidentiality for some message, one

combines encryption and a MAC. The interested reader is referred to [15]. This thesis does

not address such issues.

1.1.5 Asymmetric cryptosystems

Asymmetric cryptosystems typically require the participants to have a key pair consisting

of a private and a public key. As its name suggests, the public key can be, and typically

is, made available to other participants in the system. In this setting it is crucial for the

participants to be able to check the authenticity of the public keys they receive. This is

17



1.1 Security constructs and terminology used throughout the thesis

because otherwise it might be possible for an adversary to falsify public keys without being

detected.

One well-established mechanism that enables one to verify the authenticity of a received

public key is a Public Key Infrastructure (PKI). In a PKI, public keys are embedded in

‘certificates’ that are issued by a special authority, called a ‘Certification Authority’ (CA).

A certificate is a statement that binds an identifier to the public key; it is signed using a

digital signature scheme (see below) and attests to the fact that the CA vouches for this

binding. The recipient of a certificate can verify the CA’s signature and is thereby assured

that the public key belongs to the participant that is represented by the embedded name. A

widely used standard for the format of certificates is described in [104]. The reader interested

in PKIs is referred to [82].

1.1.5.1 Encryption Schemes

An asymmetric encryption scheme provides three algorithms, namely generate, encrypt

and decrypt. The generate algorithm is used to produce a new key pair. Its outputs,

denoted pub and prv, are a public and a private key respectively. These keys are related

to each other; we denote this relationship as prv ∼ pub. The encrypt algorithm takes as

input a plaintext message m and a public key pub and outputs a ciphertext message c. The

decrypt algorithm takes as input a ciphertext message c̄ and a private key prv and outputs

a plaintext message m̄. For an asymmetric encryption scheme it should hold that

• if c̄ = c, the decrypt algorithm outputs m̄ = m if prv ∼ pub.

• without knowledge of prv and given c, it is infeasible to infer any information about m

(apart from its length).

In other words, one should be able to correctly decrypt a message that was encrypted under

a public key, only when one knows the corresponding private key.

In practice, asymmetric encryption schemes are used to protect the confidentiality of a mes-

sage. One of the most important differences between symmetric and asymmetric encryption

schemes is that, in an asymmetric scheme, the encrypter of a message does not need to

18



1.1 Security constructs and terminology used throughout the thesis

have access to the decryption key. There exist several, well defined, security notions for

asymmetric encryption schemes [14].

1.1.5.2 Signature schemes

A signature scheme provides three algorithms, namely generate, sign and verify. The

generate algorithm is used to produce a new key pair. Its outputs, denoted pub and prv,

are a public and a private key respectively. These keys are related to each other; we denote

this relationship as pub ∼ prv. The sign algorithm takes as input a message m and a private

key prv and outputs a finite sequence of bits, called a signature σ. The verify algorithm

takes as input a message m̄, a public key pub and a signature σ̄ and outputs either accept

or reject. For a secure signature scheme it should hold that

• if m̄ = m, pub ∼ prv and σ̄ = σ, then the verify algorithm outputs accept

• without knowledge of prv such that pub ∼ prv, it is infeasible to generate a mes-

sage/signature pair (m̄, σ̄) such that the verify algorithm outputs accept.

In other words, a signature should only verify successfully if it is evaluated on the same

message as it was computed by the sign algorithm and the public key that corresponds to

the private key input to the sign algorithm.

In practice, signature schemes are used to protect the integrity of a message. Additionally,

they provide a form of message authentication, since a signature that verifies correctly under

a given public key can only be computed by the holder of the corresponding private key.

As long as the signer keeps this private key secret, the verifier of a signed message can be

confident that the message was indeed signed by the signer. Furthermore, under certain

circumstances, signature schemes can provide a non-repudiation service. This is because, if

a signature that allegedly verifies correctly under some public key pub is disputed by a signer,

a trusted arbitrator can be asked to independently verify the signature. If the verification is

successful, the arbitrator is also required to establish by some means that the corresponding

private key prv ∼ pub was indeed known only to the signer at the time the signature was

generated. Demonstrating the above may then be treated as strong evidence that the signer

indeed generated the signature and that, as such, he is liable for any commitments arising

from the signed message.

19



1.1 Security constructs and terminology used throughout the thesis

There exist several well defined security notions for signature schemes [90].

1.1.5.3 Blind signatures

A blind signature scheme provides five algorithms, namely generate, blind, sign, unblind,

and verify. The generate algorithm is used to produce a new key pair. Its outputs,

denoted pub and prv, are a public and a private key respectively. These keys are related to

each other; we denote this relationship as pub ∼ prv. The blind algorithm takes as input a

message m and a random number r, and outputs a blinded message m′. The sign algorithm

takes as input a blinded message m′ and a private key prv and outputs a finite sequence of

bits, called a blind signature σ′. The unblind algorithm takes as input a blind signature σ′,

and an auxiliary input r′ (and possibly a blinded message m′), and outputs an unblinded

signature σ. The verify algorithm is similar to that of a conventional signature scheme,

i.e. it takes as input a message m̄, a public key pub and a signature σ̄ and outputs either

accept or reject. For a secure blind signature scheme it should hold that

• if m̄ = m, r = r′, pub ∼ prv and σ̄ = σ, then the verify algorithm outputs accept

• without knowledge of prv such that pub ∼ prv, it is infeasible to generate a mes-

sage/signature pair (m̄, σ̄) such that the verify algorithm outputs accept.

• given a blinded message/signature pair (m′, σ′), without knowledge of r, it is infeasible

to generate a message/signature pair (m̄, σ̄) such that the verify algorithm outputs

accept.

• the blinded message/signature pair (m′, σ′) does not reveal any information about the

unblinded message/signature pair (m, σ).

Blind signature schemes are typically used in settings where one party, say A, wishes to

obtain a signature from another party, say B, in such a way that B does not get to know

anything about the (unblinded version of the) message that is signed. This is typically

achieved as follows. First, A generates the message m and blinds it using the blind al-

gorithm. The resulting blinded message m′ is sent to B which signs it using the sign

algorithm. The resulting blind signature σ′ is returned to A which now can convert it into

a valid signature σ on the original message m using the unblind algorithm.

20



1.1 Security constructs and terminology used throughout the thesis

A property of blind signature schemes is that, if A later shows the message/signature pair

(m,σ) to B (or a third party that may cooperate with B), then, assuming that in the

meantime B has issued multiple blind signatures, B cannot link this pair with a particular

previously signed blinded message. This protects A’s privacy.

There exist several blind signature schemes and well defined security notions for such schemes

(see, for example, [46, 110, 124, 169]). It is perhaps worth noting that other types of

signature scheme have been proposed over the years. These schemes have different properties

and include fail-stop signatures (see, e.g., [162]), forward-secure signatures (see, e.g., [121]),

group signatures (see, e.g., [19]), proxy signatures (see, e.g., [123]), undeniable signatures

(see, e.g., [84]) and others (see, e.g., [26]). Unless explicitly stated, this thesis makes use of

conventional signature schemes (as described in section 1.1.5.2). Whenever we use such a

scheme in this thesis, we indicate which security notion it is required to satisfy.

1.1.5.4 Zero-knowledge proof systems

A zero-knowledge proof system is a protocol between two parties, called the prover and the

verifier, whereby the prover can convince the verifier about the validity of a statement, in

such a way that the verifier gains no knowledge beyond the fact that the statement is valid

(or invalid). Some zero-knowledge proof systems are interactive. In such systems the prover

and the verifier exchange a number of messages throughout the execution of the protocol.

Other zero-knowledge proof systems are non-interactive. In such systems, the proof is simply

a string of bits that the prover sends to the verifier.

In this thesis, zero-knowledge proof systems are used in order for a prover to convince a

verifier about the validity of a statement of the form “I know a valid signature on a message”.

A proof for such a statement is also known as a ‘zero-knowledge proof of knowledge’ of the

signature. In order to verify the proof, the verifier needs to have access to the message and

the public key that corresponds to the private key that was used to generate the signature.

Statements of this form often occur in the context of anonymous credential systems, which

are discussed in greater detail in part II of this thesis. It is important to note that, using a

zero-knowledge proof system in conjunction with statements of the above form, the verifier

does not get to know anything about the signature that is known by the prover. This is in

contrast to a conventional signature scheme that requires the signature to be revealed to the

party that verifies its validity.

21



1.2 Publications and origins of contributions

For more rigorous definitions and security properties that apply to zero-knowledge proof

systems the reader is referred to [87, 88].

1.2 Publications and origins of contributions

This thesis contains previous research that has been published in the proceedings of a number

of refereed conferences, as follows.

• A. Pashalidis and C. J. Mitchell. Impostor: A Single Sign-on System for Use from

Untrusted Devices. IEEE Globecom 2004 Conference, Dallas, Texas, USA, Novem-

ber 29 – December 3, 2004.

• A. Pashalidis and C.J. Mitchell, A Security Model for Anonymous Credential Systems,

in Y. Deswarte, F. Cuppens, S. Jajodia and L. Wang (editors), Information Security

Management, Education and Privacy, Proceedings of the 3rd Working Conference on

Privacy and Anonymity in Networked and Distributed Systems (I-NetSec’04), Kluwer

Academic Publishers, pages 183–199, Toulouse, France, August 2004.

• A. Pashalidis and C.J. Mitchell, Using EVM Cards for Single Sign-On, in Sokratis

K. Katsikas, Stefanos Gritzalis and Javier Lopez (editors), Proceedings of the First

European PKI Workshop: Research and Applications, EuroPKI 2004, Samos Island,

Greece, June 25-26 2004, Springer Verlag (LNCS 3093), Berlin, pp. 205–217.

• A. Pashalidis, A Cautionary Note on Automatic Proxy Configuration, in M.H. Hamza

(editor), Proceedings of the IASTED International Conference on Communication,

Network, and Information Security CNIS 2003, December 10-12, New York, USA,

pp. 153–158.

• A. Pashalidis and C. J. Mitchell, Using GSM/UMTS for Single Sign-On, in Proceed-

ings of SympoTIC ’03, Joint IST Workshop on Mobile Future and Symposium on

Trends in Communications, Bratislava, Slovakia, October 2003, IEEE Press, 2003,

pp. 138–145.

• A. Pashalidis and C. J. Mitchell, Single Sign-On Using Trusted Platforms, in C. Boyd

and W. Mao (editors), Proceedings of the 6th International Information Security Con-

ference (ISC 2003), Bristol, UK, October 2003, Proceedings, Springer-Verlag (LNCS

2851), Berlin, pp. 54–68.

22



1.2 Publications and origins of contributions

Other research that is included in this thesis has been published in a non-refereed fashion,

as follows.

• A. Pashalidis and C. J. Mitchell, Limits to Anonymity when Using Credentials, to ap-

pear in Proceedings of the 12th International Workshop on Security Protocols, Cam-

bridge, U.K., March 2004 Springer Verlag (LNCS), Berlin.

• A. Pashalidis and C. J. Mitchell, A Taxonomy of Single Sign-On Systems, in R.

Safavi-Naini and J. Seberry (editors), Information Security and Privacy – 8th Aus-

tralasian Conference, ACISP 2003, Wollongong, Australia, July 9-11 2003, Proceed-

ings, Springer-Verlag (LNCS 2727), Berlin (2003), pp. 249–264.

• A. Pashalidis and C. J. Mitchell, Single Sign-On using Trusted Computing, chapter 6

of TCG-conformant platforms, Chris J. Mitchell (editor), 2005, IEE Press, London,

pp. 175–193.

23



Chapter 2

An introduction to interdomain user
authentication

Contents
2.1 Elements of SSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.1 Secure communication . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.2 Entity authentication and key establishment . . . . . . . . . . . 26

2.1.3 Human user authentication . . . . . . . . . . . . . . . . . . . . . 27

2.1.4 Identity management . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1.5 Single sign-on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Review of existing literature . . . . . . . . . . . . . . . . . . . . . 33

2.4 Overall structure and summary of contributions . . . . . . . . . 35

This chapter introduces interdomain user authentication and related subject areas, and places

this thesis into the context of existing literature and practice. It highlights the contributions

of this thesis and presents its structure.

2.1 Elements of SSO

In order to examine the building blocks for an SSO scheme and their origins, one has

to examine several interconnected research areas, including secure communication, entity

authentication in general, human user authentication in particular, and identity management

systems. In the following, we provide a brief overview of each of these areas and discuss how

they are brought together in the real world.

24



2.1 Elements of SSO

2.1.1 Secure communication

In multi-domain computer networks, messages between two endpoints, say A and B, will

potentially have to pass through systems that are not under the control of A’s or B’s ad-

ministrative domain. Designers, implementers and researchers are faced with the problem of

ensuring the correct and sometimes confidential delivery of these messages. Many methods

have been devised to protect messages from accidental and malicious modification and in-

terception while they travel through unreliable, untrustworthy or hostile parts of a network.

One class of solutions to this problem (e.g. [32, 114, 115]) is based on symmetric crypto-

graphic techniques, such as the Data Encryption Standard [146]. Symmetric schemes, in

general, require A and B to share a common cryptographic key before they can start using

the scheme. A seminal paper on some of the key issues involved is that of Popek [170].

A second class of solutions to this problem is based on the use of public key cryptography [69,

74] and example schemes of this type include [143, 205]. This type of cryptography does

not require A and B to share a common key; such techniques are also called ‘asymmetric’

(following Simmons [185]). In contrast to purely symmetric schemes, public key techniques

enable A to encrypt a message such that only B can decrypt it, without having to previously

agree a common key with B. The message can, of course, itself be a key. Other types of

public key cryptosystem support the generation and verification of digital signatures and

the establishment of shared secret keys. In the latter case, the key established can then be

used to protect subsequent communications using symmetric cryptographic techniques.

Schemes that merely encrypt the exchanged messages, whether symmetric or asymmetric,

only preserve the confidentiality of the communications, i.e. they prevent a passive (i.e.

eavesdropping) adversary from reading the contents of the exchanged messages. In many

situations it is equally, if not more, important to protect the integrity of the communications,

i.e. to prevent an active adversary from modifying the messages as they are in transit

between A and B, without being detected.

25



2.1 Elements of SSO

2.1.2 Entity authentication and key establishment

Clearly, an active adversary that is in control of the network between A and B can always

pretend to be either one to the other [30]. In the face of such an adversary it makes little sense

for A and B to establish a key using a protocol that does not provide assurance to A that

the key is indeed established with B and assurance to B that the key is indeed established

with A. This is because there is always the possibility that the adversary tricks them into

establishing the key with itself, rather than the intended communications partner. In order

to prevent this type of attack, it is necessary that the protocol provides assurance to A

about the identity of B and assurance to B about the identity of A. Schemes that provide

this assurance are called ‘mutual authentication schemes’ and the entities that obtain such

assurances are said to ‘authenticate each other’. Certain authentication schemes provide

assurance to only one of the communication partners (e.g. A) about that identity of the

other (e.g. B). Those schemes are called ‘unilateral authentication schemes’ and, in this

case, it is said that ‘one entitity (e.g. A) authenticates the other (e.g. B)’.

In many cases it makes sense for A and B to establish a shared secret key at the same time

as they authenticate one another (i.e. to perform what is called ‘authenticated key establish-

ment’). The established key is then used for the protection of subsequent communications.

This is necessary because without this protection the adversary can do whatever it was

able to do before authentication (e.g. intercept or modify the communication or hijack the

entire session). For this reason, many (but by no means all) entity authentication schemes

enable the communication partners to establish a key, typically as a product of a successful

authentication event. This key, typically called a ‘session key’, can be used to protect the

integrity and confidentiality of subsequent communications between A and B; the protected

communications path that results is said to provide a ‘secure channel’ between A and B.

We use this term throughout the thesis.

A variety of techniques exist to formally verify the correctness of authentication schemes.

These include the so-called BAN logic [35], the ‘Dolev-Yao’ model [70] and a complexity

theoretic treatment that is commonly referred to as ‘provable security’ [17, 18]. The first

two approaches led to what is known as the ‘formal methods’ treatment of authentication

schemes [113, 140, 194]; a relatively recent overview of this research area, with many pointers

to relevant papers is given in [91]. An interesting comparison between the two schools of

thought (formal methods and provable security) is given in [1]. Interestingly, the security of

26



2.1 Elements of SSO

the Needham-Schroeder protocol (an authentication scheme that appeared in the literature

in the late seventies) [148], as modified to the recommendations given in [135, 136], has been

the subject of recent analyses using these verification techniques, some 26 years after it was

first published (see, for example, [8]).

It is worth noting that each of the above verification techniques (and their derivatives) has

its particular set of underlying assumptions, adversarial model and, therefore, limitations.

These have been highlighted in [28, 118]. In part II of this thesis we use the setting of

provable security in order to define a model and security notions that apply to anonymous

credential systems. and show how to construct an SSO scheme based on such systems.

Part III of the thesis presents its overall conclusions.

Over the years, many authentication and key establishment protocols have been proposed

in the literature (see, for example, [12, 24, 27, 29, 43, 44, 122, 141]). A fairly extensive

collection of such schemes and good starting point for the interested reader is the book by

Boyd and Mathuria [30].

2.1.3 Human user authentication

The above discussion of authentication and key establishment schemes avoided any assump-

tions about the nature of the two communicating parties, A and B. In those schemes, A

and B could be, for example, network routers, web servers, smartcards, wireless devices or

arbitrary combinations thereof. If one of the participants is a human being, an authentica-

tion scheme has to take this into account. The primary difference between computers and

humans in this respect is the fact that, while computers can accurately store and quickly

perform complicated computations on binary data, humans cannot.

The designer of a human/computer authentication scheme has to take into account a num-

ber of considerations. These can be divided into those that apply for user-to-computer

authentication, and those that apply for the converse.

• Human to computer authentication: As discussed earlier, a human user needs to have

some form of authentication credential in order to authenticate himself [64, 112]. Such

a credential is typically a piece of information that falls into one of the following

27



2.1 Elements of SSO

categories [190].

– a piece of information that the user knows, e.g. a password or the answer to a

personal question,

– a piece of information that is stored in some hardware that the user possesses,

e.g. a smartcard or a similar token that contains a particular cryptographic key,

and

– a piece of information that can be derived from some characteristic of the person,

e.g. his fingerprint, facial characteristics, or some other biometric.

Some human authentication schemes require the user to use credentials that belong

to two or three of the above types. These schemes are known as two-factor and three-

factor authentication schemes respectively.

• Computer to human authentication: In this scenario, the user typically wants to au-

thenticate a remote computer (e.g. a web server) using a local machine that communi-

cates with the remote computer over a network. The local machine is typically assumed

to be trustworthy. Given that authentication by definition involves verifying a claimed

identity, the remote computer is required to have a human-readable and unambiguous

identifier. This identifier has to be made known by the local machine to the user, so

that the user can decide whether or not it represents the intended (remote) computer.

The strength of the resulting computer-to-user authentication depends not only on the

security of the scheme, but also on the strength of the computer-to-identifier binding,

and, of course, on how informed the user’s decision-making is during the authentication

process.

The most widely used user-to-computer authentication mechanisms use credentials that the

user is required to memorise, typically passwords. This is because these mechanisms are

significantly cheaper and easier to deploy than other schemes. Unfortunately, the fact that

an attacker can always guess a poorly chosen password makes these systems dependent on

human ability and willingness to choose and memorise ‘good’ passwords. While the exact

definition of ‘good’ may depend on the context or application, a useful guide for many

situations is given in [60]. Password-based authentication schemes are not the main focus

of this thesis.

Hardware security tokens of various types have been in use for decades. They typically

contain a unique piece of information, such as a cryptographic key, that is used in a protocol

28



2.1 Elements of SSO

executed with a remote entity that requires the user (i.e. the bearer of the token) to au-

thenticate himself. For the protocol to be executed, the token has to communicate with the

user’s local machine in some way. Different types of token use different channels to commu-

nicate with the user’s local machine. The Fortezza token from Mykotronx2.1, for example,

occupies a dedicated PC slot, the eToken from Aladdin2.2 communicates over a Universal

Serial Bus (USB) interface [59], some of the Crypto-Box tokens2.3 communicate via a PC’s

serial or parallel interface [73, 97], Europay Mastercard Visa (EMV) cards [75, 76, 77, 78]

require special card readers, and SecurID tokens from RSA Security2.4 require the user to

manually enter a code into his local machine. Given that in some cases no public informa-

tion is available, it is hard to say how widely deployed some of these security tokens are.

However, with almost one billion users worldwide, the most widely deployed token is almost

certainly the Subscriber Identity Module (SIM) of mobile telephones2.5.

Of course, security tokens and the authentication schemes associated with them are not

immune to attacks. As they typically contain a sensitive piece of information, such as a

cryptographic key, it is a typical requirement for the token to provide a degree of tamper-

resistance. This is necessary because knowledge of this data or manipulation of the token’s

behaviour may enable an adversary to launch serious attacks on the system. Attacking

the token’s tamper resistance is not the only type of attack relevant to security tokens. A

taxonomy of the various types of attack can be found in [175]. Concrete attacks on the

cryptography employed by the SecurID token are documented in [23, 61].

In this thesis we describe possible ways to use existing deployed security tokens and in-

frastructures in order to build schemes that provide user authentication in a context different

to that in which the token was originally deployed. In particular, in chapter 4 we show how

to employ the GSM SIM, in chapter 5 we consider the use of EMV cards, and in chapter 6

we discuss the use of PC security hardware known as a ‘Trusted Platform Module’ (TPM)

which shares some of the characteristics of a security token.

The use of biometric identification systems has also been discussed for a number of years,

although the robustness of some mechanisms has been criticised (e.g. [172, 199]). Moreover,

despite widespread discussion, it is unclear whether any of these techniques have been de-
2.1www.mykotronx.com
2.2www.aladdin.com
2.3http://www.dongles.com/ProductPage.htm
2.4www.rsasecurity.com/securid
2.5In particular, at the time of writing (Jan 4th 2005, 20:45 UTC), the counter on the GSM Association’s

web page (www.gsmworld.com) reported the figure of 990.824.792 mobile phone subscribers worldwide.

29



2.1 Elements of SSO

ployed on a large scale. Biometrics that have been used in a human authentication context

include fingerprints, characteristics of the iris and the retina, and the geometry of the face,

the hand and the ear. Biometric methods also include voice recognition, as well as recogni-

tion of behavioural characteristics such as keystroke dynamics, walking characteristics and

handwritten signatures. The reader interested in biometrics is referred to [5, 206, 145, 204].

In this thesis we do not consider the use of biometrics.

One of the most widespread (remote) computer-to-user authentication schemes is the HTTPS

scheme [116, 179], as part of which an TLS/SSL channel [180] is established between a web

browser and a web server in the Internet. In this scheme the server’s unique identifier is

its domain name (which coincides with the first part of the URL [21] of the requested web

page), and this should be manually inspected by the user for correctness. Of course, as has

been widely discussed, this requirement is ignored by many users; indeed, many users are

probably unaware of it [108].

Some human user authentication schemes do not result in the establishment of a key between

the local and remote computer. Those schemes do not provide the means to establish a secure

channel. Typing a username and a password into a web page, for example, does not result

in a secure channel being set up between the browser and the web server. However, it might

strengthen the security of an already existing secure channel. The reader interested in a

more comprehensive introduction to user authentication is referred to [64, 112].

2.1.4 Identity management

A typical Internet user may have a relationship with multiple service providers. He might

adopt a variety of different roles in these relationships. With an online shop, for example,

the user adopts the role of a customer; with a governmental service, that of a citizen, and

when interacting with his employer’s systems, that of an employee. With each role the user

may assume a different identity, and in many cases these identities should be kept separate

from each other. As the number of such roles increases, so does the burden imposed on the

user by the requirement of managing them in a secure and privacy-aware manner.

Identity management systems aim to help the user with this task. Their scope is quite

general. In particular, their purpose is to “enable the user to control the nature and amount

30



2.1 Elements of SSO

of personal information that he releases during his electronic communication” [58]. This may

include creation and management of the user’s identifiers (i.e. pseudonyms), formulation of

privacy policies and preferences, negotiation of policies with service providers, controlled

release of location information, etc. The identity management schemes described in [58, 106]

are examples of such systems. The business case for identity management is discussed

in [187]. Several established infrastructures and standards, including SSO schemes, have

been analysed from an identity management perspective (see e.g. [3, 34, 66, 95, 151, 165,

176]).

2.1.5 Single sign-on

A scheme is said to be an SSO scheme if it enables multiple SPs or applications to authenti-

cate a given user, without necessarily requiring the user to authenticate himself more than

once. The SSO problem is an old one. The Resource Access Control Facility from IBM, a sys-

tem that manages user passwords for multiple applications, was first released in 19762.6 [189].

In the academic world, researchers have addressed similar problems in the context of ‘dis-

tributed systems’ (see, e.g. [62]). The first version of the Kerberos protocol [192], a system

for user authentication to multiple network services, was developed in the 1980s. It is worth

noting that the term “Single Sign-On” has been used in the context of operating systems

and administration (e.g. [94]) as well as in the context of network services (e.g. [72]). More-

over, the term has been used to refer to the authentication of both static data structures

(e.g. user identifiers [128]) and dynamic data structures (such as a payment history [182]).

In this thesis we are only concerned with SSO in the context of network services where the

authenticated piece of information is a user identifier.

With the growth in user interactions with open systems, SSO and identity management

become increasingly related concepts. In fact, SSO schemes often form the basis of identity

management systems. For example, the Liberty Alliance specification [130], a platform for

permission-based attribute exchange, is based on the Security Assertion Markup Language

(SAML) [150], a specification that focuses (among other things) on interdomain SSO. In

the literature the terms SSO and Identity Management are sometimes used interchangeably.

However, at least in principle, it is not a requirement for an identity management system to

provide an SSO service.
2.6www-1.ibm.com/servers/eserver/zseries/zos/racf

31



2.2 Motivation

In this thesis we distinguish between identity management and SSO. If an SSO scheme is

used as part of a more general identity management system, we regard it as being the part

that is responsible for the authentication of the user’s various identities (i.e. identifiers)

to different services in the network. The term SSO encompasses both closed and open

environments. While we do not concern ourselves with identity management in the general

sense, it is helpful to keep the relationship between these two concepts in mind.

2.2 Motivation

As the nature of modern digital networks evolves, the construction and analysis of suit-

able SSO schemes remains an active research area. Today we have reached a point where

users have relationships with many service providers; the need for SSO is therefore clear.

Roughly speaking, there are three main motives for SSO.

• Usability: This is probably the most obvious advantage of SSO. The user no longer

has to maintain a set of authentication credentials for each SP. Moreover, he does not

have to do so securely.

• User management: In a certain type of SSO scheme (see section 3.4.7) a supporting

management system can enforce a global policy. Apart from unifying rules and trust

relationships among different entities, such a system has the potential to consider-

ably reduce operational costs in a corporate environment. For instance, users can be

added to, or removed from, the system by being granted or having revoked a single

authentication credential, respectively.

• Security: SSO has the potential to increase the overall level of security while also pro-

viding usability benefits. From the user perspective, it is arguably easier to securely

maintain only one set of authentication credentials, rather than many. However, hav-

ing only one authentication credential for many services may also pose a risk; if it is

compromised, it might enable an adversary to illegitimately access all services. Thus,

the credential must be maintained in a secure manner. From the SP perspective, a

globally enforceable policy is highly desirable because it has the potential to signifi-

cantly mitigate the threat of human error and abuse.

32



2.3 Review of existing literature

2.3 Review of existing literature

This section provides a more detailed overview of the existing literature on the subject

of SSO in a networking context.

One could argue that a simplistic form of SSO is achieved if one uses the same password

(and possibly user name) with more than one SP. This, however, is not an SSO scheme

as such; it is merely a practice that increases user convenience at the cost of security. The

dangers of such a practice are discussed by Ives, Walsh and Schneider [105]. Indeed, the

existence of this practice provides one of the main motivations for the use of SSO systems.

This issue is not discussed further here.

One of the first uses of the term SSO in the sense we mean it here can be found in a

paper by Grubb and Carter [94]. The authors discuss various approaches to the provision

of SSO in a closed environment, and document their experiences in deploying an enterprise-

wide SSO system. Volchkov outlines the design decisions taken for the deployment of an SSO

scheme for a Swiss bank [202]. Josephson, Sirer and Schneider describe an SSO scheme

where, in order to distribute trust, multiple servers are required in order to provide the

authentication service [109]. More recently, Linden and Vilpola conducted an empirical study

of a deployed SSO system and argue that such systems should also offer a ‘single logout’

mechanism [134]. The schemes proposed in this thesis are designed for open environments

and take into account the ‘single logout’ requirement.

Well-known SSO schemes include Kerberos, the SAML and Liberty specifications, and Mi-

crosoft Passport. Kerberos [99, 192] has been implemented and deployed in a number of

applications and scenarios. The Kerberos system has been revised a number of times. An

overview of its early evolution is given by Kohl [119]. Bellovin identifies certain limitations of

the scheme [20] and Ganesan proposes an extension that uses public key cryptography [85].

Kerberos is discussed in more detail in section 3.5.1.

The Liberty Alliance [128] and the Security Assertion Markup Language (SAML) [150]

standards define a set of protocols that provide a web-based SSO service that enable a user

to log into multiple web sites using a single authentication credential. Similarly, Microsoft

Passport [144] is a web-based SSO scheme that has been in use for over five years. More

detailed descriptions of these schemes are provided in sections 3.5.2 and 3.5.3 respectively.

33



2.3 Review of existing literature

Several papers discuss various aspects of the SAML and Liberty Alliance specifications.

In [165, 166], for example, Pfitzmann examines privacy policies for the Liberty Alliance

specifications and shows that the specification of such policies is a non-trivial task. In [167],

Pfitzmann and Waidner discuss, among other things, privacy aspects of Liberty, SAML and

Microsoft Passport with a focus on attribute exchange. In [168] the same authors discuss

certain ‘profiles’ (i.e. modes of operation) of Liberty. In [92, 93] Gross and Pfitzmann analyse

the security of another set of profiles of SAML-based web SSO protocols and give a number

of recommendations to implementors. Hansen, Skriver and Nielson use formal methods to

analyse certain instantiations of the SAML SSO protocol [96]. Jeong, Shin, Shin and Moon

describe an implementation of a SAML-based SSO scheme in [107]. Li, Ge, Wo and Ma

describe the implementation of an SSO scheme that also makes use of SAML in [126].

The ideas on which Microsoft Passport (and, to a lesser extent, SAML and Liberty) are

based, namely the exchange of authentication information using HTTP cookies, is discussed

by Samar [181]. Kormann and Rubin identify a number of attacks on Microsoft Passport

in [120]. Oppliger discusses Microsoft Passport from an identity management viewpoint

in [151].

Other SSO schemes that have been proposed in the literature include those of Satoh and

Itoh [182], and Ishitani, Almeida, and Meira Jr. [103]. Moreover, a number of commer-

cial SSO products that use proprietary protocols have been developed (see, e.g. [189, 144]).

In order to establish a basis on which the above schemes can be compared, in chapter 3

we establish a taxonomy of SSO systems. The taxonomy enables us to put into perspective

existing work, and to discuss our contributions in a common context. Part I of this thesis

proposes a number of new SSO schemes that are either based on existing technology or

have properties that other existing systems do not possess. Wherever this is necessary, we

provide a discussion of relevant work and discuss our schemes within the context of the

taxonomy. Some of the proposed schemes, e.g. those discussed in chapters 4 and 5, could

be implemented as enhancements or extensions of existing schemes. Although we do not

discuss the details of how this could be done, the modular nature of the Liberty Alliance

specifications, for example, may allow for such extensions to be specified in a straightforward

manner.

Part II of this thesis considers anonymous credential systems with an emphasis on aspects

34



2.4 Overall structure and summary of contributions

relevant to their use in an SSO scenario. Chapter 8 provides a separate literature overview

of that area. In this part also two methods to build an SSO scheme using an anonymous

credential system are discussed. Such an SSO scheme provides stronger privacy and secu-

rity properties than all existing schemes. The following section provides a more detailed

description of the contributions of the thesis.

2.4 Overall structure and summary of contributions

This section briefly outlines the structure of this thesis and highlights its main contributions.

The remainder of the thesis is divided into three parts. In general terms, part I is concerned

with pragmatic ‘real-world’ SSO schemes that are based on well-established and available

infrastructures. Part II is concerned with anonymous credential systems and with combining

anonymous credential systems and SSO. Finally, part III presents the overall conclusions of

the thesis. We next highlight the contributions of each part in more detail.

Part I: A number of different interdomain user authentication systems have been deployed

and are in use today. In chapter 3 we establish a taxonomy of such systems and discuss

their strengths and weaknesses. Within our taxonomy, we identify four different categories

of SSO scheme. The taxonomy is subsequently used as a basis to put into context the novel

and pragmatic SSO schemes that we propose. Four such schemes are proposed, as follows.

• Chapter 4: We describe the construction of an SSO scheme that is based on the

infrastructure of 2nd and 3rd-generation cellular (mobile) telephony. In particular,

the scheme uses a subscriber’s Security Identity Module (SIM) for interdomain user

authentication. With more than one billion users worldwide, it is clearly advantageous

to be able to use the SIM in the context of SSO. The scheme proposed in this chapter

does not require changes either in the SIM or in other strategic network components

of the system. We also consider certain relevant attacks and countermeasures.

• Chapter 5: We describe the construction of an SSO scheme that is based on cred-

it/debit smart cards that conform to the Europay, Mastercard, Visa (EMV) specifi-

cations. These cards are being deployed in a number of countries and are supported

by a worldwide infrastructure. The SSO scheme reuses the cards and the established

key management infrastructure in order to facilitate intradomain user authentication.

35



2.4 Overall structure and summary of contributions

While the scheme requires certain changes in the card itself, it does not require changes

in any other equipment. We consider certain attacks and countermeasures and discuss

relevant issues.

• Chapter 6: We describe the construction of two SSO schemes that are based on

trusted computing, i.e. on platforms that conform to the Trusted Computing Group

specification. Such platforms come with a cryptographic co-processor that can perform

certain functions and have been on the market for more than a year. The reason why

we describe two schemes is that they belong to two different categories of the taxonomy

of chapter 3. Both are potentially useful in an appropriate environment. We discuss

issues that arise in the context of the proposed schemes, such as privacy, complexity

and cross-platform mobility.

• Chapter 7: While the previous three SSO schemes are based on tamper-resistant

hardware modules, in this chapter we describe the construction of an SSO scheme that

is not. Its distinctive feature is that it is suitable for use from an untrusted network

access device, i.e. a device to which no long-term secrets should be made available. The

scheme overlays a one-time authentication mechanism over the legacy mechanisms of

individual service providers. We also describe an open-source implementation of the

scheme that works as a web proxy. The implementation performs additional functions

such as the transparent handling of secure channels and content filtering.

Part II: As the need to preserve one’s privacy continues to gain importance in the digital

world, it is important to enhance user authentication schemes with properties that enable

users to remain anonymous (yet authenticated). In the second part of the thesis, anonymous

credential systems are identified as a tool that can be used to help achieve this goal. This

part also shows how to use an anonymous credential system in order to facilitate what we

call ‘privacy-aware single sign-on’ in an open environment. In particular,

• Chapter 8 provides a literature overview and a short informal introduction to the

topic of anonymous credential systems and pseudonym systems. It also points out

that there exist inherent limits to the degree of privacy that can be obtained in the

context of anonymous credential systems, and describes a series of timing attacks

that exploit these limits. This chapter further investigates the possibility of imposing

randomised waiting times between the issuing and showing of credentials, and discusses

36



2.4 Overall structure and summary of contributions

the tradeoffs involved. Some heuristics that help mitigate exposure to the attacks are

proposed.

• Chapter 9 presents a formal model that captures relevant security and privacy notions

for anonymous credential systems. The model essentially represents a complexity

theoretic treatment of such systems and exists within the setting of provable security.

It provides insight into the relationships between different security and privacy notions.

• Chapter 10 presents a peer-to-peer scheme that provides a level of protection against

the timing attacks described in chapter 8. The approach differs from that of in chap-

ter 8, and also provides real-time feedback to users about the level of privacy they

enjoy.

• Chapter 11 introduces the notion of a privacy-aware SSO scheme and provides a

brief discussion of why existing systems cannot be classified as such.

• Chapter 12 presents two ways to construct a privacy-aware SSO scheme using an

anonymous credential system. It further discusses certain issues that arise and the

tradeoffs involved between usability, security and privacy.

Part III: This part presents the overall conclusions of the thesis. In particular,

• Chapter 13 presents the conclusions of the thesis and gives directions for further

research.

37



Part I

Interdomain User Authentication

38



Chapter 3

A taxonomy of distributed authen-
tication architectures

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 How SSO works . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 The taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1 Local pseudo-SSO . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.2 Proxy-based pseudo-SSO . . . . . . . . . . . . . . . . . . . . . . 44

3.3.3 Local true SSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.4 Proxy-based true SSO . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Properties of user authentication schemes for distributed sys-
tems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.1 Privacy protection . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.2 Anonymous network access . . . . . . . . . . . . . . . . . . . . . 46

3.4.3 User mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.4 Use in an untrusted environment . . . . . . . . . . . . . . . . . . 48

3.4.5 Deployment and maintenance costs . . . . . . . . . . . . . . . . . 49

3.4.6 Running costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.7 Trust relationships . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.8 Conflict resolution and lawful access . . . . . . . . . . . . . . . . 50

3.4.9 Open versus closed environments . . . . . . . . . . . . . . . . . . 50

3.5 Some examples of SSO schemes . . . . . . . . . . . . . . . . . . . 51

3.5.1 Kerberos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5.2 The Liberty Alliance . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5.3 Microsoft Passport . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

The aim of this chapter is to introduce some of the existing interdomain user authentication

systems and to develop a taxonomy of these schemes. This taxonomy serves as a basis to

put into context the schemes that are proposed in the remaining chapters in this part of the

thesis. Much of the material in this chapter has previously been published in [157].

39



3.1 Introduction

3.1 Introduction

A number of different interdomain user authentication schemes have been proposed. As each

of these has been designed to meet the requirements of a particular operational environment,

different systems typically rely on different assumptions and adopt different architectures.

By considering the various possible architectures, we identify four generic types of real-world

user authentication scheme. We discuss their relative strengths and weaknesses, and use our

taxonomy as a basis to put into context the schemes that are introduced in the remainder

of this part of the thesis.

An interdomain user authentication system, also called an SSO scheme, is defined as a

scheme that enables the user to authenticate himself to more than one service provider (SP)

using only a single authentication credential. As authentication implies identification, a

real-world system has to incorporate the life cycle management of the identifiers by which

a user is known to the SPs he is registered with. These identifiers can take various forms

(e.g. e-mail addresses, names, or sequence numbers). In order to maintain generality, in this

chapter we make no assumptions about the type of name used, and simply treat names as

finite sequences of bits. In the remainder of this chapter we refer to them as ‘SSO identities’.

In the next section we give a high level overview of the operation of an SSO scheme. Although

concrete schemes differ in many, often fundamental, aspects, the description here is generic;

whilst it omits the technical details, it applies to virtually all existing such schemes. We

then present the taxonomy in section 3.3. Section 3.4 discusses the relative strengths and

weaknesses of SSO schemes in each of the four classes, and section 3.5 presents some existing,

real-world example schemes in the context of the taxonomy. Finally, section 3.6 gives a short

summary of this chapter.

3.2 How SSO works

Virtually all existing SSO schemes depend on the notion of authentication sessions. The

system information flow, depicted in Figure 3.1, is as follows. First, in order to start a

session, the user needs to authenticate himself, using his single authentication credential, to a

special entity which we call the ‘Authentication Service’ (AS). If this ‘initial’ authentication

40



3.3 The taxonomy

Figure 3.1: Information flow of a generic SSO system.

is successful, the session is started (step 1 in the Figure).

For as long as the session lasts, and whenever a service is requested (step 2), the AS provides

the following service to the user: it automatically logs him into the SPs he uses (step 3).

How exactly this is done differs from scheme to scheme. In all schemes, however, it involves

the AS, and possibly the user, executing a protocol with the SP; we call this the ‘SSO

protocol’. The objective of this protocol is to identify and authenticate the user to the SP

in a manner that does not (necessarily) require further manual interaction from the user.

Finally, assuming that step 3 was successful, the service is provided in step 4.

At some later point in time the authentication session will be terminated. The reasons for

this termination will again vary from system to system. Sessions are, of course, subject to

the policies of the AS, the SP and the user, and reasons for termination may include events

such as extended periods of inactivity, a maximum number of logins performed, or a simple

time limit. After a session has been terminated, the user has to authenticate himself again

to the AS in order to start a new session.

3.3 The taxonomy

We distinguish between two main types of user authentication schemes for distributed sys-

tems. In the first type of scheme, which we call ‘pseudo-SSO’, the AS achieves automatic

user authentication simply by executing whatever authentication mechanisms are in place

at the different SPs, as necessary. The key distinguishing feature of this type of system is

that, during the session, a separate user authentication occurs every time the user is logged

into an SP. The AS manages the SP-specific authentication credentials, which constitute

41



3.3 The taxonomy

the SSO identities in this case. Since these SSO identities are SP-specific, the SSO Identi-

ty/SP relationship is n : 1; that is, any given SSO identity corresponds to exactly one SP,

and a user may, in principle, have multiple SSO identities for a single SP. This type of SSO

scheme is illustrated in Figure 3.2.

Figure 3.2: Pseudo-SSO

Pseudo-SSO is fundamentally different from the second type of distributed user authenti-

cation scheme, which we call ‘true SSO’. In a true SSO scheme all SPs that are part of

the SSO system are required to have an established relationship with the AS. This relation-

ship requires a level of trust that is typically supported by a contractual arrangement. There

would also typically need to be a supporting infrastructure to enable secure communications

between the AS and the SPs. The key distinguishing feature of true SSO is that, from the

SP viewpoint, a trusted third party, namely the AS, provides the authentication service; the

SP is notified of the authentication status of the user via so-called authentication assertions.

These are statements that contain the user’s SSO identity and his/her authentication status

at the AS. Note that the transport of these authentication assertions will itself need to be

secured by some means. Also, the format of SSO identities depends on the system design,

but would typically be uniform throughout the whole system.

In contrast to pseudo-SSO, under true SSO the SSO identity/SP relationship can be n : m.

That is, if supported by the scheme, not only can the user potentially choose from a ‘pool

of identities’ for any given SP, but the same SSO identity could, if the user wishes, be used

with multiple SPs. This enables the assignment of specific roles to SSO identities (which

then act as ‘role pseudonyms’ as defined in [164]). The operation of a true SSO scheme is

depicted in Figure 3.3.

User authentication schemes for distributed systems can be further categorised based on the

location of the AS; specifically, the AS can either be local to the user platform, or offered

42



3.3 The taxonomy

Figure 3.3: True SSO

as a service by an external entity, which we refer to as the ‘SSO proxy’. We thus arrive at

the following four main categories of user authentication schemes for distributed systems:

• Local pseudo-SSO systems,

• Proxy-based pseudo-SSO systems,

• Local true SSO systems, and

• Proxy-based true SSO systems.

We next consider each of these four types of scheme in a little more detail.

3.3.1 Local pseudo-SSO

In a local pseudo-SSO system, the AS is resident within the user machine. The AS maintains

a database of authentication credentials for all the SPs that the user has a relationship with.

This database may be encrypted in order to prevent an adversary with temporary access

to the machine from stealing the credentials. The user authenticates himself to the AS

at the beginning of a session. From that point on, the AS automatically executes SP-

specific user authentication mechanisms whenever needed, making use of the appropriate

authentication credentials. Of course, encrypted credentials have to be decrypted first;

therefore, the decryption key has to be made available to the machine, at least during the

session. A key property of this architecture is that the machine needs to have access to the

user’s long-term authentication credentials. Thus, the machine is required to be sufficiently

trustworthy for this purpose.

43



3.3 The taxonomy

3.3.2 Proxy-based pseudo-SSO

In a proxy-based pseudo-SSO architecture, the AS resides on an external server. This

external server, called a proxy, has to have access to the user’s credentials in unencrypted

form, and hence must be trusted for this purpose. The initial authentication occurs between

the user and the proxy at the beginning of a session (and possibly thereafter if the proxy

wishes to perform a re-authentication). Subsequent user authentication at SPs is redirected

to, or intercepted by, the proxy, which automatically executes the SP-specific authentication

mechanism on the user’s behalf. A key property of this architecture is that, as authentication

occurs directly between the proxy and the SPs, the local machine is not necessarily required

to have access to the user’s SP-specific credentials. The scheme described in chapter 7

belongs to this category.

3.3.3 Local true SSO

Under true SSO, the AS authenticates the user, and subsequently conveys authentication

assertions to SPs whenever necessary. When a trusted component within the user system

takes the role of the AS, the resulting architecture falls into the category of local true SSO

systems. A trust relationship between the local AS and the relying SPs has to exist. This

trust relationship has to be supported by an appropriate security infrastructure. Moreover,

since, in this setting, the AS resides in the user’s machine, it is under the physical control

of the user. That is, a malicious user could modify the local AS to make it falsely assert

to an SP that a different user has been authenticated. Therefore, mechanisms must be in

place that guarantee the AS’s integrity. The schemes described in chapters 5 and 6 belong

to this category.

3.3.4 Proxy-based true SSO

Finally, in a proxy-based true SSO architecture, an external server takes the role of the AS.

This external server acts as a broker between users and SPs. A user first authenticates

himself to the AS. Using an appropriate SSO protocol, he is subsequently automatically

logged into those SPs that maintain a trust relationship with the AS. The schemes described

in section 3.5.2 and 3.5.3 of this chapter and in Chapter 4 belong to this category.

44



3.4 Properties of user authentication schemes for distributed systems

3.4 Properties of user authentication schemes for distrib-
uted systems

In this section, properties that are inherent to SSO schemes in the four classes of the tax-

onomy are presented. In order to maintain generality, the discussion is at a high level of

abstraction. An interesting report on a real world deployment of an SSO system, where

many of the design decisions were based on the properties described below, can be found

in [94].

3.4.1 Privacy protection

Privacy protection is of particular importance in open environments [207]. With respect

to SSO systems, privacy concerns arise in a number of situations. If, for example, SSO

identities contain personally identifying information, it may be possible for colluding SPs

to correlate distinct identities of the same user without his consent, thereby aggregating

their respective information about the user into a single profile. Guaranteeing SSO identity

pseudonymity, in the sense that the identity does not include any personally identifying

information [164], is therefore a potentially desirable property.

Of course, such unlinkability may not always be possible in practice, e.g. if the SP is re-

quired to have access to the user’s real name and address for the delivery of physical goods.

Moreover, depending on the legal jurisdiction applying to the SP, aggregation of personally

identifying information may be severely restricted by privacy legislation. Nevertheless, guar-

anteeing pseudonymity by technical means may be of genuine significance in cases where SPs

are providing goods and services that are delivered electronically, and in domains where legal

protection for user privacy is inadequate, or even nonexistent.

In the remainder of this section we focus on the case where users are known to different SPs

under different pseudonyms. A privacy-protecting SSO scheme should, in this case, pre-

vent SPs working out which pseudonyms belong to the same user — even if they collude

with each other and the AS provider. An SSO scheme that protects the user’s privacy in this

sense is said to offer unlinkability of pseudonyms3.1 [164, 191]. It turns out that unlinkability

is not as easy to achieve as it may seem at first glance. In fact, at the time of writing and
3.1Unlinkability of the user’s pseudonyms is examined in greater detail in part II of this thesis.

45



3.4 Properties of user authentication schemes for distributed systems

to the best of the author’s knowledge, no existing real-world SSO scheme has managed to

achieve it.

In order for pseudonyms to be unlinkable, they should not contain any information that

allows them to be linked to each other. Under pseudo-SSO, the SP will typically select the

type of user identifier (i.e. pseudonym) that has to be used; a user interested in privacy must

select his pseudonyms in a way that obscures the fact that they all belong to him. Apart

from this being a task that many users may find impractical, the system neither inherently

aids in, nor prevents, linking of pseudonyms; in this sense unlinkability is not within the

scope of such systems.

A system that is designed to offer unlinkability of pseudonyms necessarily needs to provide

a suitable mechanism for users and SPs to establish these pseudonyms. A true SSO scheme

has the potential to offer such a mechanism as an intrinsic part of its operation. This is

because, since the applicability of a true SSO scheme’s protocols is system-wide (i.e. all

SPs are required to support the same protocols), SPs can be required to support a suitable

pseudonym establishment mechanism. Unfortunately, providing such a mechanism is not

sufficient; it is also required that subsequent use of the scheme (executions of the SSO

protocol in particular) does not compromise the unlinkability of pseudonyms. The second

and third parts of this thesis are devoted to this subject.

3.4.2 Anonymous network access

Whether or not otherwise unlinkable SSO identities remain so when an adversary has access

to network address information depends on the wider context within which the SSO scheme

is deployed. If, for example, the lower layer protocols do not provide an anonymous user-

to-SP channel, the adversary can easily correlate SSO identities using information found in

packet headers or traffic analysis [7]. Unfortunately, the user’s network address (which is

typically included in packet headers) also reveals the identity and geographical location of

his/her network access provider. The provider can then help link the network address (and

thereby the SSO identity) to the user’s real name and address.

These privacy issues are addressed by so-called ‘anonymous network access’ schemes. In

these schemes, all traffic between the user and the SPs is physically routed through an

46



3.4 Properties of user authentication schemes for distributed systems

externally operated server, known as an ‘anonymising proxy’. This proxy replaces the user’s

real network address (and perhaps other identifying information) with its own. The level

of anonymity achieved depends, of course, on the number of users in the system [164].

Examples of such anonymity services are the Anonymizer3.2 and Freedom WebSecure3.3 from

zerøknowledge. While single-proxy schemes provide only a limited level of resistance against

traffic analysis, the proxy operator has to be fully trusted to provide the anonymising service.

So-called mix networks [45, 89] address these issues by distributing the proxy functionality

over several servers. A real-world example of such a system is JAP3.4.

Anonymising services can be employed in conjunction with SSO systems in order to increase

the level of SSO identity unlinkability. In fact, SSO-proxies could be augmented with the

functionality of an anonymising proxy. Of course all traffic would have to be physically

routed through the proxy, but the user would not have to trust an additional entity. In the

case of proxy-based pseudo-SSO, the architecture might be completely transparent to SPs:

they would not even need to be aware of the proxy’s existence. The scheme described in

chapter 7 is based on a proxy that, among other things, hides the user’s network address

from SPs.

3.4.3 User mobility

Proxy-based architectures inherently support user mobility; users can authenticate them-

selves to the AS from anywhere in the network (except, of course, if the authentication

method itself imposes restrictions on this). We thus concentrate on how user mobility can

be supported in local schemes.

In local pseudo-SSO systems, user mobility can be supported if the credential database

is held on an external server: initial authentication between user and server would occur

once at the beginning of a session, and credentials would then be downloaded to the local

machine as needed. The degree of trust required in the server in such a setting varies

according to whether or not credentials are stored in an encrypted form. Such a setting

does not constitute proxy-based SSO; it is the local machine that accesses the credentials in
3.2www.anonymizer.com
3.3www.freedom.net/products/websecure
3.4anon.inf.tu-dresden.de

47



3.4 Properties of user authentication schemes for distributed systems

the clear and executes the SSO protocol. Novell’s SecureLogin3.5, Passlogix’ V-GO3.6 and

Protocom’s SecureLogin3.7 products are examples of local pseudo-SSO systems with support

for user mobility. One can also regard automatic form-fillers as products with pseudo-SSO

functionality. Examples include the automatic form completion functions of popular web

browsers and Novell’s DigitalMe3.8 service.

Whether or not local true SSO schemes support mobility depends on the mechanism that

is used to provide assurance to the SP regarding the integrity of the AS. The local true

SSO scheme described in chapter 5, for example, supports user mobility since the hardware

token on which it is based is itself mobile. On the other hand, in the scheme described in

chapter 6, user mobility is not supported per se, because the scheme involves a platform-

specific hardware module.

3.4.4 Use in an untrusted environment

Sometimes users wish to access SPs from untrusted or hostile environments such as Internet

cafés or other types of public or shared terminals. In these situations it is undesirable if the

untrusted machine ever has access to long-term authentication credentials that will allow it

to later successfully impersonate the user.

In such scenarios, proxy-based SSO schemes are potentially useful. Of course, the initial

authentication between user and proxy must have the property that observation of one

authentication exchange does not enable subsequent impersonation of the user. This re-

quirement can be met by using suitable challenge/response protocols, such as a one-time

password scheme (see, for example, [142]) to initially authenticate the user. Building on

this, and assuming that all network traffic between the user and the SPs is physically routed

through it, the proxy may also provide an additional privacy protection service by ‘stripping

off’ all personal data before it reaches the untrusted machine. The scheme proposed in

chapter 7 is of this form.
3.5www.novell.com/products/securelogin
3.6www.passlogix.com/sso
3.7www.protocom.cc
3.8www.digitalme.com

48



3.4 Properties of user authentication schemes for distributed systems

3.4.5 Deployment and maintenance costs

Generally speaking, it is far less costly to deploy pseudo-SSO than true SSO schemes, because

they do not require any common security infrastructure; existing SPs may not need to change

at all. On the other hand, if an SP does change its user authentication mechanisms after

deployment, this has to be reflected in the AS. This increases the maintenance costs of

pseudo-SSO schemes, especially in dynamically changing environments.

The situation is reversed in true SSO schemes. Deployment of true SSO systems requires a

potentially costly, system-wide infrastructure. This infrastructure must both enable SP-AS

secure communications (e.g. using a Public Key Infrastructure), and provide the manage-

ment/legal framework which might include service level and liability transfer agreements.

Once the infrastructure is in place, however, maintenance costs are likely to be low, since

changes in the user authentication interface occur only between the user and the AS.

3.4.6 Running costs

The running costs of local SSO schemes are likely to be lower than those of proxy-based

systems. This is because local SSO schemes do not require the continuous online presence

of a server.

Proxy-based systems depend, of course, on the security and availability of the external proxy

server. Moreover, the proxy constitutes a single point of failure in the system. As such, it

must be protected against service denial attacks. Additional communications costs might

be incurred if all traffic is physically routed through the proxy.

3.4.7 Trust relationships

Regardless of the type of a scheme, a dishonest AS can typically impersonate any registered

user at every SP at will. This limitation exists in all SSO schemes that the author is aware

of, apart from the scheme described in part II of this thesis. Consequently, both users and

SPs have to trust the AS. Local systems, such as the one described chapter 6, have the

advantage that the user does not have to trust an entity that is under external control,

49



3.4 Properties of user authentication schemes for distributed systems

although he will still need to trust the AS manufacturer.

It is important to note that, despite the universal need for user trust in the AS, there

remain differences in the nature of the trust relationships involved in true and pseudo-SSO

schemes. In the case of a true SSO scheme, the common security infrastructure allows for

the trust relationships between the SPs and the AS to be precisely described and regulated

by policies, service level and liability transfer agreements, and other non-technical means.

Furthermore, if the user’s authentication credentials are compromised, the service can be

disabled centrally.

Under pseudo-SSO the trust relationships are more diffuse. SPs may not even be aware that

the scheme is in place. Credential databases may be encrypted and replicated at several

servers. The trust relationship between the user, any servers and the pseudo-SSO component

depends on the implementation details of the scheme. The trust relationship between AS

and the SPs may be different for each SP, and may change whenever individual SPs modify

their authentication interfaces.

3.4.8 Conflict resolution and lawful access

In the event of a dispute or a lawful investigation, the operator of the proxy in a proxy-

based scheme may provide evidence of events, as a trusted third party, by keeping logs of

authentication events. The situation is likely to be better defined in a true SSO system, as

in such systems there is necessarily a well-defined relationship between the AS and the SPs.

Local SSO schemes are much less likely to be useful in this sense, since evidence can be

modified or deleted. However, if the AS in a local true SSO system incorporates physical

protection measures that enable it to be trusted by third parties, then locally stored event

logs may still possess evidential value. The scheme described in chapter 6 can be enhanced

with this property.

3.4.9 Open versus closed environments

The issue of privacy protection (which includes anonymous network access and use in un-

trusted environments) is usually deemed to be of less importance in closed environments.

50



3.5 Some examples of SSO schemes

Thus, the main focus for SSO for closed systems is likely to be the deployment, running and

maintenance costs. Since these are less for pseudo-SSO systems, especially in relatively sta-

ble environments, ‘enterprise’ pseudo-SSO solutions promise a rapid and concrete return on

investment. Architectures of such systems are examined in [65], and examples of real-world

implementations include Computer Associates’ eTrust Single Sign-On3.9, cafesoft’s Cams3.10,

Entegrity’s AssureAccess3.11, Entrust’s GetAccess3.12and Evidian’s AccessMaster3.13.

However, the need for privacy protection in open environments may well outweigh the deploy-

ment cost of true SSO schemes. Thus it seems likely that true SSO systems will eventually

be required in open environments such as the Internet. Some well-known systems designed

for open environments are discussed in the next section.

3.5 Some examples of SSO schemes

Most existing SSO schemes are either local pseudo-SSO or proxy-based true SSO schemes.

Examples of the former class have been mentioned in section 3.4.3. This section provides

more detailed descriptions of three well-known SSO schemes that belong to the latter class,

namely Kerberos, the Liberty Alliance specifications, and Microsoft Passport.

3.5.1 Kerberos

Kerberos is perhaps the first interdomain ‘network authentication system’ [99, 192]. A

single security domain, or realm, consists of a set of users, an Authentication Server, a

‘Ticket Granting Server’ and a set of relying SPs. The Authentication Server and Ticket

Granting Server can be combined into a single entity called the ‘Kerberos server’. In terms

of the generic system described in section 3.2, the Kerberos server constitutes the AS. The

security infrastructure of Kerberos relies solely on symmetric cryptography; every user and

every SP share a long-term secret key with the AS. All secret keys are used to perform an

encryption operation, which is implicitly assumed to provide integrity protection (in addition

to providing confidentiality).

3.9www3.ca.com/Solutions/Product.asp?ID=166
3.10cafesoft.com/products/cams/camsOverview.html
3.11www.entegrity.com/products/aa/aa.shtml
3.12www.entrust.com/getaccess/index.htm
3.13www.evidian.com/accessmaster

51



3.5 Some examples of SSO schemes

A simplified description of user authentication under Kerberos follows. The protocol is

executed whenever the uses wishes to log into an SP of the realm.

1. If the user already possesses a valid ‘Ticket Granting Ticket’ (TGT) from a previous

protocol run, this step is omitted. Otherwise, the user requests a fresh TGT from

the AS. The AS replies with a message that contains a fresh TGT and a ‘session

key’ which will be used to construct an ‘authenticator’, i.e. a data structure which

is encrypted under the session key and contains elements that protect against replay

attacks. This session key is encrypted under the long-term key the user shares with

the AS (or a key derived from it). The user decrypts the session key using his long-term

key.

2. The user sends a message to the AS that contains the TGT, an authenticator (en-

crypted under the aforementioned session key), and the identifier of the SP he wishes

to access. The AS checks the validity of the received message. If the check is not

satisfied, (if, for example, the TGT has expired) authentication fails. Otherwise the

user is now deemed authenticated at the AS.

3. The AS replies with a message that contains a ‘Service Granting Ticket’ (SGT), a data

structure encrypted using the key shared by the AS and the SP in question, and a

second session key which is encrypted under the session key of step 1.

4. The user now constructs a message containing the SGT and an authenticator encrypted

under the second session key. This message, if constructed correctly, demonstrates the

user’s ability to decrypt the second session key. Although it is constructed by the user,

it can be regarded as an authentication assertion. The user sends it to the SP which

decrypts it and, if valid, logs the user in.

The tickets (TGT and SGT) are encrypted data structures that contain the user identifier

and network address, the server identifier, session keys and expiry timestamps. The SSO

effect is achieved by the fact that the user does not need to re-use his long-term key while

the TGT remains valid.

Interdomain user authentication (i.e. across multiple realms) is achieved by setting up the

required relationships and symmetric keys between the Kerberos servers. There is no restric-

tion as to the type (web, FTP, etc.) of SPs that may rely on Kerberos for user authentication,

as long as they follow the protocol.

52



3.5 Some examples of SSO schemes

Since the same user identifier is used with every SP, the SSO identity/SP relationship under

Kerberos is 1 : n. Thus, unlinkability of SSO identities is not an issue. It is interesting

to observe that even distinct Kerberos accounts of a given user are still linkable, as tickets

bind them to the user’s network address. Since the authentication mechanism is based on a

long-term secret key, user mobility can be supported (if the key is derived from a password,

for example) but it is not suitable for use in an untrusted environment. Other limitations

of the protocol have been documented in [20].

3.5.2 The Liberty Alliance

The Liberty Alliance3.14, a consortium of over 140 companies, recently developed a set of

open specifications for web-based SSO [130, 129, 131, 133]. In Liberty terminology [128],

the AS and the user are called the ‘Identity Provider’ and ‘Principal’ respectively. The spec-

ifications use the Security Assertions Markup Language (SAML), a platform-independent

framework for exchanging authentication and authorisation information3.15 [150]. Interest-

ingly, SAML itself can be used for SSO in a number of different modes of operation. One

such mode is analysed by Gross [92].

Liberty is based on the notion of ‘trust circles’ which are formed by trusted ASs and sets of

relying SPs. The AS/SP trust relationship has to be supported by contractual agreements

outside the scope of the specifications. According to the specifications, users first authen-

ticate themselves to the AS, which subsequently conveys authentication assertions to the

relying SPs. The assertions contain ‘name identifiers’ that allow SPs to differentiate between

users. For any given user, the AS has to use a distinct identifier with each SP in the trust

circle. The SSO identity/SP relationship is therefore 1 : 1. Furthermore, name identifiers

“must be constructed using pseudo-random values that have no discernible correspondence

with the Principal’s identifier (e.g. username) at the Identity Provider [AS]” [133, p.12]; SSO

identities are therefore potentially unlinkable.

This unlinkability, however, can be compromised in a number of ways. Firstly, as the AS

knows all the user identifiers, SPs could collude with the AS to link the pseudonyms of

a user. Secondly, SPs may be able to correlate SSO identities based on the user network

addresses. As discussed in section 3.4.2, this issue can be addressed by using an anonymous
3.14www.projectliberty.org
3.15www.oasis-open.org/committees/security

53



3.5 Some examples of SSO schemes

network access scheme. Thirdly, profile information that individual SPs may maintain (such

as shopping habits, telephone numbers or credit card details) can also be used to link

identifiers. Although this last point lies outside the scope of a user authentication scheme, the

specifications acknowledge that, for the time being, “the only protection is for Principals to

be cautious when they choose service providers and understand their privacy policies” [131,

p.70]. An independent assessment of the specifications with respect to privacy appears

in [166].

The Liberty specifications are independent of the specific user authentication mechanism (or

mechanisms) used by the AS; the details of the particular method that has been employed

by the AS to authenticate a user are explicitly stated in the authentication assertions [129].

This means that, if a suitable user authentication mechanism is in place, user mobility or

even use in an untrusted environment can be supported by a Liberty-compliant AS.

The Liberty Protocols and Schema Specification [133] defines generic requirements for the

protocols for conveying assertion requests and responses between parties. Concrete protocol

bindings are only specified in the context of a Liberty profile. All currently specified profiles

rely on the Secure Socket Layer (SSL) or the Transport Layer Security (TLS) [180] protocol

to provide secure channels between parties. Hence, a Public Key Infrastructure (PKI)

must be in place. A separate, or at least a more sophisticated, PKI may be required if

a profile is used that requires assertions to be digitally signed. Authentication assertions

sent from the AS to the SP are routed through the user browser via web redirects; in the

‘browser/POST’ profile, for example, assertions are sent within an HTTP form, while in the

‘browser/artifact’ profile an ‘artifact’ is encoded in the URL that the SP can later resolve

into an assertion [131].

3.5.3 Microsoft Passport

Microsoft Passport3.16 is a web-based SSO service that has been offered by Microsoft since 1999.

In Passport, messages are conveyed via ‘cookies’, an approach discussed in [181]. The pass-

port server acts as the AS. Users register with it by supplying a valid e-mail address and

a password (or, if they register from a mobile phone, their phone number and a Personal

Identification Number). Additional profile information, such as address, date of birth and

3.16www.passport.com

54



3.5 Some examples of SSO schemes

credit card details, may also be stored in their passport accounts. Every account is uniquely

identified by a 64-bit number called the ‘Passport User ID’ (PUID). SPs that wish to join

the scheme need to sign a contractual agreement with Microsoft (which involves a yearly

provisioning fee of $10,000 [144]), implement a special component in their web server soft-

ware, and share a secret key with the AS. Since SSL/TLS channels are required between

the user and the passport server (and optionally between user and SP), an appropriate PKI

must also be in place.

User authentication is achieved using the following protocol, which is executed whenever the

user wishes to log in to an SP.

1. The user’s browser is redirected to the AS.

2. The AS tries to retrieve a ‘Ticket Granting Cookie’ (TGC) from the browser’s cookie

cache. If one is found, it decrypts successfully, and is valid, the user is deemed au-

thenticated and the rest of this step is omitted. Otherwise, the AS requests the user

to authenticate himself. Assuming successful authentication, the AS saves a fresh

TGC in the browser’s cookie cache. This cookie is encrypted under a ‘master key’

only known to the AS. Its function is similar to the TGT of Kerberos; there is, how-

ever, no ‘authenticator’ in Passport — replaying a stolen TGC results in successful

impersonation.

3. The AS saves a set of cookies in the browser’s cookie cache which include the user’s

PUID and other profile information that the user has agreed to share at the time of

initial registration. This cookie set is encrypted under the secret key shared between

the AS and the SP in question. The encrypted cookie set plays a role similar to that

of the Kerberos SGT, and acts as an authentication assertion.

4. The user’s browser is redirected back to the desired SP, which reads and decrypts the

aforementioned cookie set and, if satisfied, logs in the user.

The SSO effect is achieved by the fact that, as long as the TGC remains valid, the user does

not need to re-authenticate (in step 2) in subsequent protocol runs. As the authentication

method is password-based, user mobility is supported, but the scheme is not suitable for

use in an untrusted environment. Passport users, like Kerberos users, use a single identi-

fier (the PUID) with every SP. The SSO identity/SP relationship is therefore 1 : n, and

unlinkability is not an issue.

55



3.6 Summary

According to the Liberty Alliance [127], Passport will be based on Kerberos in the future.

3.6 Summary

This chapter has presented an abstract taxonomy of user authentication schemes for dis-

tributed systems, and an analysis has been given of the properties of the four main types

that were identified. The characteristics of these four types of scheme are summarised in

Table 3.1. We have also presented some real-world examples of schemes in the light of the

taxonomy.

Table 3.1: Properties of SSO systems.
Local
pseudo-SSO

Proxy-based
pseudo-SSO

Local true-
SSO

Proxy-based
true SSO

Pseudonymity and
Unlinkability

cannot be
guaranteed

cannot be guar-
anteed

can be guar-
anteed

can be guaran-
teed

Anonymous Net-
work Access

needs ad-
ditional
services

can be inte-
grated

needs ad-
ditional
services

can be inte-
grated

Support for User
Mobility

needs ad-
ditional
services

under suitable
authentication
method

needs ad-
ditional
services

under suitable
authentication
method

Use in Untrusted
Environment

not sup-
ported

under suitable
authentication
method

not sup-
ported

under suitable
authentication
method

Deployment Costs low low high high
Maintenance Costs potentially

high
potentially high low low

Running Costs low high low high
Trust Relationships diffuse and

changing
diffuse and
changing

concrete and
consistent

concrete and
consistent

It is clear that each SSO architecture has its strengths and weaknesses, and one should

carefully consider the environment before opting for a particular solution. In a closed en-

vironment, the focus is likely to be on the deployment, running and maintenance costs,

whereas in an open environment the issue of privacy protection may play an equally impor-

tant role. The integration of SSO, privacy protection services (such as the ones discussed

in sections 3.4.2 and 3.4.4) and Identity Management schemes, such as the ones described

in [22, 58, 106] remains an active research area. Some of the techniques presented in part II

of this thesis can be used to help achieve such an integration.

56



Chapter 4

An SSO scheme based on GSM/UMTS

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 The GSM security services . . . . . . . . . . . . . . . . . . . . . . 58

4.2.1 The GSM data confidentiality service . . . . . . . . . . . . . . . 59

4.3 Using GSM for SSO . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.1 System entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.2 The authentication and SSO protocol . . . . . . . . . . . . . . . 62

4.4 Threat analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.1 Stolen SIM attack . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.2 SIM cloning attack . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4.3 Compromise of privacy . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4.4 Forwarding attack . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4.5 Attacks on the SP/AuC Link . . . . . . . . . . . . . . . . . . . . 67

4.4.6 Replay attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.7 Attacks against the authentication centre . . . . . . . . . . . . . 67

4.5 Advantages and disadvantages . . . . . . . . . . . . . . . . . . . . 68

4.6 Using UMTS/3GPP for SSO . . . . . . . . . . . . . . . . . . . . 69

4.7 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

This chapter presents a novel authentication scheme that is built on existing cellular (mobile)

telephone technology, in particular the GSM and UMTS systems. Much of the material in

this chapter has previously been published in [158].

4.1 Introduction

In 1982 the Conference of European Posts and Telegraphs formed a study group called the

‘Groupe Spécial Mobile’ (GSM). The purpose of this group was to develop a pan-European

system for mobile wireless communications. In 1989 the responsibility for this project was

57



4.2 The GSM security services

transferred to the European Telecommunication Standards Institute which published the

first specifications in 1990. The first commercial services based on the GSM specifications

started in 1991.

Today, GSM stands for ‘Global System for Mobile communications’. With over one billion

subscribers worldwide, GSM networks exist on every continent of the planet. The reader

interested in the history of GSM is referred to [203]. In this chapter we use certain GSM

security services in order to build an SSO scheme that works in an open environment of SPs.

In our scheme, the GSM network operator acts as the AS, and the user authentication

method is similar to that used to authenticate subscribers in a typical GSM network, in

that it is based on a secret that is shared between the network operator and the subscriber.

The scheme falls into the category of proxy-based true SSO schemes, and requires only

minimal changes to the deployed GSM infrastructure. It can potentially be accommodated

by the Liberty Alliance specifications as an additional SSO profile.

The rest of this chapter is organised as follows. The next section introduces the neces-

sary GSM terminology and reviews the relevant GSM security services. Section 4.3 describes

the proposed protocol for user authentication and SSO using GSM, while section 4.4 analy-

ses the associated security threats. Section 4.5 discusses the advantages and disadvantages

of the protocol. In section 4.6 the protocol is extended to cover the third generation of cel-

lular telephony networks, called the Universal Mobile Telecommunications System (UMTS).

Finally, sections 4.7 and 4.8 give a summary and an overview of related work.

4.2 The GSM security services

A subscriber to a GSM network is identified and authenticated through the use of a tamper-

resistant smartcard, called the Subscriber Identity Module (SIM). The SIM is issued by

the subscriber’s GSM network operator, and must subsequently be inserted into his Mobile

Equipment (ME), typically a mobile telephone handset. The SIM contains a number of data

items including the following.

• A cryptographic key, denoted Ki, to be used with a symmetric cryptosystem.

• A key derivation algorithm, denoted A8, that takes as input a key Ki and a random

58



4.2 The GSM security services

number RAND, and that outputs a session key Kc.

• A unique identifier called the International Mobile Subscriber Identity (IMSI). The

IMSI contains a number of fields and can be used to uniquely identify a GSM subscriber

on a worldwide basis. Two of the IMSI fields, namely the Mobile Country Code (MCC)

and the Mobile Network Code (MNC), uniquely identify the subscriber’s GSM opera-

tor.

The key Ki, along with the corresponding IMSI, is stored in a server called the ‘Authentica-

tion Centre’ (AuC), belonging to the subscriber’s GSM network operator. It is important to

note that the keys Ki are never output by either the AuC or their respective SIMs through-

out the lifetime of the system. An implementation of the A8 algorithm is also available to

the AuC. It is interesting to note that this algorithm is operator-specific; different operators

may use different A8 algorithms and, indeed, the same operator may use different algorithms

for different SIMs. GSM operators typically keep the description(s) of the A8 algorithm(s)

they use secret.

4.2.1 The GSM data confidentiality service

The GSM security service we are interested in, called ‘subscriber data confidentiality for

the GSM air interface’, is used to encrypt the data that is transmitted between the ME and

the GSM network. In particular, we are interested in the mechanism that is used to derive

the encryption key that is used by this service. As we see below, a certain protocol, which

is executed every time the ME attempts to connect to a ‘visited’ GSM network operator,

is used for this purpose. Before describing it we observe that the visited network operator

may or may not be the same as the one that issued the SIM to the subscriber. We refer to

the SIM issuer as the subscriber’s ‘home network’ operator.

We now describe the protocol according to which a secret session key is generated by the

subscriber’s SIM and the visited network. (Only the relevant steps are shown; in particular,

the process by which the ME is authenticated to the network is omitted. Also omitted is a

description of the means by which, in most circumstances, the ME can avoid the need to send

the IMSI across the wireless interface. The reader interested in comprehensive descriptions

of the security of the GSM air interface is referred to [25, 79, 80, 193, 200]).

59



4.3 Using GSM for SSO

Figure 4.1: PC as network access device.

1. The subscriber’s ME extracts the IMSI from the SIM and sends it to the visited

network.

2. The visited network looks at the MCC and MNC fields of the IMSI and determines

the identity of the subscriber’s home network. It sends the IMSI to the home network.

3. The AuC of the home network generates a random number (RAND), finds the secret

key Ki and the key derivation algorithm A8 that correspond to the received IMSI, and

computes the session key as Kc = A8(Ki,RAND). The values of RAND and Kc are

then passed to the visited network.

4. The visited network sends the value RAND to the ME.

5. The ME passes the RAND to the SIM, which computes the session key K̄c using its

copy of Ki and the key derivation algorithm A8. The key K̄c is then output by the SIM

to the ME.

Obviously, if the visited network is the same as the subscriber’s home network, then step 2 is

omitted. After the protocol has completed, the ME uses the key K̄c to encrypt the data sent

to the visited network. The latter attempts to decrypt the received data using the session

key Kc. As longs as Kc = K̄c, this process yields correct and meaningful decryptions.

4.3 Using GSM for SSO

This section describes the proposed user authentication method and the associated SSO

protocol. The scheme makes use of the infrastructure that supports the GSM session key

derivation mechanism described in the previous section. Before describing the SSO protocol,

we introduce the entities involved and state the assumptions on which the scheme is based.

60



4.3 Using GSM for SSO

4.3.1 System entities

The entities that interact in the SSO scheme are the SP, the GSM operator’s AuC, and the

User System (US), as described below. We assume that the US is connected, via some form

of network, to the SP and hence can exchange messages with it. We do not specify the

nature and communication protocols of this network, as our scheme is independent of the

underlying technology (although, of course, it will be affected by the network’s performance

characteristics).

4.3.1.1 Service Provider and Authentication Centre

We assume that the relationship between SPs and GSM operators is regulated by contractual

agreements and other non-technical means that are beyond the scope of this scheme. To

avoid the need for large numbers of such agreements, the SP/GSM relationship could be

established via one of a relatively small number of third parties providing a ‘broker’ service.

Such a third party could be established specifically to support this SSO scheme. It is also

assumed that the SPs and the AuC have the means to establish an authenticated and

integrity protected communications channel. This is necessary in order to protect against

the attacks described in section 4.4.5 below, and might involve routing all communications

via the trusted third party that is brokering relationships between SPs and GSM operators.

In the scheme described here, the subscriber’s GSM home operator acts as the AS for a

number of SPs. As in any true SSO scheme, the AS needs to be trusted for the purposes of

authentication by both the end-users and the SPs.

4.3.1.2 User System

The US consists of a network access device, a SIM and a SIM reader. The network access

device might be a desktop or laptop computer, with some form of compatible ME, e.g. a GSM

telephone handset, as the SIM reader. The computer and ME need to be interconnected,

e.g. using a cable, infrared, Bluetooth4.1 or a Wireless Local Area Network (WLAN) [98].

Regardless of the method used, we assume that this link is protected against eavesdropping.

The corresponding configuration is shown in Figure 4.1. Although the figure implies that
4.1www.bluetooth.com

61



4.3 Using GSM for SSO

Figure 4.2: Combined mobile equipment and network access device

the US is connected to the network via a wireless link, this does not necessarily have to

be the case. Alternatively, the access device and SIM reader could be combined, e.g. in a

Wireless Application Protocol4.2 enabled device — see Figure 4.2.

The US is the entity through which the end user authenticates to the AuC and subse-

quently achieves SSO at different SPs. It should be noted that no direct communications

between the US and the AuC take place in the proposed protocol; messages are ‘routed’

through the SP. However, the US and the AuC need to agree on and implement a Message

Authentication Code (MAC) function (see section 1.1.4.2).

4.3.2 The authentication and SSO protocol

The proposed protocol starts whenever the SP wishes to authenticate the user, e.g. when the

user requests a protected resource from the SP; it is also used whenever the SP decides that

the user has to be re-authenticated. In order to prevent the attack described in section 4.4.4,

we assume that, prior to the execution of the SSO protocol, the user has authenticated the SP

and, as a result of this, a cryptographically protected session is set up between the SP and

the user machine. This can be achieved, for example, using SSL/TLS with server-side

certificates [180]. The protocol consists of a series of four messages that are exchanged as

follows:

1. SP → US: RAND

2. US → SP: IMSI, MACKc(SPID)

3. SP → AuC: IMSI, MACKc(SPID), RAND

4. AuC → SP: Authentication Assertion or Failure Notification
4.2www.wapforum.org

62



4.3 Using GSM for SSO

In message 1, the SP sends a random challenge (RAND) to the US, where RAND conforms

to the requirements expected of a GSM RAND value. That is, it should contain 128 bits and

it should be chosen such that the same value is never used twice by a particular SP (except

with negligible probability), and that the values chosen can never be predicted (again except

with negligible probability). The US forwards this to the SIM, which then computes a secret

session key Kc as described in section 4.2 above. The key is returned to the US. The US

must also extract the IMSI from the SIM at some point — this can be done with a standard

‘call’ to the SIM. The IMSI uniquely identifies the home network and the user’s subscription.

The US then computes a MAC on the unique identifier (SPID) of the SP that wishes to

authenticate the user, using key Kc. It should be noted here that, the user should have

authenticated this SPID during the process of SP-to-user authentication. Moreover, as

in [117], Kc is used for MAC computation while it was designed for data encryption. If this

breach of the key separation principle is a concern, then Kc could be passed though a one

way function (see section 1.1.2) or some other appropriate key derivation function before

being used for MAC computation. It should also be noted that the MAC scheme should

be unforgeable for all possible values of SPID. This means that it should be infeasible,

without knowledge of Kc, to construct a valid (SPID, MAC) pair, for any possible value

of SPID. This is weaker than the usual security notion for a MAC scheme. The usual notion

of ‘existential unforgeability’ [15] implies the notion we require and, thus, any existentially

unforgeable MAC scheme is suitable for use in the protocol. The reason for introducing

this MAC in the protocol is to bind the user authentication to the SP authentication. This

results in the user and the SP mutually authenticating each other, which is necessary in

order to protect against the attack described in section 4.4.4. Note that the authentication

scheme of the GSM over-the-air interface does not provide mutual authentication between

the user and the SP, and hence using that scheme is likely to be inappropriate in the context

of SSO.

The US constructs message 2 which consists of the IMSI and the MAC and sends it to

the SP.

The SP examines the Mobile Country Code (MCC) and Mobile Network Code (MNC) fields

in the received IMSI to determine the address of the AuC of the user’s GSM home network

operator. In message 3 the SP simply forwards the IMSI and the MAC it received from

the US to the AuC, and appends the RAND from message 1. In terms of the Liberty

63



4.4 Threat analysis

Alliance specification [133], message 3 corresponds to an authentication request.

The AuC finds the secret key Ki and A8 algorithm corresponding to the IMSI of message 3

and derives Kc using the given RAND. It then computes a MAC on the SPID of the SP

from which it received message 3, using Kc (or a key derived from Kc). If the resulting value

matches the MAC received in message 3, then the user is deemed authenticated at the AuC.

In that case, the AuC sends an authentication assertion to the SP in message 4. Otherwise,

message 4 is a failure notification. In Liberty Alliance terms this message corresponds to an

authentication response.

In this scheme, SPs differentiate between users based on their IMSIs. Thus, the protocol

can also be used for initial user registration; whenever an SP encounters a ‘new’ IMSI, it

creates a new account for that user. Whether or not individual SPs keep more information

about users in their accounts, and how this is mapped to their IMSIs, is outside the scope

of the scheme.

In the US, the protocol might be implemented as a continuously running process (also known

as a ‘service’ or ‘dæmon’) or as part of the client software that is used to access the service

offered by the SP. In the SP, the protocol would have to be implemented by the software that

offers the service (the ‘server software’). A File Transfer Protocol (FTP) SP, for example,

would have to support the protocol at the FTP server software level. The GSM operator

would most likely implement the protocol as a process that runs continuously on a dedicated

server.

4.4 Threat analysis

This section considers threats to the scheme and corresponding countermeasures. Each

potential attack is considered separately.

4.4.1 Stolen SIM attack

Assuming that the SIM is not protected by a PIN, an adversary with a stolen SIM is

potentially able to make fraudulent phone calls at the legitimate owner’s expense, for as

64



4.4 Threat analysis

long as the SIM is not reported stolen and blocked. Typically, SIMs are stolen together with

the ME, and the thief also thus gains access to any personal information that is stored in

the ME. In the context of the scheme described above, the thief can also impersonate the

user to all SPs that support SSO using the proposed protocol. For low or medium value

services (such as online forums and personal e-mail) this risk might be acceptable, compared

to the costs associated with SIM/ME theft. However, for high value services (e.g. online

banking, e-commerce or business email) the scheme may need to be combined with another

authentication method, e.g. username and password. Such a combination would result in

two-factor authentication; the attacker would need both the SIM and the user’s password

in order to impersonate the user to an SP. Also, once the user realises that the SIM has

been stolen (typically soon after the incident) and reports this to the GSM operator, the

subscription will be blocked and impersonation prevented.

4.4.2 SIM cloning attack

A SIM can be cloned or emulated through software if the secret key Ki can be extracted

from it. An attack exploiting a weakness in the COMP128v.1 algorithm, which was used

as the A8 key derivation function by some GSM operators in early SIMs, enabled such

key extraction [203]. Cloned SIMs enable the adversary to impersonate subscribers at SPs

(including the GSM network) in much the same way as stolen ones. Moreover, the victim of

a cloned SIM is less likely to detect the attack than the victim of a stolen SIM. We therefore

have to assume that the A8 key derivation function is sufficiently secure to prevent such an

attack, and that appropriate measures have been put into place by the SIM manufacturer

to prevent an adversary from extracting the secret key Ki from it.

4.4.3 Compromise of privacy

Unlike the protocol described in [117], the scheme described here does not involve the user’s

Mobile Subscriber Integrated Service Digital Network number (i.e. his telephone number)

or any personally identifying information other than the IMSI. As the mapping between

the IMSI and other user data is kept at the trusted AuC, an SP only learns the identity

of the user’s home GSM operator; this information is necessary anyway because the SP

needs to be able to contact the user’s GSM home network — see section 4.3.2. Given that

each GSM operator has many subscribers, learning a user’s operator is not likely to enable

65



4.4 Threat analysis

an SP to discover the real identity of a user, as this identity will remain hidden within a

large anonymity set [164].

If dishonest SPs collude they can unambiguously correlate information about common users

without their consent, using their IMSIs. As is the case generally with true SSO schemes,

the scheme does not address this issue. Even in the Liberty specifications, where different,

opaque user handles must be used for each AS/SP association [130], dishonest SPs can still

link identifiers with the help of the AS. It appears that, in order to prevent identifiers being

linkable, special privacy-preserving cryptographic primitives need to be used that have not

been widely used in commercial systems. Part II of this thesis introduces a scheme that uses

such primitives in order to provide this unlinkability.

4.4.4 Forwarding attack

Without SP-to user authentication prior to execution of the SSO protocol, the scheme

is subject to a special type of ‘man-in-the-middle’ attack, which we call a ‘forwarding’

attack, as follows. An adversary could forward message 1 received from an SP as part of

the authentication process to a ‘victim’ user, while masquerading as the SP to the user

(for example by spoofing the SP’s network address). Forwarding the user’s valid response

(message 2) to the SP might enable the adversary to impersonate the victim user at that SP.

Without SP-to-user authentication occurring prior to executing the SSO protocol, the pro-

tocol provides only user-to-SP, rather than mutual authentication. In this setting the above

attack therefore applies and is of practical relevance and a real threat in many situations;

it is therefore highly desirable for the user, before releasing message 2, to authenticate his

communication partner as well. In other words, it is necessary, in these situations, for SP-

to-user authentication to occur prior to the execution of the SSO protocol described in this

chapter. This is why we assume that such authentication precedes every execution of the

protocol. As a side comment, note that, as discussed in section 2.1.2, it is likely that a pro-

tected communications channel will be required anyway, since the user is requesting access

to a protected resource.

66



4.4 Threat analysis

4.4.5 Attacks on the SP/AuC Link

An active adversary that modifies network traffic between an SP and the AuC is able to de-

feat the system, since the AuC will not be able to determine which SP requested an assertion

(the origin of message 3 could be altered) and, more importantly, the SP would not be able

to have confidence in the authentication assertion (message 4). Origin authentication and in-

tegrity protection for messages 3 and 4 is therefore a fundamental requirement. We therefore

assume that this network link is appropriately protected, for example by well-established

techniques such as SSL/TLS channels with both server and client side certificates [180],

IPsec tunnelling, or some other appropriate ‘virtual private network’ [193]. A permanent

secure channel is also potentially beneficial from an efficiency viewpoint, because it can be

reused for multiple protocol executions.

4.4.6 Replay attack

An adversary could capture message 2 of a previous protocol run between the US and an SP.

The adversary might later replay that message to try to impersonate the user to the SP. The

attack will only succeed if RAND sent by the SP (in message 1) is the same as a previous

one. It is therefore important for SPs to use numbers with good randomness properties, such

that the probability of challenging a given user with the same number twice is negligible.

An SP that does not follow this policy, however, only renders itself (and not other SPs)

vulnerable to this kind of attack.

4.4.7 Attacks against the authentication centre

As for any AS in an SSO scheme, the AuC constitutes a central point of failure, and is

therefore a component highly susceptible to service denial attacks. The AuC, at the same

time, is the only entity trusted by both end-users and SPs. It is assumed that the GSM

network operator will not abuse this trust and that the AuC will be well-protected against

service denial and illegal access. This latter assumption is likely to hold in any event, as a

failure of the AuC would also bring down the entire GSM network.

67



4.5 Advantages and disadvantages

4.5 Advantages and disadvantages

This section briefly discusses the advantages and disadvantages of the proposed authentica-

tion method and SSO protocol.

Advantages resulting from the synergy of combining GSM and SSO include the following.

• The scheme does not require user interaction. This yields transparent user authenti-

cation at the SP. One envisioned scenario is that a user approaches a (public) network

access device and is transparently logged into one or more SPs without having to take

his mobile phone out of his pocket.

• As the authentication method is transparent, it can be repeated whenever appropriate.

For example, an online banking SP could, at any time during a session, request user

re-authentication for every sensitive resource requested. This increases the level of

security achieved without usability implications.

• As the user’s SIM is used for every (re)authentication, there is a simple single logout

mechanism. Once the user leaves, re-authentication will fail and the SP can log the

user out without manual interaction.

• No sensitive information (such as usernames, passwords or cryptographic keys) is sent

over the network. This protects the user’s privacy. Furthermore, no risks of informa-

tion exposure arise at the SP.

• The protocol itself does not impose major computational overheads on any of the

involved parties, although there may be a cost associated with the countermeasures

against the attacks described in section 4.4.

• Changes in the deployed GSM infrastructure are minimal. In particular, the SIM does

not need to be modified in any way.

• The GSM operator could provide the SPs with user profile information (with the user’s

consent). This would enable SPs to offer location based services, or automatic form

completion for e-commerce transactions.

• As GSM operator fraud management systems use the IMSI to refer to ‘suspect’ sub-

scriptions, fraud detection can easily be extended to cover SPs.

68



4.6 Using UMTS/3GPP for SSO

The scheme comes with the following disadvantages.

• The scheme currently has no formal analysis or ‘proof of security’, e.g. a complexity

theoretic reduction to some hard computational problem. This is because, for the stan-

dard adversarial model [17], the countermeasures discussed in sections 4.4.4 and 4.4.5

need to be present. If these were to be treated as part of the scheme, the resulting

complexity would make the scheme difficult to analyse formally. Furthermore, the

key derivation function A8 resides on the SIM (and therefore cannot be replaced) and

potentially differs from one GSM operator to another. A formal analysis would have

to either consider multiple such functions or resort to an abstraction that might not

be very realistic.

• A GSM operator can only provide authentication for its subscribers. The system

therefore works only for subscribers of GSM network operators and those SPs that

have contractual agreements with those operators.

• SPs may be charged by GSM operators for the user authentication service. While

this is not a disadvantage for the operators (indeed it may provide a useful additional

revenue stream for operators), SPs must weigh the cost against the benefits gained

from the proposed scheme.

4.6 Using UMTS/3GPP for SSO

A variant of the protocol is now described that is based on the Universal Mobile Telecom-

munications System (UMTS) of the Third Generation Partnership Project4.3. Like GSM,

UMTS authentication is based on a secret key (Ki) shared between the subscriber and its

home network operator. The main difference is that the network sends an ‘authentication

token’ (AUTN) as well as the RAND to the subscriber’s ME [25]. As this AUTN can only

be produced by the user’s home network AuC, in UMTS the network also authenticates

itself to the user. The proposed variant protocol operates as follows.

1. US → SP: IMSI

2. SP → AuC: IMSI
4.3www.3gpp.org

69



4.6 Using UMTS/3GPP for SSO

3. AuC → SP: RAND, AUTN

4. SP → US: RAND, AUTN

5. US → SP: MACIK(SPID)

6. SP → AuC: MACIK(SPID), IMSI, RAND

7. AuC → SP: Authentication Assertion or Failure Notification

The US sends its IMSI to the SP (message 1) which forwards it to the AuC (message 2).

The AuC generates a random challenge (RAND) and computes the AUTN as a function

of RAND, the secret key Ki that corresponds to the given IMSI, and a counter value specific

to the SIM. The RAND and AUTN values are sent back to the SP (message 3) and forwarded

to the US (message 4).

The US’s SIM checks the validity of AUTN and, if valid, generates an ‘integrity key’ IK as

a function of RAND and its secret key Ki, just as it does during normal UMTS authentica-

tion [25]. The US uses this key (rather than the encryption key Kc) to compute a MAC on

the SP’s unique identifier (SPID).

The rest of the protocol is similar to the GSM version. In message 5 the US sends the MAC

to the SP which forwards it to the AuC in message 6, while appending the US’s IMSI and

the RAND of message 3 (message 6 corresponds to a Liberty authentication request [133]).

The AuC derives the integrity key IK from the RAND and the secret Ki corresponding to

the given IMSI. Using the IK, the AuC computes a MAC on the SPID of the SP from which

it received message 6. If it matches the MAC of message 6 then the authentication process is

deemed successful. If this is the case, then the last message, which corresponds to a Liberty

authentication response, contains an assertion; otherwise it contains a failure notification.

As in the GSM version of the protocol, the US must authenticate the SP prior to use of the

protocol, and communications between SP and AuC must be mutually authenticated and

their integrity protected (see sections 4.4.4 and 4.4.5).

Some of the ‘side effects’ when using the protocol described in this section, as compared to

its GSM version described in section 4.3.2, are the following:

70



4.7 Related work

• As the RAND is generated by the AuC instead of the SP, the risk of poor random

number generation (see section 4.4.6) is taken away from individual SPs. Associated

computational costs, however, are centralised at the AuC.

• The number of messages has almost doubled. This could lead to increased response

times.

• Validation of the AUTN (message 4) by the US provides for AuC authentication,

integrity and freshness assurance [25]. As a result, previous (RAND, AUTN) pairs

cannot be reused. The process is thus in this case no longer independent of subscriber

authentication over the UMTS air interface.

4.7 Related work

Claessens et al. [57] propose a GSM-based authentication method for the World Wide Web.

The proposed scheme, however, makes extensive use of another GSM service that requires

manual interaction from the user, called the Short Messaging Service (SMS). Several com-

mercial SSO solutions, including Ubisecure’s4.4 UbiloginTM and Entrust’s4.5 TruepassTM,

also involve the SMS.

The e-commerce user authentication protocol proposed in [117] relies on the fact that GSM

subscribers and network operators share a secret key Ki. The same fact is exploited by

the protocol proposed in this chapter. Being an e-commerce protocol, however, the scheme

in [117] discloses information to the merchant (i.e. the SP) that does not need to be disclosed

in an SSO scenario. The same applies to the ‘Murabaha transaction’ scheme described in [4],

which also makes use of the SMS.

In an independently developed Internet draft [102], the use of the GSM security mechanisms

described in section 4.2 for user authentication to arbitrary networks services is specified.

The protocol proposed in the draft is similar to the one proposed in this chapter, in that it

makes use of a MAC computed using a key derived from the secret key Ki. However, it re-

quires six message exchanges between the US and the SP while the protocol proposed in this

chapter requires only two. Nevertheless, the protocol in [102] also establishes a session key

between the two endpoints, has a number of options (e.g. the use of a temporary pseudonym
4.4www.ubisecure.com
4.5www.entrust.com

71



4.8 Summary

rather than the IMSI and a faster re-authentication variant) and also encapsulates the mes-

sages within the Extensible Authentication Protocol (EAP) [2]. In [152] (an earlier version

of) the protocol in [102] is combined with other protocols in order to facilitate GSM-based

user authentication in access networks.

4.8 Summary

We have proposed user authentication schemes for distributed systems where a GSM or UMTS

operator provides authentication assertions to relying SPs. The schemes can potentially be

specified as Liberty Alliance profiles, thereby conforming to this open specification.

The protocol yields a seamless user experience as no user interactions are needed, allowing

several transparent re-authentications to occur within a user/SP session. This leads to an

equally seamless, secure and simple single logout mechanism. The protocol preserves user

privacy and mobility. To protect against the risks associated with SIM theft or cloning, the

scheme can be complemented by an additional mechanism such as username and password.

Impersonation will then only succeed if the attacker has access to both the user’s SIM and

password: the result would be two-factor authentication.

The required changes to the existing GSM or UMTS infrastructure are minimal. The scheme

uses existing SIMs and appropriately equipped MEs. The GSM or UMTS operator’s AuC,

the SPs and the US need only support the protocol at a software level. Computational

overheads are small.

72



Chapter 5

An authentication scheme based on
credit/debit smart cards

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Review of EMV security services . . . . . . . . . . . . . . . . . . 75

5.2.1 Dynamic Data Authentication (DDA) . . . . . . . . . . . . . . . 76

5.2.2 Cardholder verification . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3 Using EMV cards for SSO . . . . . . . . . . . . . . . . . . . . . . 77

5.3.1 System entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3.2 Trust relationships . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3.3 The registration protocol . . . . . . . . . . . . . . . . . . . . . . 80

5.3.4 The SSO protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.4 Threat Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4.1 SP collusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4.2 Man in the middle attack . . . . . . . . . . . . . . . . . . . . . . 83

5.4.3 Traffic analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4.4 Attacks using a malicious Cardholder System . . . . . . . . . . . 84

5.4.5 Stolen EMV card . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.4.6 Service denial attacks . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4.7 Signature oracle attacks . . . . . . . . . . . . . . . . . . . . . . . 86

5.5 Advantages and Disadvantages . . . . . . . . . . . . . . . . . . . 86

5.5.1 Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.5.2 Disadvantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.6 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

This chapter presents a novel interdomain user authentication scheme that is based on pay-

ment (credit or debit) smart cards that conform to the Europay MasterCard Visa (EMV)

specifications. The card itself, in conjunction with the user’s access device and the EMV

infrastructure, plays the role of the AS. The associated SSO protocol does not require online

card issuer participation, preserves user mobility, and does not put the user’s financial data

at risk. Much of the material in this chapter has previously been published in [155].

73



5.1 Introduction

5.1 Introduction

Smart cards can be used in the context of electronic commerce to provide security and

mobility [195]. In a global marketplace, systems need to be compatible and must limit the

opportunity for fraud. This is why, in 1994, three companies, namely Europay International,

MasterCard International5.1 and Visa5.2 International, formed a joint working group in order

to sponsor the production of a global specification for smart card-based electronic financial

transactions. The first set of specifications was released in 1998. In the following year, a

new organisation, called EMVCo5.3, was formed by the same players in order to manage,

maintain and enhance the specifications, to ensure interoperability and acceptance of the

associated smart cards on a worldwide basis, and to oversee a ‘type approval process’ that

defines test requirements and test cases that are used to test the associated card terminals

for compliance. Today the members of the EMVCo organisation are JCB Co.5.4, Ltd.,

MasterCard International and Visa International. Each of these members owns one third

of EMVCo.

In December 2000, EMVCo released a set of Integrated Circuit Card (ICC) specifications

for Payment Systems [75, 76, 77, 78], essentially an update of the previous specifications.

The focus of these specifications is on the card/terminal interactions that take place at the

Point of Sale during a financial transaction.

This chapter presents a scheme in which EMV-compliant cards provide user (i.e. cardholder)

authentication, and proposes an associated protocol that achieves SSO at SPs that may lie

in different administrative domains. In the scheme, the card itself, in conjunction with the

cardholder’s access device, acts as the AS. According to the taxonomy of chapter 3, the

scheme is a local true SSO scheme. It can be regarded as an alternative to other smart

card-based authentication schemes, for example schemes that rely on SIM cards (such as

the scheme of Chapter 4).

The remainder of this chapter is organised as follows. The next section contains a review

of relevant EMV architectural components and security services. Section 5.3 describes the

proposed scheme and protocol, while section 5.4 analyses the associated security threats.
5.1http://www.mastercard.com
5.2http://www.visa.com
5.3http://www.emvco.org
5.4http://www.jcbinternational.com

74



5.2 Review of EMV security services

Section 5.5 discusses advantages and disadvantages, and sections 5.6 and 5.7 give an overview

of related work and conclude this chapter.

5.2 Review of EMV security services

This section introduces the relevant components of the EMV specification. For a full de-

scription the reader is referred to [75, 76, 77, 78, 174].

There are four major interacting entities in the EMV payment system, namely the card-

holder, the merchant, an acquiring bank (the ‘Acquirer’), and the card issuing bank (the

‘Issuer’). The specifications focus on the interactions between card and merchant terminal.

When the card is inserted into the terminal, the steps that occur include the following.

1. The terminal selects the appropriate EMV application by issuing a SELECT com-

mand [75, p.65] to the card.

2. The terminal initiates ‘Application Processing’ by issuing a GET PROCESSING OP-

TIONS [77, p.19] and a number of READ RECORD [77, p.23] commands. The purpose

of this step is to enable the card and the terminal to exchange the necessary data for

the rest of the transaction.

3. The terminal performs ‘Processing Restrictions’ [77, p.48]. This mandatory step does

not involve communication with the card — its sole purpose is to provide assurance

of application compatibility between terminal and card.

4. The terminal issues an INTERNAL AUTHENTICATE [77, p.21] command to the

card. This optional step initiates ‘Offline Data Authentication’, which can be either

Static Data Authentication [76, p.15] or Dynamic Data Authentication [76, p.24]. The

purpose of this step is to verify the card’s authenticity.

5. The terminal performs ‘Cardholder Verification’ [77, p.50]. During this optional step

the cardholder’s Personal Identification Number (PIN) is verified, either offline to the

card (using the VERIFY command [77, p.25]), or online by the Issuer.

We next focus on the Dynamic Data Authentication (step 4) and the Cardholder Verification

(step 5) processes, defined in the EMV specifications. These steps are of particular interest

75



5.2 Review of EMV security services

since, in the scheme proposed below, the card reader is under the control of the cardholder,

rather than the merchant terminal, as would be the case at the point of sale.

5.2.1 Dynamic Data Authentication (DDA)

DDA is supported by a PKI (see section 1.1.5), as specified in [76]. In particular, every DDA-

capable card has its own asymmetric key pair which is generated and loaded on the card by

the Issuer. While the private key cannot be extracted from the card, its public counterpart

can be retrieved using the READ RECORD command. This public key is embedded in a

public key certificate which is signed by the Issuer. A certificate for the Issuer public key

needed to verify the card-specific public key certificate, signed by the Payment System’s

top-level Certification Authority (CA), is also stored in the card and can be retrieved by

the terminal. As a result, the merchant terminal only needs to maintain an accurate copy

of the public key of the Payment System CA in order to verify the Issuer’s, and hence the

card’s, public key certificates, and finally any data signed by the card itself. CA public key

management principles and policies for the EMV system are defined in [76].

A simplified description of Dynamic Data Authentication (DDA) is as follows:

1. The terminal retrieves the Issuer and card public key certificates from the card. The

Issuer certificate is verified using the appropriate trusted root public key of the Pay-

ment System’s top level CA. The card certificate is then verified using the public key

obtained from the Issuer certificate.

2. The terminal issues an INTERNAL AUTHENTICATE command to the card. The

command requires a number of parameters, including a random, terminal-generated

nonce (see section 1.1.1).

3. The card computes a digital signature over the terminal-provided data (including the

nonce) and ‘card Dynamic Data’, i.e. data generated by and/or stored in the card [76,

p.35]. The card outputs both the signature and the card Dynamic Data.

4. The terminal reconstructs the signed data structure and verifies the signature using

the card public key retrieved and verified in step 1.

The DDA mechanism guarantees data integrity and freshness to the terminal (i.e. it provides

76



5.3 Using EMV cards for SSO

assurance to the terminal that the ‘card Dynamic Data’ has not been tampered with and

that it corresponds to the current communication session). Assuming tamper resistance

of the card and the soundness of the Issuer’s security procedures, DDA also provides card

authentication and card counterfeiting prevention. It should be noted that not all EMV-

compatible cards are DDA-capable.

5.2.2 Cardholder verification

The identity of the cardholder is verified using a PIN. The PIN is entered into the terminal,

and may then either be verified online by the Issuer or offline to the card. In the latter case

the terminal issues a VERIFY command to the card which takes the PIN as a parameter.

The PIN, when submitted to the card, may or may not be encrypted. If encryption is

required, then it is performed using the card public key. The card checks whether the

supplied PIN matches the one stored inside the card, and responds accordingly. If the

number of unsuccessful offline PIN verification attempts exceeds a certain limit, the PIN on

the card is blocked and can only be unblocked using a script sent to the card by the Issuer,

where the security of the script is protected using a secret key shared by the card and the

Issuer.

5.3 Using EMV cards for SSO

This section describes the proposed EMV-based SSO scheme.

5.3.1 System entities

The entities involved in the authentication/SSO scheme are the Cardholder System (CS),

the card itself, and the SPs.

As briefly mentioned above, the system requires the cardholder system and the card to

collectively act as the AS. Instead of the cardholder being directly authenticated by every SP,

the cardholder is authenticated by the card, and the card then vouches for the identity of the

cardholder to every SP. The fact that the CS would typically consist of a ‘standard’ PC,

77



5.3 Using EMV cards for SSO

PDA or mobile phone equipped only with a special SSO application and an EMV card,

means that this offers an inherently mobile SSO solution; the SSO application could be

downloaded from a trusted source when required, and the EMV card is inherently mobile.

5.3.1.1 The cardholder system

The CS consists of the user’s (i.e. the cardholder’s) network access device and a card reader.

A typical configuration would be a PC with an integrated card reader. Whether or not

the card reader is equipped with its own (trusted) keypad is optional (see section 5.4.4).

Alternatively, the CS could be a wireless network access device (such as a Personal Digital

Assistant (PDA) or a 3GPP5.5 mobile phone) capable of communicating with EMV cards.

The CS also needs certain special software that implements the SSO protocol described in

section 5.3.4 below. This ‘SSO agent’ might be realised as a process that continually runs

on the CS (also known as ‘service’ or ‘dæmon’), or as part of the software that is used to

access the SP (e.g. the web browser, instant messenger, e-mail client, etc.). In this latter

context the SSO agent could be uploaded to the CS as an applet running within the SP

access software, e.g. as a Java applet running within the web browser, or a Java MIDlet

that is delivered over-the-air to a mobile phone. The SSO agent is likely to be provided by

an EMV card issuer or a trusted third party.

5.3.1.2 The card

The proposed EMV-based user authentication scheme imposes certain requirements on the

cards, as follows. Cards must be DDA-capable. Unfortunately, from the SSO perspective,

the public key certificate used during DDA binds the card’s public key to the cardholder’s

Primary Account Number [76, p.33]. It would constitute a potentially serious security and

privacy threat if the Primary Account Number was to be used in an open environment such

as the Internet. Therefore, the cards used in the scheme described here need to possess a sep-

arate, dedicated, EMV application, which we call the card authentication application (AA).

In the AA, the Primary Account Number (and any other personally identifying informa-

tion) must be replaced with an identifier (pseudonym) that is not linked to the cardholder’s

credit/debit account (and cannot be used for financial transactions).

5.5http://www.3gpp.org

78



5.3 Using EMV cards for SSO

This implies that the Issuer has to provide the AA with an additional certificate for the

public key belonging to the card, although we assume that the same key pair is used (i.e.

the card only needs to use a single asymmetric key pair). In the scheme proposed here

the certificate serial number is used as the unique cardholder identifier, i.e. no separate

user identifier is needed in the certificate created for the AA (and the PAN field can be

left blank). Indeed, depending on the application environment, it may be desirable to

ensure that the certificate created for the AA (which we call the AA certificate) does not

contain any personally identifying information for the cardholder. As the AA certificate

serial number can be used for user identification at SPs, it does not need to contain any

other information about the user (e.g. a name), thereby giving a measure of anonymity to

users of this SSO scheme. The PIN used by the AA should be separate from the PIN(s)

used by EMV applications that may coexist on the card.

A further assumption regarding the card is that the AA should be able to maintain state

within the current session. In particular, it should be able to maintain a data element

that indicates whether or not offline PIN verification (via the VERIFY command) has been

performed during the current session, and, if so, the data element should also indicate

whether or not PIN verification was successful. This card-provided PIN Verification Data

Element (PVDE) shall be included in the data that is signed by the card during DDA, as

part of the card Dynamic Data.

It should be noted here that a card session begins with Application Selection (step 1 in

section 5.2) and ends when the card reading device deactivates the card [75, p.17]. This

latter event includes premature removal of the card from the reader.

5.3.1.3 Service providers

In the proposed SSO scheme, SPs are required to obtain and store the public keys of the CAs

of the EMV Payment Systems that are to be supported (and trusted). This requirement is

exactly the same as that applying to merchant terminals for ‘standard’ use of EMV cards.

The management, distribution and revocation of these public keys is outside the scope of

the scheme, but the principles are similar to those specified in [76] for merchant terminals.

It is further assumed that SPs require a user to be authenticated before granting access

to protected resources. Instead of executing an authentication protocol directly with the

79



5.3 Using EMV cards for SSO

user, SPs acquire the necessary authentication assertions from the CS, according to the

protocol described in section 5.3.4 below. Moreover, as users also need to authenticate SPs,

it is necessary that every SP possesses a unique, human-readable identifier (which we call

SPID).

5.3.2 Trust relationships

The SSO scheme depends on the EMV cards offering a level of tamper-resistance, since

these cards act as a trusted computing module within the CS. In addition, cardholders need

to trust that SPs will not collude in order to compromise their privacy (see section 5.4.1).

Cardholders and SPs also need to trust that

• the Payment System’s CA(s) will not impersonate cardholders,

• card Issuers will not impersonate cardholders.

From the cardholder perspective, authentication/SSO can be achieved with those SPs that

choose to trust the Payment System CA corresponding to the cardholder’s card. From

the SP perspective, authentication/SSO can be facilitated only for those cardholders whose

Payment System top level CA that particular SP has chosen to trust. The architecture does

not provide for explicit trust management at the Issuer level. This feature is inherited from

the EMV PKI, which does not allow merchant terminals not to trust individual Issuers that

have been certified by a trusted CA. This arises from the fact that EMV was designed for

use within a closed environment in which all parties (Issuers and Acquirers) have signed an

agreement with the brand. Indeed, even in the non-electronic world, merchants are typically

required to accept all cards bearing the brand as part of the condition of being an approved

merchant.

5.3.3 The registration protocol

This section describes the registration protocol associated with the scheme. It is initiated

by the user. Its purpose is to create a new user/SP association. As explained above, the

user’s pseudonym with the SP is the AA certificate serial number. So, in principle, it would

be sufficient if this identifier is sent to the SP. This would involve the following steps.

80



5.3 Using EMV cards for SSO

1. The CS selects the AA on the card, initiates application processing and performs

processing restrictions, as explained in steps 1-3 in section 5.2.

2. Using the READ RECORD command [77, p.23], the CS reads the AA certificate from

the card, selects its serial number and sends it to the SP.

3. The SP checks whether there already exists an association with the received serial

number and, if not, it creates a new user account for that number.

The above protocol does not prevent a simplistic service denial attack where an adversary

registers bogus identifiers in order to abuse SP resources or to cause confusion by registering

the identifiers of legitimate users. For this reason it may be desirable to execute a full SSO

protocol (described below) for registration. In this case, registration is treated like any other

service that requires user authentication.

5.3.4 The SSO protocol

This section describes the SSO protocol associated with the scheme. It starts when the user

requests a protected resource from the SP, or for initial registration, in the case where user

authentication is required. In order to prevent the attack described in section 5.4.2 below,

we assume that the user has authenticated the SP at this point and that, as a result of

this, a cryptographically protected session has been set up between the SP and the user

machine. This may be achieved, for example, with an SSL/TLS channel with server-side

certificates [180].

A detailed description of the protocol follows.

1. The SP sends an authentication request message to the CS. This message contains a

freshly generated random nonce and an indication saying whether or not PIN verifi-

cation is required.

2. The CS selects the card AA, initiates application processing and performs processing

restrictions, as explained in steps 1-3 in section 5.2. If this step fails, SSO also fails.

3. If PIN verification was required in step 1, the CS performs offline PIN verification with

the card, as explained in section 5.2.2.

81



5.3 Using EMV cards for SSO

4. The CS performs DDA with the card. The main difference from the ‘standard’ DDA

(as explained in section 5.2.1) is that the nonce used with the INTERNAL AUTHEN-

TICATE command is the SP-provided nonce from step 1. The SP’s Identifier (acquired

during SP-user authentication, as explained above) is also included in the data passed

to the card for signing. It should be noted that the CS cannot verify the card’s and

the Issuer public key certificates as it does not have the Payment System CA’s public

key.

5. The CS sends an authentication assertion message back to the SP. This message in-

cludes the following data structures obtained during step 4.

• The AA certificate obtained from the card.

• The Issuer public key certificate.

• The signature produced by the card as part of DDA. This signature is computed

as a function of the nonce sent in step 1, the SPID and the PVDE, as explained

in section 5.3.1.2.

• Any other data that is input to the card signature calculation (including the

nonce).

6. The SP verifies the Issuer and card public key certificates, as explained in section 5.2.1.

The SP also makes sure that the card has not been blacklisted and that the aforemen-

tioned certificates have not been revoked. If this step fails, SSO also fails.

7. The SP reconstructs the data structure that was signed by the card in step 5 and

verifies the signature using the card’s public key. If verification is unsuccessful, SSO

fails.

8. The SP checks the data used to compute the card’s signature. In particular, the SP

checks the SPID and makes sure that it indeed represents this SP (and not any other).

Furthermore, the SP checks the PVDE to ensure that, if required, PIN verification has

successfully completed. If the SP’s requirements are met, SSO succeeds and access to

the protected resource is granted. Otherwise, SSO fails.

The response from the CS (step 5) does not contain any personally identifying information

about the cardholder. As discussed in section 5.3.4, the SP can, however, differentiate

between users by combining the Issuer-unique serial number, included in the AA certificate

for the card, with the Issuer identifier associated with the Issuer certificate.

82



5.4 Threat Analysis

The CS can achieve SSO at disparate SPs by running the protocol whenever needed. Of

course, the card needs to be in the card reader of the CS during the protocol run. If PIN

verification has been performed, the card needs to remain in the reader between protocol

runs so that the session state is maintained within the card.

5.4 Threat Analysis

In this section possible threats to the scheme are evaluated.

5.4.1 SP collusion

If a number of SPs collude, they can trivially compromise user privacy by correlating the

unique identifying (Serial Number, Issuer Identifier) pairs found in the AA certificates. The

scheme does not address this threat.

However, as also pointed out in [131], complete prevention of a ‘SP collusion’ attack is diffi-

cult as SPs may also be able to correlate users based on other profile information they may

maintain (such as names or telephone numbers). As stated in the Liberty specifications [131,

p.71], ‘The only protection is for Principals [users] to be cautious when they choose service

providers and understand their privacy policies’.

5.4.2 Man in the middle attack

In a fashion similar to the attack discussed in section 4.4.4, an attacker could forward

the authentication request message (step 1 of the protocol) received from an SP as part of

the SSO process to a victim user, while masquerading as the SP to that user (e.g. by spoofing

the SP’s interface and SPID). Forwarding the user’s valid response (step 5) to the SP might

result in successful impersonation.

This attack is prevented by our assumption (see section 5.3.4) that the SP has been authen-

ticated to the user (cardholder) prior to the execution of the SSO protocol. The mechanism

on which this authentication is based is outside the scope of the scheme but, as discussed

83



5.4 Threat Analysis

in section 2.1.3, it should require the user to manually verify the SPID. Ideally, a crypto-

graphically protected session should be set up between the SP and the CS as a result of

that authentication. A suitable mechanism for SP authentication is, for example, an SS-

L/TLS channel with server-side certificates. In fact, since the user requests a protected

resource, it is likely that an SSL/TLS connection will be required anyway [180]. In this case

the SP’s unique identifier, the SPID, would be a field in its SSL/TLS certificate (typically

its unique DNS name). Here it is worth noting that, if SSL/TLS is used for SP-to-user

authentication, the scheme essentially uses the somewhat ad hoc PKI established on the In-

ternet for SSL/TLS connections to facilitate SP-to-user authentication, and the EMV PKI

established for credit/debit card payments to facilitate user-to-SP authentication. In other

words, this setting effectively integrates EMV and SSL/TLS certificates into a single mutual

authentication scheme.

5.4.3 Traffic analysis

An attacker capable of monitoring network traffic between the CS and SPs could compromise

the user’s privacy in that the attacker will learn which SPs the user is communicating with.

The attack cannot be prevented by encrypting traffic, as packet headers typically need to

be available in unencrypted form for routing purposes. This threat is outside the scope of

the scheme described here, but could be addressed separately using anonymising techniques,

such as those described by Chaum [45].

5.4.4 Attacks using a malicious Cardholder System

The EMV specifications make no provision for cards to authenticate merchant terminals prior

to releasing information. As a result, when the card is inserted into the CS, it may be possible

for malicious software in the CS to extract private information (such as the cardholder’s

Primary Account Number, which is likely to be stored in the card) and to disclose it to

unintended parties. Similarly, if the card reader does not have its own (trusted) PIN pad,

the CS could collect the cardholder PIN used in conjunction with the AA and disclose it to

unintended parties.

Clearly, the scope of the attacks that may be launched by a malicious CS extend beyond

the scope of the SSO scheme described here. For example, a malicious CS could spoof the

84



5.4 Threat Analysis

local interface, for example by asking the user to input his PIN at times when this is not

necessary (and subsequently disclose it to unintended parties), or spoof remote interfaces

(e.g. the look of a SP’s web page) in order to trick the user into taking actions that he

would otherwise not take. Furthermore, a maliciously modified CS can abuse the user’s

authentication status at SPs by modifying traffic or hijacking an entire session, even if

communications are ‘cryptographically protected’.

Thus, the SSO agent has to be trusted by the user not to engage in malicious behaviour,

and its integrity thus needs to be protected. Having it digitally signed by a party trusted by

the user (e.g. the card Issuer) might address the threat, but risks remain if other malicious

software is executed on the CS.

However, despite these threats, the scheme provides two-factor user authentication (proof-of-

possession of the card and, if required, proof-of-knowledge of the PIN), even in the presence

of a malicious CS. Firstly, it requires the EMV card to be present in the CS; without

it user authentication (and therefore illegitimate impersonation) will fail. Secondly, the

scheme protects against the CS falsely pretending that PIN verification took place; the

PIN verification status maintenance is managed by the trusted card itself, as explained in

section 5.3.1.2. This protects against PIN compromise by a malicious CS, as the PIN never

needs to be inserted into the device (for SPs that do not require PIN verification).

5.4.5 Stolen EMV card

The theft of an EMV card will allow an attacker to impersonate the legitimate cardholder

to SPs that do not require PIN verification. The obvious countermeasure is for SPs to

require PIN verification. In this case the attacker will not be able to impersonate the

legitimate cardholder, even by using a maliciously modified CS. Of course, if the attacker

also has access to the user’s PIN, then impersonation will be successful.

In order to guard against ‘stolen card’ attacks, SPs should follow the same procedures

as merchant terminals. In particular they should periodically contact card Issuers and/or

Payment System CAs to obtain Certificate Revocation Lists (CRLs) and/or card blacklists.

Step 6 in of the SSO protocol (section 5.3.4) provides for checking of these CRLs and

blacklisted card information.

85



5.5 Advantages and Disadvantages

5.4.6 Service denial attacks

The scheme requires the SPs to check whether the signature returned by the CS is computed

using the correct nonce, i.e. it requires the SP to maintain state while waiting for the response

from the CS. This potentially opens the door to service denial attacks [6]. However, we have

assumed prior SP-to-user authentication, which ideally results in a secure session. This

means that, before the SSO protocol is executed, the SP has established that it is talking

to an existing client for whom it has already created some state. The fact that the SP is

required to remember a nonce for each user-to-SP authentication attempt, is thus not likely

to significantly increase the SP’s exposure to service denial attacks.

5.4.7 Signature oracle attacks

The SSO scheme, as described in sections 5.3.1 and 5.3.4 (step 5), involves the card signing

a data string containing a nonce supplied by the SP. Thus the protocol involves the card

signing a message, part of which is provided by an external party. There exists the possibility

that this could be used as part of an ‘oracle attack’, where the card is persuaded to sign a

string that could be used in another application using the same key pair. However, this is

not a significant threat in the case of the EMV payment application since the signed string

is different in format from the one expected by an EMV application.

5.5 Advantages and Disadvantages

This section discusses the advantages and disadvantages of the described scheme.

5.5.1 Advantages

Advantages of the user authentication scheme described in this chapter include the following.

• The scheme reuses the existing EMV PKI, which is already established on a world

wide basis. Whilst the scheme does require one additional cardholder certificate to be

86



5.5 Advantages and Disadvantages

generated and installed on the card, no extra key pairs are required, and the existing

Issuer certificates and Payment System public keys are re-used.

• The scheme does not require the continuous online presence of the card Issuer.

• Once the authentication/SSO protocol has completed successfully, subsequent proto-

col runs do not necessarily require user intervention. This yields transparent user

authentication at SPs subsequently used by the cardholder.

• As user authentication is potentially transparent to the cardholder, the protocol can

be repeated whenever appropriate. An online banking SP, for example, may wish

to ensure that the cardholder’s card is still present in the CS whenever access to a

sensitive resource is requested. Rerunning the SSO protocol during a session increases

the achieved level of security without usability implications.

• No personally identifying information about the user need be included in the messages

exchanged. This enables the user’s anonymity and privacy to be protected. Further-

more, no risks of personal information exposure arise at the SP.

• Maliciously acting devices can only compromise the user’s current session or imper-

sonate users while the EMV card is present. Furthermore, they cannot falsely pretend

that PIN verification took place successfully.

• The scheme does not necessarily require an online third party. SPs need, however,

to follow the same principles and policies as merchant terminals with respect to the

certificates used.

• The scheme preserves user mobility.

• The scheme can potentially be adapted as a new Liberty Alliance profile (see sec-

tion 3.5.2). This would involve specifying message formats and protocol logic in a way

that is compatible with the Liberty specifications.

5.5.2 Disadvantages

Disadvantages of the authentication/SSO scheme described in this chapter include the fol-

lowing.

87



5.6 Related work

• Issuers must install a separate EMV application on the card in order to support user

authentication. This has a potentially significant cost. This cost is minimised if the

AA is installed on the card at the time of issue, and it has to be weighed against

the potential benefits gained by the Issuer. These might include new revenue streams

from SPs that benefit from use of the AA.

• The cards used must be DDA-capable. The cost of DDA-capable cards is higher than

the cost of cards not capable of DDA.

• The user’s identifier is the same at all SPs. It is therefore trivial for SPs to combine

their knowledge about users.

• The scheme obviously only works for EMV cardholders equipped with card readers.

The cost of the card reader (and maintaining the SSO agent), has to be weighed against

the convenience offered by SSO.

5.6 Related work

Single sign-on architectures within enterprise environments are examined in [65]. Currently

deployed or proposed SSO schemes for open environments are proxy-based, i.e. they require

a continually online AS [130, 144, 149]. The scheme proposed in this chapter, on the other

hand, does not necessarily require the continuous online presence of any party; according

to the taxonomy of chapter 3 it falls into the category of local true SSO schemes. Because

it is based on an existing infrastructure and a particular trust model, the scheme also

constitutes an interesting alternative to both the aforementioned proxy-based schemes, and

the local true SSO scheme described in chapter 6.

Other related work includes [117], where a security-enhanced e-commerce transaction scheme

based on EMV cards is proposed. The scheme makes use of DDA and offline PIN verification

in order to facilitate card and cardholder authentication respectively. In contrast to the

scheme proposed here, however, it requires the online presence of the Issuer.

An annex of [77] describes how to combine the Secure Electronic Transaction (SET) pro-

tocol5.6 with EMV-compliant cards for electronic transactions conducted over the Internet.

The complexity of the scheme is quite high. In addition, it requires the online presence
5.6http://www.setco.org

88



5.7 Summary

of a ‘Payment Gateway’ which is connected to the Acquirer’s (and Issuer’s) payment net-

work. Finally, it is worth noting that Subscriber Identity Module (SIM) cards of mobile

phones have recently been augmented with EMV-compliant applications5.7 and that mobile

equipment with EMV-compliant card readers has been available for some time.

5.7 Summary

In this chapter we have proposed a user authentication scheme for distributed systems that

relies on EMV-compliant cards. These cards need to be able to perform asymmetric crypto-

graphic functions (i.e. DDA) and must have a separate EMV ‘Authentication Application’

installed on them by their Issuers.

The CS itself acts as the AS for relying SPs. The scheme does not require online participation

of the Issuer, and its security does not depend on CS integrity, as core functions are delegated

to the trusted card. It leverages the existing EMV PKI and preserves user mobility and

privacy, and can be regarded as an alternative to other smartcard-based user authentication

mechanisms (such as the use of Subscriber Identity Modules, as described in chapter 4).

The associated SSO protocol requires only minimal user interaction, yielding a potentially

seamless user experience and allowing several transparent re-authentications to occur within

a given user/SP session.

5.7www.oberthurcs.com

89



Chapter 6

An authentication scheme based on
trusted computing

Contents
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2 Review of TCG security services . . . . . . . . . . . . . . . . . . 91

6.2.1 TPM Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2.2 Integrity Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2.3 Secure Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.3 Using Trusted Platforms for SSO . . . . . . . . . . . . . . . . . . 97

6.3.1 A local pseudo-SSO scheme . . . . . . . . . . . . . . . . . . . . . 97

6.3.2 A local true SSO scheme . . . . . . . . . . . . . . . . . . . . . . . 99

6.4 Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.4.1 Privacy under TCG 1.1 . . . . . . . . . . . . . . . . . . . . . . . 102

6.4.2 Privacy under TCG 1.2 . . . . . . . . . . . . . . . . . . . . . . . 102

6.5 Other issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.5.1 Significance of benefits . . . . . . . . . . . . . . . . . . . . . . . . 104

6.5.2 Man in the middle attacks . . . . . . . . . . . . . . . . . . . . . . 105

6.5.3 Cross-platform mobility . . . . . . . . . . . . . . . . . . . . . . . 105

6.5.4 Complexity of managing trusted states . . . . . . . . . . . . . . . 106

6.5.5 Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.5.6 Open source software . . . . . . . . . . . . . . . . . . . . . . . . 108

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

This chapter presents two types of interdomain user authentication scheme that are based

on ‘trusted computing’, i.e. on computing platforms that conform to the Trusted Computing

Group specifications. Some of the material in this chapter has previously been published

in [156] and will be published in [160].

90



6.1 Introduction

6.1 Introduction

The Trusted Computing Group6.1 (TCG) is an industry standards body that is currently

developing specifications for trusted computing hardware building blocks and software in-

terfaces across multiple platforms, including personal computers, personal digital assistants

and mobile phones. A platform that conforms to these specifications is termed a ‘Trusted

Platform’ (TP).

A potentially large number of applications can benefit from this technology [9, 160]. A

comprehensive overview of the specifications (version 1.1) and potential usage scenarios is

given in [9]. In particular, [9, p.255] proposes the use of TPs for user authentication in a

corporate environment by delegating crucial functionality to the TP; this chapter elaborates

on this subject and extends the approach to open environments. In particular, methods for

constructing both pseudo-SSO and true SSO schemes based on TCG-conformant platforms

are described.

The chapter is organised as follows. The next section contains a review of relevant TCG

architectural components and security services. Sections 6.3.1 and 6.3.2 describe how to

construct pseudo and true SSO schemes respectively, based on the use of TCG conformant

platforms. Section 6.4 analyses the two schemes with respect to privacy, and section 6.5 dis-

cusses issues such as implementation costs and cross-platform mobility. Finally, section 6.6

concludes the chapter with a summary.

6.2 Review of TCG security services

This section introduces the components of the TCG specifications relevant here. For a full

description the reader is referred to [196, 197, 198].

Every TP has a Trusted Platform Module (TPM) which is essentially a crypto co-processor

that is augmented with extra functionality. The TPM is irrevocably bound to the platform’s

main hardware, e.g. soldered onto its main circuit board. The TPM never exposes certain

data that is stored inside its non-volatile memory; external software can only ask the TPM

to execute certain commands that may involve this data. These commands are known as
6.1www.trustedcomputinggroup.org

91



6.2 Review of TCG security services

TPM capabilities. Certain capabilities, if used properly in orchestration, enable the platform

to perform higher-level operations, known as TCG services. Three such services are relevant

to this chapter, namely TPM Identities, Integrity Metrics, and Secure Storage.

6.2.1 TPM Identities

Every TPM has a unique RSA key pair stored in it, termed the Endorsement Key (EK), the

private part of which never leaves the TPM. Thus, in principle, the TPM could use the EK

to digitally sign messages. The verifier of such a signature, if given a copy of the public part

of an EK that is known to belong to an authentic, i.e. TCG conformant, TPM, can establish

whether or not the message originates from (i.e. was signed by) a conformant TP. As we

see below, being able to establish this is crucial in the context of TCG applications.

Unfortunately, this naive method enables the verifier to uniquely identify the TPM that

signed the message; this is unacceptable from a privacy perspective. To address this problem

the TPM does not use the EK for the generation of signatures. Instead, the TPM can be

instructed to generate an arbitrary number of random RSA keys, called Attestation Identity

Keys (AIKs), which will be used for signing instead of the EK. AIKs effectively function as

aliases for the EK and, since they are random, verifiers cannot link different AIKs belonging

(or not belonging) to a particular TPM. In order for the system to work, verifiers need

to be convinced that the AIK was indeed generated by an authentic TPM. The TCG has

specified two fundamentally different mechanisms to achieve this, one in version 1.1 and one

in version 1.2 of the specifications. In the following we briefly describe both.

In the technique specified in version 1.1 of the TCG specifications, the user needs to obtain an

‘attestation’ certificate from a third party, called the Privacy Certification Authority (PRV-

CA), for every AIK that is generated by his TP. The certificate vouches for (or ‘attests

to’) the fact that the AIK in question was indeed generated by a conformant TPM/TP. As

the PRV-CA obtains a copy of the (public part of the) TPM’s EK during this process, it can

trivially link all the AIKs of any given TPM. In some scenarios this is, again, unacceptable

from a privacy perspective.

The mechanism specified in version 1.2 [33] avoids this potentially undesirable property. The

mechanism is developed from a particular type of cryptosystem known as an ‘anonymous

92



6.2 Review of TCG security services

credential system’6.2. This mechanism, called ‘Direct Anonymous Attestation’ (DAA), does

not require an authority to certify each AIK. Instead, the TPM is required to obtain a

digital ‘attestation certificate’ from an Issuer (typically the TPM or TP manufacturer) only

once. This certificate can then be used by the TPM to digitally sign an arbitrary message in

such a way that (a) the verifier is convinced that the message was generated by a TCG con-

formant TPM, and (b) the resulting signature cannot be linked to any other DAA signature

that was previously generated by this particular TPM. By using this DAA technique to sign

subsequently generated AIKs (instead of arbitrary messages) verifiers can be given assurance

that these AIKs are genuine (i.e. that they were generated by a TCG conformant TPM), in a

way that preserves their unlinkability, i.e. so that two AIKs associated with the same TPM

cannot be linked.

The command that initialises the procedure by which a TPM obtains the attestation cer-

tificate from an Issuer is called TPM DAA Join. The command by which the TPM proves its

authenticity to an external verifier and at the same time digitally signs a message is known

as TPM DAA Sign. Simplified descriptions of these two operations follow.

TPM DAA Join: First, the TPM generates a 160-bit long-term secret f , which is never exposed

outside the TPM. The TPM/TP then sends the (public part of its) EK to the Issuer and

proves knowledge of f . The Issuer then verifies that the TPM in question is a genuine TPM.

This can be done by comparing the public part of the EK to a list of keys that are known

to belong to conformant TPMs. If the Issuer is satisfied that the TP/TPM is genuine, then

it issues a Camenisch-Lysyanskaya (CL) [38, 137] signature on a ‘blinded’ version of f to

the TPM/TP. This means that, while the issuer does not learn any information about f

(apart from its length), the signature it returns to the TPM can be used to compute a valid

signature on f . Prior to transmission to the TP, the signature is encrypted using the public

part of the EK; as a result it can only be decrypted by the TPM it is destined for. On

receipt of this encrypted signature, the TPM decrypts it, removes the blinding factor (i.e.

computes a valid signature on f) and stores the result in its protected, non-volatile memory.

This latter signature is the attestation credential; like f , its value is never exposed outside

the TPM.

TPM DAA Sign: The TPM proves its genuineness to an external verifier by a zero-knowledge

proof of knowledge (see section 1.1.5.4) of a CL-signature for the value f . The protocol is

6.2Anonymous credential systems are discussed in greater detail in part II of this thesis.

93



6.2 Review of TCG security services

designed so that neither the value of f , nor that of the signature, are revealed to the verifier.

In fact, no two protocol executions by the same TPM can be linked by the verifier, and

hence use of the protocol does not reveal any connection to a specific TPM. The protocol is

also designed so that the TPM can, at the same time, sign a message in such a way that a

verifier can learn whether the message was generated internally (such as would be the case

for an AIK) or input from outside.

Furthermore, the protocol enables the verifier to detect blacklisted TPMs, e.g. TPMs that

have legitimately obtained attestation, but were subsequently compromised, i.e. had their

secret value f and the attestation signature extracted. A compromised TPM would enable

an adversary to convince a verifier that arbitrary messages originate from that TPM, even if

this was not the case. The problem is addressed as follows: as part of the protocol, the TPM

also computes a pseudonym N as N = ζf , where ζ is a generator of a group in which the

discrete logarithm problem is believed to be intractable. Although the verifier does not learn

f , the protocol has the property that the verifier is given assurance that N is constructed

using the same f as the one that was certified by the Issuer. If a TPM is compromised and

its secrets become known, the value of f can be put on a blacklist; since the verifier learns ζ

during the DAA signing protocol, it can compute ζ f̂ for every f̂ in the blacklist and compare

the result to the value of N ; if they are equal then the TPM has been blacklisted. Thus, the

verifier can reject blacklisted TPMs using this mechanism. However, one should note here

that protocol executions that involve the same value for ζ (and which therefore result in the

same pseudonym N) can be linked by the verifier(s) as originating from the same platform;

executions with different values for ζ remain unlinkable.

As mentioned above, the DAA protocol allows any message to be signed; the TPM could

sign an arbitrary message by providing the (hash of the) message to the TPM DAA Sign

command for signing. However, it appears that the specifications advocate a method that

is more complicated but consistent with version 1.1. That is, the specifications suggest that

the DAA-Sign protocol is first used to sign the public part of a given AIK, and the AIK is

then used to sign messages. The reasoning behind this is that, if the verifier accepts a DAA

signature as confirming that the originator is a genuine TPM, it will also accept messages

that are signed by an AIK for which the public part has been DAA-signed.

94



6.2 Review of TCG security services

6.2.2 Integrity Metrics

TCG-conformant platforms are able to reliably measure, store and report their software

state. This is achieved by applying a one-way hash function to any software that is about to

be executed on the TP; the resulting hash value (called an ‘integrity metric’) is stored inside

the TPM’s volatile, but protected, memory, in what are known as Platform Configuration

Registers (PCRs). The initial value of a PCR is zero, but their values are updated during

the TP’s boot cycle. In particular, whenever the TP is about to execute a critical piece of

software or firmware (such as the BIOS, the operating system and or an application), the

following actions are performed:

1. The software about to be executed is cryptographically hashed (using SHA-1 — see

section 1.1.2).

2. The resulting digest is concatenated with the current value of a specific PCR and this

concatenation is hashed again.

3. The digest resulting from step 2 becomes the new value of the affected PCR.

4. An entry is appended to a log file called the ‘history information’. The entry con-

tains information about the measured event (such as the software name and version),

which PCR was affected, and a ‘validation certificate’ (or a reference to it). The latter

is a certificate issued and signed by the measured component’s manufacturer or vendor

that binds the component to the expected hash value of step 1.

5. The measured software is executed.

In this way, accurate ‘integrity metrics’ of the platform’s software state are kept inside

the PCRs, where they are protected from direct software interference. An external (com-

municating) party can assess the software state of a TP by issuing an ‘integrity challenge’

to the TP. This challenge includes a nonce that protects against replay attacks. Using the

command TPM Quote, the TPM generates a signature, using a user-selected AIK, over the

current PCR values and some ‘external’ data that is input to the TPM. (This data typically

includes the nonce.) The resulting signature, together with the public part of the AIK, the

external data, the PCR values and the history information, is sent back to the external

party as the ‘integrity response’. Additionally, the TP has to convince the external party

95



6.2 Review of TCG security services

that the AIK that has been used is authentic. How this is done depends on whether the

version 1.1 or 1.2 mechanism is being used. For version 1.1, the PRV-CA’s attestation cer-

tificate for the AIK’s public part is sent to the external party, which verifies it using an

authentic copy of the PRV-CA’s public key. For version 1.2, the TP and the external party

execute the DAA signing protocol; during execution of the DAA mechanisms, the TP signs

the AIK’s public part.

If the above process completes successfully, the external party is provided with assurance

that the TPM is genuine, and that the AIK is associated with this TPM. It can then assess

the trustworthiness of the TP’s software state by

• verifying the TPM’s signature over the PCR values and the external data (which

includes the nonce) created using the AIK, and

• evaluating the history information and verifying that the given sequence of measured

software components indeed yields the reported PCR values. This may include verify-

ing the validation certificates issued by the manufacturers or vendors of the respective

components.

If the above steps succeed, the external party can be confident that the TP’s software state

is as represented by the quoted integrity metrics (and has not been modified). Finally, it

decides whether or not to trust this software state for the purposes of the communications.

This decision is obviously subject to the external party’s policy, and outside the scope of

the TCG specifications.

6.2.3 Secure Storage

The TPM can generate an arbitrary number of RSA keys called ‘storage keys’. The private

parts of these keys are never exposed outside the TPM in unencrypted form; instead, prior

to export from the TPM they are encrypted under a special ‘root key’ which only resides

within the TPM’s protected non-volatile memory. Any data that is encrypted under one of

these storage keys can only be decrypted by the TPM that holds the corresponding private

key. Every TPM-protected key, including storage keys and AIKs, has ‘authorisation’ data,

a 160-bit string, associated with it. Knowledge of this string has to be demonstrated to

96



6.3 Using Trusted Platforms for SSO

the TPM before any operation that makes use of the key, such as decryption, is performed.

Additionally, storage keys can be configured to be bound to a particular software state.

That is, the TPM can be configured to refuse to execute a command that involves any given

key, unless the PCRs contain predefined values. Using this, combined with the authorisa-

tion data feature, it becomes possible to allow decryption of specific data only if the user

demonstrates knowledge of certain authorisation data and the platform runs pre-determined

and unmodified versions of a particular BIOS, operating system and application. We exploit

this functionality for the schemes we propose in the remainder of this chapter.

6.3 Using Trusted Platforms for SSO

In this section, two methods for using a TCG-conformant platform to help build an SSO

scheme are described. In particular, the following two subsections describe the construction

of a local pseudo-SSO and a local true SSO scheme, both exploiting the presence of a TCG-

conformant TP at the user site.

6.3.1 A local pseudo-SSO scheme

Recall that a potential disadvantage of pseudo-SSO schemes is that they do not remove

the need for (securely) maintaining the user’s SP-specific authentication credentials; this is

because, in order to function, the AS needs access to them. TCG-conformant platforms

can enhance the security of pseudo-SSO schemes by providing a secure repository for these

credentials. The TPM service that is relevant in this scenario is that of secure storage,

described above. We now describe how a pseudo-SSO scheme running on a TCG-conformant

platform could work.

The AS is an application that the user runs locally. It behaves exactly like any other pseudo-

SSO application: after locally authenticating the user, it automatically executes SP-specific

authentication mechanisms on his behalf. In reference to Figure 6.1, this means that the

automatically AS executes step 3 for as long as the user’s authentication session, initiated

in step 1, remains valid.

Using the secure storage capability, the AS is unable to decrypt the user’s SP-specific cre-

97



6.3 Using Trusted Platforms for SSO

Figure 6.1: Local pseudo-SSO system based on TCG-conformant platform

dentials if the platform is not in a trusted software state; unauthorised alterations to the AS

or the underlying operating system will raise an appropriate alarm. In particular, the sys-

tem is configured so that the AS will decrypt the user’s SP-specific credentials only if the

following two conditions are met.

• The platform has booted into a trusted state.

• The initial user-to-AS authentication has been performed successfully.

There are two ways to guarantee that the second condition holds. The first is to completely

delegate the initial user authentication and the management of the storage keys to the AS.

If this is done properly, then only the AS can access the user’s SP-specific credentials. A

trustworthy AS would then access these credentials only after the user has completed the

initial authentication successfully.

Another, perhaps more elegant, way to guarantee the second condition is by linking the user’s

initial authentication to the authorisation data that is required to retrieve the decryption

key for his SP-specific credentials. If, for example, the initial authentication mechanism is

based on a passphrase, the authorisation data that is required in order to access the storage

key that is needed to decrypt the user’s SP-specific credentials, could be a suitable one-

way hash value (see section 1.1.2) of that passphrase. In this way, not only is the need for

the AS to keep a copy of this data removed, but also other software that the user deems

trustworthy can gain access to his SP-specific authentication credentials (for example, to

perform a backup).

98



6.3 Using Trusted Platforms for SSO

6.3.2 A local true SSO scheme

In a true SSO scheme, users and SPs have to trust the AS. For this reason, virtually all

existing such schemes rely on an external trusted party that provides and controls the AS

(e.g. [130, 144, 192]). Moreover, this party has to be online and available at all times. It

would therefore clearly be advantageous to construct a true SSO scheme that removes the

need for this trusted third party, or at least limits the amount of trust that users and SPs

are required to have in it. With TCG-conformant platforms this can be addressed. In

particular, although the need for an external party to provide the AS is not removed, the

platform owner can be placed in control of it. This could be achieved in the following way.

The AS runs locally in the user machine, preferably as a continuously running process. As

in the pseudo-SSO case, a session starts with the user authenticating himself to the AS. In

this case, however, the SSO protocol also has to provide assurance to the SP that the AS

can be trusted to behave appropriately, i.e. it will not deliberately issue false assertions.

To this end, the protocol involves an integrity challenge/response message exchange during

which the SP convinces itself that

• the platform is TCG conformant, and

• its software state is trustworthy, i.e. an AS that the SP trusts is running properly on

the platform.

These conditions essentially guarantee to the SP that the software that is running on the

user’s platform (including the BIOS, the operating system and the AS) has not been mod-

ified, and that it is therefore likely to behave as expected. In particular, since a ‘well-

behaved’ AS only executes the SSO protocol after the user has performed the initial au-

thentication successfully, the integrity challenge/response mechanism guarantees to the SP

that attacks that are based on a (maliciously) modified AS, for example a modification that

simply skips the initial authentication, are prevented. In this scenario, of course, each indi-

vidual SP rather than the platform owner selects which platform states it deems trustworthy,

as part of its policy.

The AS, as part of the SSO protocol, also needs to convey an authentication assertion

to the SP, i.e. a message containing the user’s identifier and a description of his initial

99



6.4 Privacy

authentication act. How this is done needs to be specified carefully. In particular, the proof

of the integrity of the AS should not be conducted prior to sending the assertion, because

this would enable the following simplistic impersonation attack. In such an attack, the

adversary executes malicious software just after the integrity response is sent to the SP.

This software then simply sends an assertion containing the identifier of any user without

performing a genuine authentication process. Because the modification of the software state

takes place after the verification of platform integrity by the SP (which we assume reflects

a legitimate state), then the SP has no means to detect the attack.

Ideally, the assertion should be cryptographically bound to the verification of the AS in

some way. As illustrated in Figure 6.2, this could be done by having the AS calculate a

one-way hash value (see section 1.1.2) of the concatenation of the random number contained

in the SP’s integrity challenge with a hash value of the authentication assertion. The result

should then be input to the TPM as the external data (i.e. the parameter externalData)

of the TPM Quote command that is executed during the integrity challenge/response session.

(For a detailed description of this command see [197, p.116].) As long as the authentication

assertion is sent to the SP (along with the integrity response), by reconstructing the hash

chain the SP can verify that the correct random number was used in the calculation of the

integrity response. The service provider must also carry out all the checks that correspond

to the mechanisms used for the integrity response (step 3.4 in the figure), as described in

section 6.2.1.

Note that the assertion that the AS constructs in step 3.3 does not contain an identifier

for the user. The service provider identifies the user in step 3.4, as described below in

section 6.4.1 (if the mechanisms of version 1.1 of the TCG specifications are used) and

section 6.4.2 (if the mechanisms of version 1.2 of the TCG specifications are used).

6.4 Privacy

In this section certain privacy aspects of the two schemes described above are discussed.

The pseudo-SSO scheme has, in principle, no significant differences, in terms of privacy,

from other local pseudo-SSO schemes. Therefore, the discussion regarding local pseudo-

SSO schemes in section 3.4.1 applies. We thus now focus on privacy aspects that apply to

the true SSO scheme described in the previous section.

100



6.4 Privacy

Figure 6.2: Local true SSO system based on TCG-conformant platform

As discussed earlier, most existing true SSO systems intended for use in an open environment

depend on a trusted server. The operator of this server typically obtains access to certain

information that might be considered private. This information disclosure is inevitable

because otherwise the system would no longer work. According to the Liberty Alliance

specifications [128, 129, 130, 131, 132, 133], for example, the operator of the server hosting

the AS gets to know which SPs the users have a relationship with, their identifiers at

those SPs, their login times, etc.

In contrast to these schemes, the scheme described in the previous section is under the control

of the user. As no third party needs to be contacted during executions of the SSO protocol,

the aforementioned information disclosure is avoided; the scheme is thus significantly more

privacy friendly than existing server-based true SSO schemes.

However, as we have previously observed, if a user employs the same pseudonym with

multiple SPs then, if these SPs collude, they can link user behaviour — this is clearly a

potential breach of user privacy. We thus next focus on the case where users are known to

different SPs under different pseudonyms. As discussed in section 3.4.1, a true SSO scheme

has the potential to offer ‘unlinkability’ of these pseudonyms. In the following two sections,

we examine the feasibility of meeting this requirement in the context of the TCG-supported

true SSO scheme described in section 6.3.2.

101



6.4 Privacy

As discussed in section 6.2.1, the provisions with respect to privacy have changed significantly

between version 1.1 and version 1.2 of the TCG specifications. In particular, the way a

platform is authenticated as conformant by a verifier (during an integrity challenge/response

session between the platform and that verifier), is based on quite different cryptographic

primitives in the two versions. Since the true SSO scheme described in section 6.3.2 above

involves the TCG integrity challenge/response mechanism, its privacy properties affect the

whole scheme.

6.4.1 Privacy under TCG 1.1

As explained in section 6.2.1 above, in version 1.1 of the TCG specifications, the TPM

needs at least one AIK in order to be able to respond to integrity challenges. The AIK’s

public part has to be certified by a PRV-CA. The integrity response contains (among other

things) the PRV-CA’s certificate. The (public part of an) AIK can be used as a pseudonym

in the SSO context, i.e. as an SSO identity. As the AIKs are randomly generated they do

not reveal any information about each other, or the platform on which they were generated.

They are thus unlinkable. Unfortunately, however, the process by which certificates for AIKs

are obtained from the PRV-CA, allows the latter to unambiguously link (the public parts

of) all AIKs that originate from the same TPM. This is because, during this process, it is

required that the public part of the TPM’s EK is revealed to the PRV-CA; this piece of

information is unique to each TPM.

In practical terms this means that, by using platforms conformant to TCG version 1.1,

it is possible to design a true SSO scheme where pseudonyms are unlinkable, only under

the assumption that the PRV-CA does not reveal the links between AIKs (and therefore

pseudonyms). That is, the level of privacy offered is limited by the degree to which a

particular third party can be trusted.

6.4.2 Privacy under TCG 1.2

As described in section 6.2.1, the DAA sign protocol involves revealing a pseudonym N = ζf

to the verifier every time that an integrity challenge/response protocol is executed. While

these pseudonyms were included in DAA as a means to detect compromised TPMs, they

can also serve as user pseudonyms in the SSO context. However, care has to be taken when

102



6.4 Privacy

specifying how this should be done, as a DAA pseudonym is a function of data (i.e. ζ) that

is either supplied by the platform alone, or by both the platform and the verifier of an

integrity challenge.

An SP that requires a specific value for ζ to be used to construct the pseudonym, effectively

prevents the establishment by the AS of more than one unlinkable pseudonym (for each

attestation credential possessed by the TP). If a platform only has one attestation credential,

in practical terms this means that the platform would be prevented from establishing more

than one unlinkable pseudonym with that SP. Moreover, if the platform has multiple users,

then the SP would be able to unambiguously link them.

It should be noted that users can obtain multiple attestation credentials for different TPM-

generated f values, possibly from different issuers, and use different credentials for those

pseudonyms that would otherwise be linkable through a common ζ value. However, the

number of attestation credentials that a user may obtain is limited by the number of issuers

that are willing to issue such credentials to a platform of the user’s particular type. This

is likely to impose a strict limit on the number of attestations that any given platform may

obtain.

Colluding SPs that require the use of the same value for ζ may be able to unambiguously

link pseudonyms corresponding to the same platform. Users who wish to maintain the

unlinkability of their pseudonyms have to make sure that no SP requires, at any point in

time, the same value for ζ as any other SP. Depending on the number of SPs and how often

they change the value of ζ they require, this may be prohibitively complex.

Of course, this is a property inherent to DAA, and may also cause problems for other

applications. As a result, possible techniques to avoid such a breach of privacy have been

investigated elsewhere. One possibility, suggested in [33], is to derive the value of ζ from

the SP’s unique name using a collision-resistant hash function (see section 1.1.2). If done

properly, this method prevents SPs with different names linking pseudonyms.

From a privacy perspective it would be desirable if the user was free to choose ζ in every

execution of the DAA protocol. He could then choose the same value of ζ for those executions

that should involve the same pseudonym, and thus be linked to each other, either for the

same or different SPs.

103



6.5 Other issues

More generally, and as observed by Camenisch [36], it can be argued that the level of privacy

offered by TCG version 1.2 is, in certain circumstances, lower than that offered by TCG

version 1.1. This is because, during execution of DAA (i.e. when using TCG version 1.2),

the verifier learns the identity of the issuer that attested to the conformity of the platform.

During a version 1.1 integrity challenge/response session, however, the verifier only gets to

know the identity of the PRV-CA. As a PRV-CA would typically correspond to more than

one issuer, the information that the verifier obtains during DAA (i.e. the identity of the

issuer) allows it to identify the platform more effectively than it would be able to if it only

learnt the identity of the PRV-CA. A scheme that equalises the level of privacy protection

provided by DAA to that of the honest-PRV-CA scenario of version 1.1 is proposed in [36].

However, as this scheme introduces extra complexity (and potentially a third party), it

remains questionable whether it will be used in practice.

6.5 Other issues

In this section we discuss a number of other issues that arise with respect to the two types

of user authentication scheme described in section 6.3. The discussion is intended to com-

plement, rather than replace, the discussion in section 3.4.

6.5.1 Significance of benefits

The TCG-based local pseudo-SSO scheme described in section 6.3.1 above offers certain

security advantages over some of the other schemes in this category by offering hardware-

based protection for the user’s long-term authentication credentials. While this advantage is

by no means insignificant, it is perhaps fair to say that, in general, a TCG-based true SSO

scheme offers greater benefits to the user. This is because, as described in section 3.4,

true SSO schemes have certain advantages over pseudo-SSO schemes. Moreover, the TCG-

based true SSO scheme described in section 6.3.2 above, has the following two additional

key properties.

Firstly, by using a TCG-conformant platform, the functionality of the AS can be delegated

to the user platform. In many existing true SSO schemes this functionality necessarily

resides on an external trusted third party device, because of the need for the SP to trust

104



6.5 Other issues

the veracity of assertions made by the AS. In our scheme, although the AS software, and

the hardware on which it executes, must nevertheless be manufactured and provided by

trusted third parties, the user remains in control of it, although the user is, of course,

unable to modify the AS without being detected. Secondly, the migration of the AS to the

user platform leads to decentralisation. In contrast to existing true SSO schemes, where the

party that controls the AS constitutes a central point of failure (and is therefore susceptible

to service denial attacks), a scheme of the above type effectively distributes the centralised

functionality among all users; the scheme is therefore decentralised, robust and scalable.

6.5.2 Man in the middle attacks

Both types of system only offer user-to-SP authentication. They are therefore vulnerable,

like the scheme described in chapter 4, to the trivial man-in-the-middle attack described in

section 4.4.4. In many situations it is thus necessary for the user to authenticate the SP

before the SSO protocol is executed. This requires the SPs to have unambiguous identifiers

that the user must manually inspect. This requirement can be met using well-established

methods, such as SSL/TLS.

6.5.3 Cross-platform mobility

Cross platform mobility refers to a user’s ability to use a scheme from more than one

platform, using the same set of pseudonyms. Hence, in an SSO scheme that offers cross-

platform mobility, the user’s pseudonyms are independent of the particular platform he

is using. In other words, if a scheme offers cross-platform mobility, then the AS that is

invoked when the user is using, say, his office machine, logs him into SPs using the same set

of pseudonyms as the AS that is invoked when he is using, say, his home computer.

In the context of the scheme described in section 6.3.1, it is conceptually easy to enable

cross-platform mobility. This primarily involves copying the user’s SP-specific authentica-

tion credentials from one platform to the other. Although the scheme we have described

requires them to be encrypted under platform-dependent keys, the AS could be provided

with a special ‘migration’ function that allows for the necessary key transfer, and associ-

ated decryption and re-encryption, to take place. The key migration mechanisms that are

described in the TCG specification could be used for this purpose.

105



6.5 Other issues

In true SSO schemes where the AS resides on a trusted third party, cross-platform mobility

is an inherent feature. Unfortunately, the situation is different for the scheme described in

section 6.3.2 above, in particular if pseudonyms are derived from AIKs or DAA pseudonyms

(as described in sections 6.4.1 and 6.4.2 respectively). Because AIKs and some of the factors

used to compute DAA pseudonyms are strictly platform-dependent and non-migratable, so

will be the user’s pseudonyms; different platforms necessarily involve different pseudonyms

during the integrity challenge/response protocol.

Nevertheless, it is still possible to achieve cross-platform mobility. This, however, needs to be

implemented as a separate service ‘on top’ of the scheme; such a service will allow a user to

explicitly link different pseudonyms at an SP. Unfortunately, this solution not only appears

to be somewhat unnatural in the TCG context, it also needs to be specified and implemented

carefully in order to avoid introducing new attacks. It would appear that, under true SSO

using TCG-conformant platforms, there exists a tradeoff between the potential unlinkability

of pseudonyms and cross-platform mobility.

6.5.4 Complexity of managing trusted states

Under pseudo-SSO, it is the platform owner who classifies software states as trustworthy.

Since the verification of whether the platform is actually in one of these states only occurs

locally, the associated management overhead is not particularly complex. In the simplest

case, the platform owner may just record the integrity metrics of a new installation (i.e. one

that he is confident to be flawless), and specify this is the only trustworthy state.

Unfortunately, the situation is different for true SSO. Here, SPs need to be able to distinguish

the software states that they trust from those that they do not. Depending on how the

platform’s software stack (BIOS, OS and other applications) reports integrity metrics to

the TPM, this may be a rather complex task. In order to see why this might be so, consider

the following scenario.

An SP that trusts the AS manufactured by some company X, decides to classify as trust-

worthy platform states that reflect a running instance of this particular AS. The AS comes

in two different versions, ASA for operating system A and ASB for operating system B.

Suppose that users of TCG-conformant platforms that run A and B, install ASA and ASB

106



6.5 Other issues

respectively. Assume also that the platforms actually come with, say, 15 different BIOS

versions (or that some users choose to update their BIOS). Furthermore, assume that A

is an open-source system that users are free to modify. So, the users who run A, actually

run slightly different, although perfectly legitimate, versions (or ‘distributions’) of it, say A1

to A18. The problem is that, each combination of BIOS, operating system and AS yields a

different set of integrity metrics, even if individual components differ only slightly. In the

above example, the SP would have to be aware of 15 × 18 + 15 = 285 different software

states and classify them as trustworthy, just to be able to recognise acceptable software

configurations that include the one AS it has chosen to trust. Imagine what will happen

if the AS manufacturer periodically releases new versions of the AS and some users still

use older versions. The number of integrity metric sets that represent equally trustworthy

software configurations increases at an exponential rate as the number of measured software

components grows. Although some efforts have been made to reduce this rate (by group-

ing the TPM’s PCRs together according to functional categories), it remains unclear how

complex, or practical, the management of trusted states is going to be in practice.

6.5.5 Costs

The general discussion in sections 3.4.5 and 3.4.6 about the deployment, maintenance and

running costs of interdomain user authentication schemes also applies to the two schemes in

this chapter. This section therefore focuses only on the relevant implementation costs.

Implementing applications that make use of TPM functionality is, at the time of writing,

much more expensive than implementing ‘traditional’ software. This is primarily because

the implementation of TPM-aware BIOSs and operating systems is still under development.

Even if an implementer manages to properly interface with the TPM, the current lack of

integration and support for reporting integrity metrics at the BIOS and operating system

level hinders testing in a different environments, i.e. on platforms with different BIOS or

operating system versions.

When contrasting the implementation costs of the two schemes described in section 6.3, it

appears that, generally speaking, the pseudo-SSO scheme of section 6.3.1 is cheaper than

the true SSO scheme of section 6.3.2. This is because the latter is more complex than the

107



6.5 Other issues

former; as it includes the integrity challenge/response mechanism, its testing phase requires

the cooperation of multiple, preferably different, TCG-conformant platforms.

6.5.6 Open source software

It is sometimes said that open source software is, in general, more trustworthy than software

for which the source code is not publicly available. This, it is said, is because the source code

can be reviewed by security experts who can point out weaknesses. Unfortunately, experience

has shown that potential attackers can also do so. In practise, open source software is not

necessarily less flawed than closed source software. In fact, commercial software (which is

typically not open source) is sometimes supported by contractual agreements that settle

liability issues in case of security incidents. In these cases, the coverage of costs incurred

through the exploitation of security-related software flaws may be settled by legal means.

However, the situation is perhaps different in the context of the SSO schemes described

in this chapter. In section 6.3.2, in particular, we argued that TCG conformant platforms

enable the user, as opposed to some third party, to be in control of the AS. Although this

may be true, in order for this control to be essential, we argue here that it is advantageous

for the AS’s source code to be publicly available. This is because it can be established,

via independent means, how exactly the AS is doing what it claims to be doing, thereby

enabling users to exercise their control more effectively.

Public availability of the AS’s source code, may be even more advantageous in the context of

privacy, as discussed in section 6.4; users who wish their pseudonyms to remain unlinkable

are likely to require some form of assurance that the AS does not disclose (at least in any

obvious way) any unnecessary information. Although some may trust the AS provider to

properly implement the SSO functionality, this does not necessarily imply that they trust

the AS provider to protect their privacy as well. As it is easy to hide information leakage in

closed source software (thereby avoiding the raising of alarms), it would appear potentially

easier to convince a wary user that an open source, as opposed to closed source, AS will

effectively protect their privacy.

108



6.6 Summary

6.6 Summary

In this chapter it was shown how interdomain user authentication schemes may be built us-

ing computing platforms that are conformant to the TCG specifications. The construction

of both pseudo and true SSO systems were considered, as well as the use of both available

versions of the TCG specification. The proposed systems make use of three security services,

namely Secure Storage, TPM Identities, and Integrity Metrics. User authentication is dele-

gated to the local TP. Under the true SSO variant, SPs need to check the authenticity of the

user’s TP and the integrity of its software state before trusting authentication assertions.

The schemes are independent of the local user authentication method and protect user

privacy through the use of pseudonymous SSO Identities. However, as these identities are

bound to the platform under true SSO, this variant does not support cross-platform user

mobility per se. Furthermore, the inherent complexity of the TCG specifications is inherited.

109



Chapter 7

A user authentication scheme suit-
able for use from untrusted devices

Contents
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.2 What is an untrusted network access device? . . . . . . . . . . 111

7.3 Description of the SSO scheme . . . . . . . . . . . . . . . . . . . 112

7.3.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.3.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.3.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.4 The Impostor prototype . . . . . . . . . . . . . . . . . . . . . . . 115

7.4.1 The RequestRecognizer interface . . . . . . . . . . . . . . . . . . 117

7.4.2 The ChallengeResponseManager interface . . . . . . . . . . . . . 118

7.4.3 The UserManager interface . . . . . . . . . . . . . . . . . . . . . 118

7.4.4 The ContentFilter interface . . . . . . . . . . . . . . . . . . . . . 119

7.5 Other issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.5.1 Relaxing the assumptions . . . . . . . . . . . . . . . . . . . . . . 119

7.5.2 Some technicalities . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.6 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

This chapter presents the design of a proxy-based interdomain user authentication scheme

that is suitable for use from an untrusted network access device. Unlike existing proxy-based

SSO schemes, this scheme does not require the proxy and the service providers to share a

security infrastructure. An open-source implementation of the scheme, called ‘Impostor’, is

also described. The prototype is implemented as an HTTP proxy, resulting in a system that

works with common web browsers. The source code of Imposter can be found in Appendix A.

Much of the material in this chapter has previously been published in [159].

110



7.1 Introduction

7.1 Introduction

One advantage of proxy-based SSO systems is that they have the potential to enable user

authentication to a variety of remote service providers from untrusted network access devices

in a way that does not compromise the secrecy of long-term user authentication credentials.

This applies even when the authentication methods used by remote service providers would

normally not offer any protection to user credentials, e.g. the use of passwords. This chapter

presents the design of a pseudo-SSO scheme with this feature.

The chapter is organised as follows. The next section contains a definition of what we mean

by an ‘untrusted’ network access device, and section 7.3 presents the objectives, architecture

and properties of the scheme at a design level. Section 7.4 presents ‘Impostor’, a concrete

prototype implementation of the scheme in the form of an HTTP proxy. Section 7.5 discusses

additional technical issues, and sections 7.6 and 7.7 give an overview of related work and a

summary of the chapter.

7.2 What is an untrusted network access device?

A network access device can compromise security in a number of ways; it can log and

disclose all its internal state (including sent and received messages, cryptographic keys and

passwords), it can spoof (both local and remote) interfaces, and it can simply deny service.

While users do not expect a trustworthy device to engage in such malicious behaviour,

the meaning of a network access device being ‘untrusted’ has to be precisely defined and

assumptions about it made explicit in order to provide a clear understanding of the scheme’s

objectives.

In order to clarify matters, consider the following scenario, around which the scheme is

built. Suppose a user needs to access a network service, say an e-mail account, from a

network access device that he does not particularly trust, for example a public terminal at

an airport or an Internet café. The user is typically willing to trust the terminal to act

as the communication endpoint and input device during this particular online session, but

for no longer. Now suppose that the e-mail provider authenticates users using long-term

credentials, such as username/password pairs. Providing these long-term credentials to the

111



7.3 Description of the SSO scheme

public terminal, however, constitutes a serious risk, since knowledge of these credentials

enables the terminal (and its operator) to impersonate the user to the service provider, even

after the session has ended. The primary purpose of the scheme described here is to avoid

this risk.

Based on the above scenario, a network access device is deemed ‘untrusted’ if the following

conditions hold.

• There exists a temporary trust relationship between the user and the network access

device: the former trusts the latter only for the time period of a particular session,

but for no longer. In particular, during that session, the device is trusted

– not to spoof local and remote user interfaces, and

– not to hijack communication sessions with individual services.

• The device is not trusted to protect any long-term secrets, i.e. secrets that remain valid

after a particular online session has completed, and that may be entered or otherwise

made available to it.

Issues that arise if these conditions are relaxed are briefly discussed in section 7.5.1. It is

worth noting that the use of secure channels, such as those provided by the Secure Socket

Layer (SSL) or the Transport Layer Security (TLS) protocols [180], does not help to prevent

sensitive data being made available to the untrusted device, although a secure channel would

offer protection for exchanged data against third party interception and/or manipulation.

7.3 Description of the SSO scheme

This section describes the objectives, the architecture and certain key properties of the SSO

scheme at a design level.

7.3.1 Objectives

Methods exist that enable users to authenticate themselves to remote entities without hav-

ing to disclose long-term secrets to the access device they are using. Examples include

112



7.3 Description of the SSO scheme

challenge/response protocols and one-time passwords, see, for example, [142], and products

based on such ideas are widely available. These authentication mechanisms are suitable

for use from an untrusted device, but, unfortunately, are rarely used by providers of public

network services. The majority of services authenticate users based on a username and

password.

Based on these observations, the three primary objectives of the SSO scheme are as follows.

1. The scheme should enable users to authenticate themselves from an untrusted network

access device (as defined in section 7.2) to remote service providers whose login mecha-

nisms involve long-term secrets (such as passwords), without, however, disclosing these

long-term secrets to the access device.

2. The scheme should require users to manage only one set of authentication credentials,

thereby providing SSO.

3. The scheme should be transparent to network service providers; they should not even

need to be aware that it is in place.

7.3.2 Architecture

The architecture of the scheme is based on a trusted SSO proxy that keeps a copy of the user’s

long-term authentication credentials in a suitably protected credential database. All network

traffic between the untrusted device and the remote service providers is physically routed

though that proxy. The information flow that occurs in the event of a user trying to log into

a network service is depicted in Figure 7.1. As shown in that figure, the user’s login request

to a remote network service provider is recognised and intercepted by the proxy in step 1. In

step 2 the proxy authenticates the user using a suitable one-time authentication mechanism,

typically including a challenge issued by the proxy (step 2.1) and a response from the user

(step 2.2). Assuming successful user authentication, the proxy executes the authentication

mechanism used by the network service on behalf of the user in step 3. This would typically

involve employing the user’s long-term secrets that are stored in the credential database.

The secrets, however, never reach the untrusted network access device, as step 3 occurs

directly between the proxy and the remote service provider. Finally, assuming that step 3

completes successfully, the service is provisioned in step 4 and the first objective listed in

113



7.3 Description of the SSO scheme

Figure 7.1: Architecture

section 7.3.1 is met.

The second objective is met by differentiating between users (in step 2) based on a unique

identifier which is decoupled from any particular network service; in order to use the system,

users only have to memorise or otherwise have available that single identifier, and to carry

out the one-time authentication procedure with the proxy. Finally, the third objective is

met by having the proxy replace the user’s network address with its own when forwarding

requests to network services. In this way service providers only ‘see’ the proxy and are

therefore not aware of step 2 taking place. According to the taxonomy of chapter 3, this

architecture falls into the category of proxy-based pseudo-SSO schemes.

7.3.3 Properties

As a proxy-based pseudo-SSO scheme, the system inherits all the properties of that particular

class of SSO scheme. As discussed in section 3.4, changes in a network service’s proprietary

authentication interface have to be reflected at the proxy. This means that maintenance

costs may be relatively high, especially in a dynamically changing environment. The fact,

however, that the proxy is transparent to service providers enables its immediate and cost-

effective deployment.

As is the case with any proxy-based SSO scheme, the proxy constitutes a single point of

failure and has to be protected against service denial attacks. Its credential database has

to be properly protected against illegal access, as it contains long-term secrets that allow

impersonation of users to all SSO-enabled network services. However, this is not as severe an

assumption as it might seem; in practice the proxy might be implemented on the user’s own

114



7.4 The Impostor prototype

‘home PC’, which would already typically be trusted to store such secrets (e.g. in the form

of cookies), and is not likely to be a major target for service denial attacks. In the corporate

setting, on the other hand, using proxy chaining and load balancing techniques [10] could

offer an acceptable level of resistance against service denial attacks. Moreover, the credential

database could be stored in an encrypted form at a centralised server within a protected

area of the intranet.

As a consequence of the proxy’s need to intercept all traffic between the user and the rest

of the network, no end-to-end secure channels between the untrusted device and any service

are allowed; if a secure channel is nevertheless required at the application level, the proxy

has to set up two separate secure channels, one with the user and one with the service, such

that it can carry out its functions.

7.4 The Impostor prototype

This section presents ‘Impostor’, a proof-of-concept implementation of the SSO architecture

described in the previous section. Although the SSO architecture is generic in the sense that

it could be used for several network services, such as the File Transfer Protocol [171] or the

Simple Mail Transfer Protocol [101], Impostor is realised as an HTTP (web) proxy. Thus,

the prototype offers SSO for websites only. It is intended to be started as a continually

running process (also known as ‘service’ or ‘dæmon’) on a trusted ‘SSO server’ machine.

The implementation was written in Java 1.4 and has been successfully tested with a variety

of common web browsers and operating systems, both Unix-based and Windows-based. It

is available as an open source project at http://impostor.sf.net.

The core of the software consists of an HTTP proxy, augmented with the SSO functionality

described in the previous section; every incoming HTTP request to the proxy is analysed

(step 1 in Figure 7.1) and, if it is recognised as a login request for a website for which the

proxy has been equipped with user authentication credentials, the proxy presents the user

with a (customisable) login web-page that contains a freshly generated challenge, and asks

the user to provide his/her unique identifier and a response (step 2). If the identifier is valid

and the response matches the challenge, the user’s long-term credentials for the website in

question are filled into the initial HTTP request from the user, which is then forwarded to

the website (step 3). Otherwise, an error page is returned. If an incoming HTTP request is

115



7.4 The Impostor prototype

not recognised as a login request then the proxy simply forwards it to the website.

It is worth noting that the proxy rejects replays of previously accepted responses and

responses that are received after a specified timeout period. This is necessary because

each HTTP request/response is carried over a separate lower level connection. This means

that the Impostor login page, sent to the network access device as an HTTP response and

which contains the challenge, is carried over a connection that is separate from the one that

carries the user’s response to the challenge (which is a new HTTP request). Therefore, it

might be possible for an active adversary, who observed a valid challenge/response pair, to

replay that response within the specified timeout period. This attack is prevented because

Impostor would reject the replay.

An alternative way to implement the Impostor proxy would be to have it analyse every HTTP

response and to check whether it is a login page for a SSO-enabled website. This approach

would potentially make the user experience more seamless, since the user would not be

required to submit an ‘empty’ login request to the website first. However, the decision to

have the proxy analyse HTTP requests, rather than responses, was taken for the following

two reasons. Firstly, login pages typically provide a number of login-unrelated links that

the user may want to follow. It would therefore potentially significantly impair usability if

the scheme were to presume that the user wanted to log in every time that the user visited

a page providing the possibility of performing a log in. Secondly, the layout and content

of login pages tends to change more often than the format of the actual login requests.

Also, websites may offer multiple login pages that nevertheless yield a common login request

format. The requirement for the proxy to recognise multiple and changing login pages would

reduce its efficiency and increase its maintenance costs.

If, at any stage, it is necessary to set up an SSL/TLS channel between the user browser and

a web server (via the HTTPS scheme)7.1, the proxy sets up two separate channels: one with

the website and one with the user browser. The certificate that the proxy uses to set up the

browser-side SSL/TLS connection does not, of course, match the website’s certificate, but,

fortunately, this does not disrupt the service as browsers typically offer the option to accept

‘unknown’ certificates via a simple yes/no dialogue7.2. Moreover, users should expect this,

7.1An SSL/TLS channel might be required for a variety of reasons. Examples include the user directly
typing into his browser the address of a web page that is served using SSL/TLS, or clicking on a link to such
a page. The main reason that login pages are served over SSL/TLS is in order to protect against password
disclosure via eavesdropping.

7.2The situation is fortunate in the context of an untrusted network access device and the scheme described
in this chapter; in other scenarios it is certainly a weakness [153].

116



7.4 The Impostor prototype

as they will certainly know that Impostor is being used, and will also know the web page

via which the proxy is operating.

Impostor offers an additional privacy protection service by passing every web page that is

sent from the web server to the network access device as part of an HTTP response to a

method that may filter its content, before forwarding it to the browser. In this way it is

possible to prevent personal information, such as a user’s address or credit card details,

ever reaching the untrusted device. It is worth emphasising that this filtering service is not

disrupted in the presence of an SSL/TLS channel.

The software is designed in a modular fashion, so that it is easy to extend or replace individ-

ual components without affecting the functionality of unrelated components. In Java termi-

nology [81], the core proxy dæmon classes form a package that ‘talks’, via well-defined APIs

(i.e. Java interfaces), to the supporting components (i.e. classes) that are responsible for

(1) recognising and ‘filling in’ HTTP requests for websites, (2) performing the one-time au-

thentication mechanism, (3) managing the credential database, and (4) performing content

filtering. In other words, the proxy dæmon is logically decoupled from these four compo-

nents; it does not directly implement their functionality. Thus, separate implementations of

these interfaces (as given in Appendix A) need to be provided in order to make Impostor

work. The interfaces, along with their current implementations, are briefly introduced in

the remainder of this section.

7.4.1 The RequestRecognizer interface

The RequestRecognizer interface provides access to the methods supporting the identifi-

cation and processing of user login requests to websites. Every incoming HTTP request is

passed to a method (called init) of this interface. If the implementation recognises it as a lo-

gin request to a website (step 1 in Figure 7.1), the proxy is informed (via the isRecognized

method) and invokes the SSO protocol, as explained above. The implementation of this

interface must also provide a method that ‘fills in’ user credentials (i.e. usernames and

passwords) into the request. The proxy calls this method (fillInUsernameAndPassword)

after successful one-time user authentication (step 2) in order to perform the service-specific

legacy authentication (step 3). If an incoming HTTP request is not recognised as a login

request then the proxy simply forwards it to the website.

117



7.4 The Impostor prototype

The current implementation recognises and ‘fills in’ login requests for three web-based email

providers, namely two well-known public providers and a university service.

7.4.2 The ChallengeResponseManager interface

The proxy uses an implementation of the ChallengeResponseManager interface in order

to perform the one-time user authentication; the interface provides methods for issuing a

new challenge (getNewChallenge), determining whether or not a given user identifier is

valid (isValidIdentifier), and verifying a given response to a previously issued challenge

(verifyResponse).

The challenge/response mechanism of the current implementation requires users to share

a passphrase (at of least eight characters) with the proxy server. The challenge/response

mechanism consists of the proxy asking the user to provide three randomly chosen characters

from his passphrase (e.g. the second, fifth and last). If the user fails to provide the correct

response, the server keeps asking for the same set of characters until either the correct

response is given, or a maximum number (e.g. five) of failures has been recorded. In the

latter case, the user’s account at the proxy is disabled. This challenge/response mechanism

could be, in principle, easily replaced with any other mechanism, such as one of those

mentioned in section 7.3.1.

7.4.3 The UserManager interface

The UserManager interface defines the API used by the proxy dæmon to interact with the

credential database management component. The implementation must provide functional-

ity that maps proxy users to their website-specific authentication credentials. In particular,

methods must be provided that retrieve the website-specific username

(getUsernameForIdentifier) and password (getPasswordForIdentifier) for any valid

proxy user identifier/SSO-enabled website combination.

The current implementation uses a simple, text-based credential database, but this could

be replaced by a more sophisticated scheme.

118



7.5 Other issues

7.4.4 The ContentFilter interface

The ContentFilter interface provides methods used to support the privacy protection ser-

vice mentioned above. These methods filter HTTP response headers (filterHTTPHeaders)

and web pages (filterWebPageLine) before the proxy forwards them to the browser; the

implementation looks for any information that should not be sent to the untrusted network

access device and substitutes it with a neutral (or empty) string.

The current implementation looks for a set of strings specified by the administrator. If

any of these ‘sensitive’ strings is found, it is replaced by a string that is chosen randomly

from a set of substitution strings defined for that specific sensitive string. This fairly basic

(but nevertheless effective) filtering mechanism could be replaced with a more sophisticated

content filtering technique.

7.5 Other issues

7.5.1 Relaxing the assumptions

As explained in section 7.2, the untrusted network access device is assumed not to spoof

user interfaces or to hijack communication sessions with individual services. This section

briefly examines the implications of relaxing these assumptions.

If the untrusted device spoofs the user interface then there is no assurance that the user is

communicating with the entities he believes he is communicating with, even in the absence

of external attacks. This is because authenticating a remote entity requires an interface that

informs the user whether or not authentication was successful. If this interface is provided

by a trusted device, such as a trusted smartcard reader, authentication of services (including

the SSO proxy) could be supported in this untrusted environment. The value of such an

authentication procedure, however, is undermined in the presence of session hijacking. If the

untrusted device hijacks the user’s session (either on its own or by colluding with another

entity) it can effectively abuse the user’s authentication status at any service. This renders

any authentication mechanism (unilateral or mutual) between user and services useless, even

if it results in a key that is supposed to cryptographically protect subsequent communications

(as is the case with SSL/TLS channels).

119



7.5 Other issues

It is clear that, if the untrusted device spoofs its interfaces or hijacks the communication

sessions with individual services, then the user’s entire online session is compromised. The

threats posed by a network access device that engages in such malicious behaviour are not

addressed by the scheme described here. It is nevertheless worth noting that, even in the

presence of interface spoofing and session hijacking, users of the scheme described here do

not have to disclose long-term secrets to the untrusted device; moreover, as long as those

secrets are not disclosed by other sources, only the current session is compromised.

7.5.2 Some technicalities

This section documents certain technical issues that arose during the implementation of the

SSO proxy.

7.5.2.1 Setting up Impostor

As explained in section 7.4 above, the Impostor prototype is independent of its supporting

components. Therefore, ‘setting up’ the system mainly involves setting up the compo-

nents responsible for the one-time user authentication mechanism, and performing creden-

tial database management, i.e. populating it with the user’s Impostor and website-specific

authentication credentials. It is also necessary to generate the asymmetric key pair (and a

corresponding public key certificate) that Impostor will use when setting up browser-side SS-

L/TLS connections. Finally, the Impostor login webpage and error page have to be designed

according to some simple guidelines that allow the proxy to dynamically insert challenge

values (and other details) at runtime.

7.5.2.2 HTTP Authentication

In [83] the “HTTP Authentication” method is specified; this method is sometimes used

by websites and web proxies to authenticate users. Although there is provision for a chal-

lenge/response mechanism with the one-time property (called ‘Digest Access Authentica-

tion’), it involves users typing their usernames and passwords into the access device. Thus,

since use of this method will not provide any additional security, during user-to-proxy au-

thentication (step 2 in Figure 7.1), a standard web form is used to acquire the user’s identifier

120



7.5 Other issues

and response.

By contrast, the SSO proxy can perform the HTTP Authentication protocol to authen-

ticate users to websites (step 3), as long as the RequestRecognizer component supports

it. (In fact, the university web-based email service mentioned in section 7.4.1 uses HTTP

Authentication.)

7.5.2.3 The use of cookies

The web proxy does not, by default, interfere with the cookies that individual services may

store in the browser. It is possible, however, to filter out cookies using the content filtering

facility described above. The proxy itself does not save cookies in the browser.

7.5.2.4 Persistence of connections

Currently, the proxy does not support persistent connections; every incoming HTTP request

is processed independently of others. This has a number of side effects: on the one hand, the

user has to re-authenticate every time the proxy is asked to provide long-term credentials;

this reduces the exposure to session hijacking. On the other hand, the performance is

degraded in certain circumstances.

7.5.2.5 Real world applicability

From a practical point of view, the main drawback of the Impostor prototype is that users

are required to configure their browsers to use the proxy, i.e. to route all web traffic through

the proxy. This implies changing the settings of the untrusted device’s browser. Some public

terminals impose restrictions on the ability of users to make such a configuration change.

Another issue may arise if firewalls are located between the untrusted device and the proxy.

Running the proxy on a port that is usually not blocked by firewalls (such as port 80 or 22)

may help circumvent that problem.

121



7.6 Related work

7.6 Related work

Web-based SSO schemes that are based on a trusted SSO proxy, such as the Liberty Al-

liance [130] specifications and Microsoft Passport [144], are probably the most closely related

schemes to the Impostor prototype. Liberty, in particular, does not require the use of any

specific user authentication method. This means that, if a suitable mechanism is selected,

use from an untrusted network access device can be supported. However, as pointed out

in Chapter 3, Liberty and Passport are true SSO schemes. This means that explicit re-

lationships between the SSO proxy and the service providers need to be established and

supported by a (potentially costly) common security infrastructure (such as a Public Key

Infrastructure) that spans the SSO proxy, all participating websites and possibly also the

end-users. By contrast, as the scheme described here is transparent to service providers, it

does not require explicit relationships or a security infrastructure between the proxy and

service providers; the solution is far more flexible and easily deployed. Furthermore, it can

be implemented on a small or large scale; the proxy can be operated by any organisation,

including individual users, and not just by organisations with well-established relationships

with service providers.

Proprietary local SSO schemes, such as Novell’s SecureLogin7.3, Passlogix’ V-GO7.4 and

Protocom’s SecureLogin7.5 are SSO solutions that can be deployed transparently to service

providers. The fundamental difference between these systems and the prototype described

here is that these systems are not suitable for use from an untrusted network access device;

the local device necessarily gets access to the user’s service-specific authentication creden-

tials.

Another area of related work is that of content filtering proxies. The majority of existing

content filtering proxies focus on the protection of minors from inappropriate content and

the imposition of restrictions on employees in a business environment. Although the purpose

of the content filtering functionality of the system presented here is different, the concept

is similar. However, one ought to keep in mind that a malicious end-user device can always

‘switch off’ the proxy without notification.
7.3www.novell.com/products/securelogin
7.4www.passlogix.com/sso
7.5www.protocom.cc

122



7.7 Summary

7.7 Summary

This chapter presented the design of a proxy-based pseudo-SSO scheme and described a

prototype implementation. The scheme essentially overlays a single, one-time, authentica-

tion method over the existing authentication mechanisms of individual service providers,

thereby providing SSO. The prototype, which works ‘in the real world’ as an HTTP proxy

in a manner completely transparent to websites, is easily extensible and does not depend on

any particular one-time authentication method or database component; it may be deployed

by individual users or in a corporate setting.

Looking into the future of ubiquitous computing, where personal devices with limited user

interfaces might need to connect to various service providers as users roam, pseudo-SSO

schemes such as the one presented in this chapter might prove useful; the limited devices

are only required to perform a single authentication mechanism with the trusted proxy. The

proxy, as a middleware service, then executes predefined authentication mechanisms with

each individual service provider, not only circumventing the (costly) need for system-wide

agreements and infrastructures, but also transparently adapting to a dynamically changing

environment.

123



Part II

Anonymous Credential Systems
and Single Sign-On

124



Chapter 8

Anonymous credential systems and
timing attacks

Contents
8.1 An introduction to credential systems . . . . . . . . . . . . . . . 125

8.1.1 Anonymous credential systems . . . . . . . . . . . . . . . . . . . 127

8.1.2 Pseudonym systems . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.2 Timing attacks against anonymous credential systems . . . . . 130

8.2.1 Encoding freshness into credentials . . . . . . . . . . . . . . . . . 132

8.2.2 Timing attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.2.3 Countermeasures . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.3 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 137

This chapter gives an informal introduction to anonymous credential systems, presents a

short literature review, and points out that there exist inherent limits to the privacy that

one can obtain by using such systems. These limits are then used in order to describe a

series of timing attacks that can be launched against such systems. These attacks aim at

reducing the degree of unlinkability of events within the system, thereby adversely affecting

the anonymity a user might enjoy. Much of the material in this chapter has previously been

published in [161].

8.1 An introduction to credential systems

A credential system enables subjects, typically human users, to prove possession of attributes

to interested parties. These parties are usually referred to as verifiers as they verify whether

or not the subject possesses the attributes of interest. A simple real-world example of a

credential system is theatre ticketing. A theatre visitor is typically required to produce a

valid ticket when requested by an inspector. The credential in this example is the ticket

125



8.1 An introduction to credential systems

itself, while the visitor’s eligibility to attend the performance is the attribute. The visitor’s

right to this attribute is demonstrated by showing the ticket (i.e. the credential) to the

inspector.

In general, users of a credential system need to obtain the credential from an entity termed

the credential issuer. The issuer encodes some well-defined set of attributes together with

their values into the credential which is then passed on, or ‘granted’, to the user. The user

subsequently ‘shows’ the credential to a verifier in order to obtain a good or service, where

the term ‘show’ does not necessarily mean that the credential is passed to the verifier, but,

more generally, it implies that the user proves to the verifier that it possesses a credential

with the relevant attributes.

Issuers are typically well-known organisations with authority over the attributes they encode

into the credentials they issue (for example a theatre ticket box office), and verifiers typically

are service providers that perform attribute-based access control (for example a porter that

controls admission to a theatre hall).

The credential system is the infrastructure and set of procedures by which the players in

the system interact. There are several desirable properties for such a system. For instance,

in the example above, it should not be easy for anyone to obtain a ticket by any means

other than by purchasing it from the box office. In other words, it should not be possible

for anyone to easily forge a credential. This is why theatre tickets are sometimes printed on

a special paper that is hard to forge.

In general, the user of a credential system should be able to show a credential, i.e. prove

possession of it only after having gone through the process of obtaining it from the legitimate

Issuer. Furthermore, the user should be able to prove possession of only these attributes

that were encoded into the credential by the Issuer, even if the user colludes with other

entities that may have legitimately obtained credentials that encode other attributes.

In the digital world, credentials have to be finite sequences of bits. An example of a dig-

ital credential system is a Public Key Infrastructure (PKI) (see section 1.1.5). In a PKI,

credentials are public key certificates that bind together attributes of the subject such as

name, public key, its issue and expiry dates, etc. In this case the credential issuer is a Certi-

fication Authority (CA) that grants public key certificates after following a user registration

126



8.1 An introduction to credential systems

procedure. Credential verifiers are the entities within the PKI that accept the certificates

issued by the CA and are often known as the relying parties. The measure that protects

credentials from being forged in this system is the inclusion of the CA’s digital signature in

every certificate, and the fact that this signature is checked for correctness by the verifier.

8.1.1 Anonymous credential systems

In a conventional credential system, for example a PKI, issuers and verifiers will typically

identify any given subject using a system-wide identifier. This has a potentially severe impact

on the subject’s privacy, as it enables issuers and verifiers to combine their knowledge about

the behaviour of the subject. Indeed, they can construct individual transaction histories for

all the subjects in the system, simply by correlating the issuing and showing of credentials

using these identifiers.

In certain applications, e.g. electronic cash, this privacy issue is significant. In such ap-

plications it is often desirable to prevent issuers and verifiers from being able to correlate

credential-related events. This is obviously not possible if a global identifier, such as a sub-

ject’s name, is disclosed to issuers and verifiers during the issuing and showing of credentials.

Credential systems that avoid disclosure of a global user identifier to issuers and verifiers

are termed anonymous credential systems.

The list of desirable properties for an anonymous credential system is considerably larger

than that for a conventional credential system. While anonymous credential systems still

need to provide mechanisms that prevent users from forging credentials, they also have

to provide unlinkability of transactions and anonymity of users. In certain applications, it

may in addition be desirable for the system to be augmented with an ‘anonymity revocation’

feature. In the next chapter we present a formal model that captures five relevant properties

for anonymous credential systems. While this is not an exhaustive list of the desirable

properties for such systems, we believe that they are the most important ones. In the

following paragraphs we give a brief literature survey of the subject.

Since the early eighties a significant amount of research has been performed on digital

anonymous credential systems. Seminal papers and publications that have influenced the

field are those by Chaum and his various collaborators on privacy in the digital world in

127



8.1 An introduction to credential systems

general [46, 47, 51, 52] and in the context of credentials in particular [48, 49, 50, 53, 54, 55].

As pointed out, for example, in [37, 163, 201], Chaum’s proposals, as well as Damg̊ard’s

proposal [63], suffer from a number of limitations, such as reliance on trusted third parties

and protocols that are relatively inefficient and of limited practicality.

Subsequent work, e.g. that of Camenisch, Lysyanskaya, Persiano and others [37, 137, 163],

has focussed on addressing these limitations. One of the first anonymous credential schemes

to offer the levels of efficiency required by practical applications was that proposed by Chen

in 1995 [56]. However, Chen’s scheme still suffers from the fact that a third party is involved

during the registration phase of users. Brand’s proposal for a credential system, in which

users can selectively disclose the attributes in their credentials [31], suffers from the fact that

all issuers have to agree on a common set of security-relevant parameters. Both Brand’s and

Chen’s schemes require users to obtain multiple copies of a credential if they intend to show

it multiple times without the showings being trivially linked.

More recent proposals for constructing anonymous credential systems, such as those de-

scribed in [37, 39, 137, 138, 163, 201], explicitly address a number of issues arising in previ-

ously proposed schemes. The most significant of these issues is probably that of credential

non-transferability, i.e. the incorporation of mechanisms into the system that discourage

users from sharing their credentials. Other requirements that are addressed by these more

recent proposals are the revocation of a user’s anonymity under predetermined conditions,

the independence of cryptographic keys, and the support for credentials that may be shown

multiple times (either up to a predetermined number, or an unlimited number).

8.1.2 Pseudonym systems

In the literature, the terms ‘anonymous credential system’ and ‘pseudonym system’ are

sometimes used interchangeably. While some papers prefer the former term (e.g. [37, 39,

163]) others prefer the latter (e.g. [56, 138]). In this section we briefly discuss these two

terms and the meanings assigned to them in this thesis.

An anonymous credential system essentially enables its users to interact with different or-

ganisations, i.e. the issuers and the verifiers of these credentials. In such a scheme, there is

no intrinsic need for users to establish pseudonyms with the organisations. However, while

128



8.1 An introduction to credential systems

in such a case all transactions would remain unlinkable, unfortunately there would be no

way for the organisations to differentiate between users.

There are situations where it is desirable for certain transactions to be unambiguously linked.

In an electronic cash scheme, for example, all withdrawals of a particular user should be

capable of being linked to that user’s bank account. Similarly, a user of an airline miles

loyalty scheme requires that his miles be deposited into his personal account whenever he

shows a relevant credential.

In order to support such situations, and to provide the desired level of anonymity, users

need to be able to establish a different identifier, called a pseudonym, with each issuer and

verifier they wish to interact with. To offer privacy, it should be impossible for anyone to

link together a user’s pseudonyms; hence they should not possess any connection with one

another or to the identity of their user (if they do, then they are clearly no longer unlinkable).

In a scheme that supports such pseudonyms, users can establish different identities with

different organisations. This enables users to build reputations, and organisations to hold

users accountable for their actions (within the scope of a given pseudonym). At the same

time it remains infeasible for colluding issuers and verifiers to decide whether or not any given

pair of pseudonyms belongs to the same user; this provides a degree of privacy protection

for users.

Anonymous credential systems that support such unlinkable pseudonyms are called pseudonym

systems. In other words, one can view a pseudonym system as an ‘enhanced’ anonymous cre-

dential system; i.e. one that supports pseudonyms. Such systems obviously need to provide

a mechanism for pseudonyms to be established. If, however, one wanted to use a pseudonym

system as a simple anonymous credential system (i.e. without using pseudonyms as a means

to differentiate between users), one could simply establish a new pseudonym for each trans-

action and discard it afterwards. In this sense, an anonymous credential system is a special

case of a pseudonym system.

In the remainder of this thesis we are only concerned with anonymous credential systems

that support pseudonyms, i.e. with pseudonym systems. In fact, we use the two terms

interchangeably, as does much of the literature. In the next chapter we are not concerned

with any particular pseudonym system; the interested reader is referred to the references

given above. Instead, we give definitions of security and privacy that apply to such systems,

129



8.2 Timing attacks against anonymous credential systems

regardless of the cryptographic primitives and techniques that are used by any particular

scheme.

In the remainder of this chapter, we consider practical limits to the level of pseudonym

unlinkability (and, thus, subject privacy) offered by anonymous credential systems. In par-

ticular, assuming the soundness and security of such a system, we consider how timing

attacks, launched by colluding issuers and verifiers, may affect pseudonym unlinkability. We

also outline possible pragmatic approaches to minimising exposure to such attacks.

The remainder of this chapter is structured as follows. The next section outlines the as-

sumptions we make about an anonymous credential system, section 8.2.1 discusses the issue

of encoding freshness into credentials, and section 8.2.2 presents the timing attacks. Sec-

tion 8.2.3 provides some simple heuristics to counter the attacks and section 8.3 concludes,

giving directions for further research.

8.2 Timing attacks against anonymous credential systems

As discussed above, a number of anonymous credential systems have been proposed in the

literature, each with its own particular set of entities, underlying problems, assumptions and

properties. This section presents the model of anonymous credential systems on which the

rest of this chapter is based.

We consider an anonymous credential system to involve three types of player: subjects,

issuers and verifiers. We refer to issuers and verifiers, collectively, as ‘organisations’. It is

assumed that subjects establish at least one pseudonym with each organisation with which

they wish to interact. These pseudonyms are assumed to be indistinguishable, meaning

that they do not bear any connection to the identity of the subject they belong to. We

further assume that pseudonyms are unlinkable, i.e. two pseudonyms for the same subject

cannot be linked to each other. Subjects may obtain credentials, i.e. structures that encode

a well-defined, finite set of attributes together with their values, from issuers. They may

subsequently show those credentials to verifiers, i.e. to convince them that they possess

(possibly a subset of) the encoded attributes. A credential is issued under a pseudonym

that the subject has established with its issuer, and is shown under the pseudonym that the

subject has established with the relevant verifier.

130



8.2 Timing attacks against anonymous credential systems

It is assumed that the anonymous credential system is sound. This means that it offers

pseudonym owner protection, i.e. that only the subject that established a given pseudonym

can show credentials under it. Soundness also implies credential unforgeability ; the only way

that subjects may prove possession of a credential is by having obtained it previously from

a legitimate issuer. In some applications, it is required that the system offers the stronger

property of credential non-transferability. This property guarantees that no subject can

prove possession of a credential that it has not been issued using one of the pseudonyms

that it legitimately possesses, even if the subject colludes with other subject(s) that may

have (legitimately) obtained such a credential. (For formal definitions of these properties

see chapter 9.) In other words, a system that offers non-transferability prohibits credential

sharing, whereas a system that offers only unforgeability, does not. (Of course, the degree

of protection against credential sharing is always limited, since if one subject gives all its

secrets to another subject then the latter subject will always be able to impersonate the

former and use its credentials.) For the purposes of the discussion in this chapter we require

that credentials are bound to the subject to which they have been issued. We therefore

assume that subjects do not share their credentials.

It is assumed further that the system properly protects privacy, in that a subject’s transac-

tions with organisations do not compromise the unlinkability of its pseudonyms. As pointed

out in the previous chapter, this unlinkability can only be guaranteed up to a certain point,

as credential types potentially reveal links between pseudonyms. The type of a credential is

defined as the collection of attribute values that are encoded into the credential. An organ-

isation that, for example, issues demographic credentials containing the fields sex and age

group, with possible values of {male,female} and {18-,18-30,30-50,50+} respectively,

may actually issue up to 8 different types of credential (one for each combination of values).

To see how credential types can be exploited to link a subject’s pseudonyms, consider the

following trivial scenario. At time τ , a credential of type t is shown under the pseudonym p.

However, suppose that, up to time τ , only one credential of type t has been issued, and

this was done under pseudonym p′. It follows, under the assumption that credentials are

bound to subjects, that the two pseudonyms p, p′ belong to the same subject; the colluding

organisations can thus successfully link those two pseudonyms.

We note that, as part of credential showing, some anonymous credential systems allow

subjects to reveal only a subset of the encoded attributes; in the above example it may be

possible for the subject to reveal only the value of sex. For these systems, it is tempting to

131



8.2 Timing attacks against anonymous credential systems

define the type of a credential as the collection of attributes that is revealed to the verifier

during showing. However, we restrict our attention to the scenario where the verifier, rather

than the subject, selects the attributes to be revealed during credential showing. This is,

as far as our analysis is concerned, equivalent to the case where only the required set of

attributes is encoded into a credential in the first place. This scenario is also likely to be

valid for the case where verifiers perform attribute-based access control.

8.2.1 Encoding freshness into credentials

In certain applications, typically those involving short-lived credentials, verifiers need to

validate the freshness of credentials8.1. Thus, some indication of freshness has to be encoded

into a credential by its issuer. However, this indication constitutes an additional attribute,

and its value helps determine the type of the credential. If the indication of freshness is

unique for each credential (such as a serial number, a counter value, or a nonce), then

it becomes trivial for organisations to link pseudonyms, as every credential will have its

own, unique, type. It is thus desirable, from a privacy perspective, that the indication of

freshness is shared among as many credentials as possible. One possible freshness indication

is a timestamp generated using a universal clock, with a sufficiently coarse accuracy. We

thus henceforth assume that one of the attributes that is present in all credentials is such a

timestamp.

A question that arises in this context is who decides whether or not a credential has expired.

If it is the issuer, it seems more appropriate for the timestamp to indicate the time of

expiry. If, on the other hand, it is the verifier, then it makes more sense for the timestamp

to indicate the time of issue. Since the latter alternative enables verifiers to have individual

policies with respect to expiry of credentials, in the sequel we assume that the timestamp

indicates the time of credential issue. We do not consider the case where two timestamps

are encoded into the credential, indicating both the beginning and the end of its validity

period. We further assume that all issued timestamps are given a value of nτi for some

integer n, and some fixed time interval τi. The value of τi should be large enough to provide

the degree of anonymity required. Without loss of generality we assume that all credentials

issued between times nτi and (n + 1)τi are given the timestamp nτi.

8.1One such application is the use of anonymous credentials as user authentication tokens in an SSO context,
an idea that is explored further in the following chapters of this thesis. As the timing attacks described
in this chapter are a particular concern in scenarios involving short-lived credentials, it is important to be
aware of them in order to be able to put into perspective the material in the following chapters.

132



8.2 Timing attacks against anonymous credential systems

8.2.2 Timing attacks

We consider certain attacks that may be launched by colluding organisations who wish to

link pseudonyms that belong to the same subject. It is sufficient for the organisations to

link the events of credential issuing and showing as corresponding to the same subject; this

amounts to linking the pseudonyms that correspond to those events. We distinguish between

two attack strategies. As both of them exploit temporal information in the system, they

both fall into the category of timing attacks.

The first strategy does not exploit the timestamps that are encoded into the credentials.

Instead, it exploits the behaviour of subjects in certain scenarios, i.e. the high likelihood

that a subject will show a credential to a verifier soon after it was issued to them. That

is, if a credential is issued at time τ and subsequently shown at time τ + τδ, where τδ is

small, then the issuer and verifier could collude to learn (with high probability) that the

two pseudonyms involved belong to the same subject. Of course, the meaning of ‘small’

here will depend on the application, in particular on the rate of credential issuing. As a

result, this timing attack is not equally serious in all scenarios. While in some applications

(e.g. driving licences) it may not be a concern at all, in others (e.g. tickets, electronic cash,

authentication tokens) the threat may be much more significant.

The second strategy is essentially the one already mentioned in section 8.2.1 above, namely

the correlation of issuing and showing events based on the type of the credentials involved,

and thereby linking the associated pseudonyms. However, the fact that we are now assuming

that credentials encode timestamps (whose freshness is checked by verifiers), guarantees that

credentials issued in different periods are of different types. Exploiting this particular fact

may render the generic correlating-by-type attack much more effective. Moreover,

8.2.3 Countermeasures

An obvious countermeasure to the first attack strategy is to require subjects to wait between

obtaining and showing a credential. However, this needs to be managed carefully, since

simply imposing some fixed waiting time, say τw, does not in practice reduce the exposure

to the attack. This is because correlation between issuing and showing of credentials can

still be performed by pairing these events if they are separated by a time difference of a little

133



8.2 Timing attacks against anonymous credential systems

greater than τw. Thus, the delay τw should be randomised in some way. This, however,

raises new questions: what are the minimum and maximum acceptable values for τw, given

that it is likely (if not certain) to affect the system’s usability? How does the choice of these

limits affect unlinkability? How does the probability distribution according to which τw is

chosen affect unlinkability?

The second attack scenario requires slightly different countermeasures. The objective here

is to require subjects not to show credentials of some type until sufficiently many credentials

of that type have been issued (to other subjects). Again, an obvious countermeasure is

to require some (randomised) delay between the issuing and showing of credentials. The

requirement by verifiers to validate the timestamps of credentials, however, introduces an

additional constraint, namely that, at the time of showing, credentials should not have

expired.

We now describe a simple heuristic that, using random delays, tries to approach a reasonable

compromise between usability, security and privacy in the face of the above timing attacks.

It requires issuers to generate credentials in batches, containing a range of consecutive issue

timestamps. More precisely, suppose a subject requests an issuer to provide a credential

encoding a certain set of attributes α. Instead of issuing a single credential with type

defined by the concatenation of α with the current timestamp nτi, the issuer generates a set

of k credentials with types defined by the concatenation of α with the timestamps (n− j)τi,

where 0 ≤ j ≤ k − 1, where k is a policy-based parameter (which may be chosen by the

subject or by the issuer, depending on the system context).

This means, of course, that timestamps no longer precisely encode the time of issue; it

is assumed, however, that this does not affect security since those credentials with ‘old’

timestamps are bound to expire sooner than those with current ones. It is also required that

subjects maintain a loosely synchronised clock, such that they can distinguish time periods.

Further, it is assumed that verifiers accept credentials that were issued during the k most

recent periods (including the current one).

When showing a credential, the subject must follow a two stage process. Note that we

suppose that the set of k credentials were actually issued at time τis, where nτi ≤ τis <

(n + 1)τi.

134



8.2 Timing attacks against anonymous credential systems

Figure 8.1: Example for k = 2.

1. The subject is not permitted to show any of the issued credentials until a randomised

waiting time τw has elapsed, where τmin ≤ τw ≤ τmax, and τmin and τmax are domain spe-

cific parameters. Clearly τmin will depend on the rate of credential issue and showing,

and should be chosen to prevent simple correlation between credential issue and show-

ing. Further, τmax must satisfy τmax < (n+k)τi− τis, since otherwise all the credentials

may have expired before they can be used. In addition, τmax should be large enough

to sufficiently randomise the delay between issue and showing, but not so large as to

damage usability. The precise choices for both parameters will be a sensitive issue,

and these parameters can be subject-specific. Similarly, the probability distribution to

be used to randomly select the waiting time could be varied, but it seems reasonable

to use a uniform distribution.

2. The subject should then show the credential with the oldest timestamp which is still

valid under the policy of the verifier. That is, if we assume that the credential is

to be shown at time τsh (where τsh ≈ τis + τw), then the subject should show the

credential with timestamp (bτsh/τic − k + 1)τi. Observing that nτi ≤ τis and that

0 ≤ τw < (n+k)τi−τis, we have n ≤ τsh/τi < (n+k) and hence n ≤ bτsh/τic ≤ n+k−1.

Thus (n − k + 1)τi ≤ (bτsh/τic − k + 1)τi ≤ nτi, and hence such a credential exists

within the set of credentials that was issued to the subject.

Figure 8.1 illustrates the operation of the heuristic for the case k = 2, i.e. in the case where

the verifier accepts credentials that were issued during the last two periods (this period of

135



8.2 Timing attacks against anonymous credential systems

time is denoted τacc in the figure). At time τis the subject obtains two credentials: c1 and

c2, where c1 contains timestamp nτi and c2 contains timestamp (n−1)τi. A random waiting

time tw is then selected. In case (a), the waiting time is such that τsh falls within the next

period, so credential c1 is shown (c2 has expired). In case (b), τsh falls within the same

period, so the ‘older’ credential c2 is shown.

The limit τmin should be selected such that, in every time period of that length, the expected

number of subjects obtaining credentials of the type in question is sufficiently large. Imposing

this lower limit is necessary because otherwise organisations may unambiguously link a pair

of showing and issuing events whenever a subject selects a waiting time no more than τmin.

In some applications it may be unacceptable for a subject to obtain k credentials instead

of one. A simple variation of the above heuristic does not require the subject to obtain k

credentials. This involves simply choosing the waiting time τw first, and then only obtaining

the credential that is appropriate for showing at time τis + τw. This variation, however,

offers significantly less protection against attacks based on correlation of credential types,

since the number of issued credentials drops by a factor of k.

There are trade-offs between the choices for k and τi. If τi is relatively large then k can be

made smaller, saving work in credential issue and storage. However, choosing a large value

for τi also has disadvantages; in particular it decreases the precision available for specifying

lifetimes of credentials, bearing in mind that choices for k may vary across the populations

of users and organisations (depending on their privacy requirements).

We note that some cryptographic constructions allow for zero-knowledge proofs (see sec-

tion 1.1.5.4) of the fact that some variable lies within a certain range, without revealing its

value. Anonymous credential systems that make use of such constructions (see, for exam-

ple, [31]) may overcome the timing attacks introduced by timestamps, since subjects can

convince verifiers that timestamps lie within some acceptable range, without revealing any

information beyond this fact. In order to maximise unlinkability in this scenario, however,

this range has to be selected carefully. Assuming that timestamps encode the time of issue,

the lower limit of the range should indicate ‘just before expiry’, i.e. the subject should prove

that the issue timestamp is at least τsh − τacc, where τacc denotes the time after which

credentials expire (as defined by the policy of the verifier).

136



8.3 Concluding remarks

8.3 Concluding remarks

Timing issues often arise in the context of privacy preserving schemes, for example in the

context of mix networks. Mix networks have been proposed as a solution to the problem

of anonymous communication [45, 177]. They enable users to send messages to other users

in a way that preserves the anonymity of the sender. A cascade of trusted parties, called

‘mixes’, provides the anonymising service, i.e. it hides the identities of the senders from both

recipients and attackers that might analyse the traffic that is flowing through the network.

Nevertheless, each mix is susceptible to timing attacks that try to correlate incoming and

outgoing messages [125]. A typical countermeasure requires the mix to wait for a number of

incoming messages before forwarding them (in shuffled order) to the next mix in the cascade

(or, in the case of the final mix, to the recipient of the message).

Mix networks rely on third parties. Unfortunately, such entities do not exist in anonymous

credential systems. In fact, in many scenarios, relying on third parties may be undesirable.

In this chapter we outlined some heuristics that offer protection against timing attacks that

arise when using anonymous credentials. Although they do not rely on a third party, they

come with a cost in terms of communications and computational overhead and a potential

impact on usability.

There is a need to devise solutions which address the threat of timing attacks on anonymous

credentials. These solutions should minimise three, probably contradicting, requirements:

the probability of pseudonym linking, the inconvenience introduced to subjects, and the

impact on system security. In other words, they should offer reasonable tradeoffs between

usability, security and privacy protection. In the next chapter we describe a system that

aims to perform this job; it reduces the exposure to the attacks described in this chapter.

137



Chapter 9

A security model for anonymous cre-
dential systems

Contents
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

9.1.1 Universal composability and pseudonym systems . . . . . . . . . 140

9.1.2 Motivation for the new model . . . . . . . . . . . . . . . . . . . . 141

9.1.3 What the new model does not do . . . . . . . . . . . . . . . . . . 142

9.2 Security of pseudonym systems . . . . . . . . . . . . . . . . . . . 143

9.2.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

9.2.2 The games and soundness . . . . . . . . . . . . . . . . . . . . . . 147

9.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

9.2.4 Unlinkability of pseudonyms . . . . . . . . . . . . . . . . . . . . . 152

9.2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

9.2.6 Indistinguishability of pseudonyms . . . . . . . . . . . . . . . . . 158

9.2.7 Anonymity of users . . . . . . . . . . . . . . . . . . . . . . . . . . 160

9.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

This chapter formally defines complexity-theoretic security and privacy notions that apply to

anonymous credential systems. The relationship between these notions is explored, and it is

shown that some notions imply others. Moreover, the model potentially enables reductions

to be formulated that prove the security of cryptosystems that satisfy the definitions, and

provides insight into the issues that arise when designing and analysing such systems. Some

of the material in this chapter was previously published in [154].

9.1 Introduction

We saw in the previous chapter that anonymous credential or ‘pseudonym’ systems allow

users to interact with organisations using distinct and unlinkable pseudonyms. In particular,

138



9.1 Introduction

they enable a user to obtain a credential (a statement of a designated type that attests to one

or more of the user’s attributes) from one organisation and then ‘show’ it to another, such

that the two organisations cannot link the issuing and showing acts; the user’s transactions

remain unlinkable. As was also shown in the previous chapter, this unlinkability is limited;

if only one credential is ever issued with a particular set of attributes, then clearly all

credential showings containing this set of attributes can be linked to each other and to the

unique issued credential. So there exists an inherent limit to the unlinkability that can be

obtained in such a system. In this chapter we explore this limit further.

Pseudonym systems also have to prevent users from showing credentials that have not been

issued, and prevent them from pooling their credentials (for example, to collectively obtain a

new credential that each user individually would not be able to). In this chapter we explore

these security notions in greater detail, as well as a further security notion that we call

‘pseudonym owner protection’.

When analysing the security of pseudonym systems, it is desirable to relate the difficulty of

breaking the system to the difficulty of solving some well-studied problem. In order to do so

it is necessary to (a) define precisely what it means to ‘break’ the system (or, equivalently,

what it means for the system to be ‘secure’), and (b) provide arguments that show how these

security definitions relate to the definitions of the well-studied problem. These arguments

are typically made within a complexity theoretic framework [186] and are usually referred

to as ‘proofs of security’. The field of study encompassing such proofs is called ‘provable

security’, and schemes that have been analysed in this way are said to be ‘provably secure’.

The reader interested in this research area is referred to e.g. [12, 17, 43, 118, 173].

In this chapter we are not concerned with security proofs for pseudonym systems. We

are, however, interested in the definitions that capture the key security notions, and that

potentially enable such proofs to be formulated for concrete systems. The definitions occur

in the context of a model that enables the different procedures that occur in a pseudonym

system to take place in a well-defined way. This model also incorporates what is called an

adversary. This adversary captures, again in a well-defined sense, the notion of an attacker

that tries to break the system. Thus, the model is an adversarial one.

Our model is not the first security model that has been proposed for anonymous credential

systems. In the next section we briefly discuss another such model. Section 9.1.2 provides

139



9.1 Introduction

some clear motivation for introducing our new model.

9.1.1 Universal composability and pseudonym systems

The model used by Camenisch and Lysyanskaya [37, 137] to analyse pseudonym systems

is based on a model proposed by Canetti [41] (and which was also used for the analysis

of key exchange protocols [44]). This model was designed in order to make it easier to

analyse cryptographic schemes that are composed of different (sub)protocols; it is called the

‘universally composable framework’.

In this framework, the definition of security is based on the indistinguishability between the

transcripts of protocols that occur in an ‘ideal’ world (where a universally trusted party

guarantees security), and the ‘real world’ (where such a party does not exist). We next

explain what this means in a little more detail. The description given here is simplified. For

a full exposition the interested reader is referred to the references given above.

When analysing a particular cryptographic scheme (e.g. an anonymous credential system)

in this model, one first has to define the ‘ideal world’. This involves specifying the players

(e.g. users and organisations) in the system and the procedures by which they interact;

this specification is at a high level, i.e. it does not go into the details of the cryptographic

protocols. In the ideal world, security is guaranteed by an ideal (i.e. non-existent), central,

trusted party T . Players never interact directly with each other in the ideal world. They

only interact with (i.e. through) T . The adversary may control a number of players in

the system and may also interact with T . There exists an additional entity called the

‘environment’ E. It is E that chooses which procedures will be executed in the system. The

environment E causes a procedure to be executed by sending a message that specifies the

particular procedure to the player that should initiate it. E cannot directly send messages

to those players that are controlled by the adversary. Instead, E sends the messages to the

adversary, which then forwards them to the intended players. The final outcome of each

procedure is reported back to E.

Next, one has to define the ‘real world’. The set up is very similar to the ideal world; the

main difference is that T no longer exists. Players now interact directly with each other,

using the concrete cryptographic protocols of the scheme. The adversary may again control

140



9.1 Introduction

a number of players, and may also be in control of the network itself. As in the ideal world,

an environment E initiates the procedures by sending messages to the players, either directly

or via the adversary.

Observe that, since T guarantees security, the ideal system is by definition secure. In fact, it

serves as a specification that captures what exactly it means for the cryptographic scheme

to be secure in the presence of an adversary. The cryptographic scheme, whose operation is

captured by the ‘real world’ setting, is said to conform to the specification (and is therefore

said to be secure), if it can be shown that no environment E can distinguish, in the presence

of a simulator, whether it is interacting with the ideal or the real world. The simulator

provides an interface between the environment E and the players (including the adversary)

of the real world. In other words, the simulator’s task is to make E believe that it operates in

the ideal world whenever it operates in the real one. Demonstrating the security of a system

in this model then amounts to describing the operation of a simulator that successfully

performs the above job.

9.1.2 Motivation for the new model

Pseudonym systems are required to satisfy a number of security notions. Intuitively, these

notions are not entirely unrelated. In the above model, however, relationships among notions

are somewhat hidden by the fact that the universally trusted party T takes care of them. It

is also not clear how to quantify the unlinkability obtained in the system, given the inherent

limit mentioned earlier. In addition, when the model is applied in [37, 137], the adversary

is not allowed to corrupt players in an adaptive fashion.

In this chapter we propose an adversarial model that enables us

• to explore the relationships between different notions, and

• to quantify, to an extent, the obtained degree of unlinkability.

While the property that the adversary gets to specify the order of events is retained, our

model is stronger than the one in [37], in that the adversary can also adaptively corrupt

players. Moreover, it potentially leads to a precise description of the anonymity that users

may enjoy when using the system.

141



9.1 Introduction

9.1.3 What the new model does not do

Our model abstracts away from properties that do not lie at the same level of abstraction

as that at which a pseudonym system operates. It does not capture ‘traditional’ communi-

cations security properties, such as entity authentication or key establishment. This is not

an omission; these issues are outside the scope of the model, and other models can be used

to reason about these issues. Of course, if users do not authenticate organisations, and if

the communications in the system are not appropriately protected at the session level, then

there cannot be any security. What it means for communications to be ‘appropriately pro-

tected at the session level’ may vary from system to system. Typically, it means that each

protocol execution is bound to exactly one conversation between the involved parties. It may

also imply protection of the integrity and confidentiality of the communications occurring

within the session. However, the way these services are provided lies at a different level of

abstraction. We therefore assume that they are provided by the infrastructure that allows

users and organisations to communicate. We also assume that, within this infrastructure,

users remain anonymous to organisations (i.e. we assume an anonymous user-to-organisation

channel).

The remainder of the chapter is organised as follows. The next section presents the formal

model of pseudonym systems, and illustrates how the protocols of a concrete pseudonym

system, namely that of Chen [56], meet the definition. Section 9.2.2 establishes the notions

of pseudonym owner protection, credential unforgeability and credential non-transferability,

which together capture the notions of soundness for a scheme. Further, section 9.2.3 pro-

vides a brief discussion of the notions and explains the relationships between them. It also

argues, on a high level, that Chen’s scheme is sound. Section 9.2.4 establishes the notion

of pseudonym unlinkability. Section 9.2.5 provides a discussion of unlinkability and argues

that Chen’s scheme meets this definition as well. Section 9.2.6 then establishes the notion

of pseudonym indistinguishability and shows it is a necessary condition for unlinkability. Fi-

nally, section 9.2.7 addresses the issue of anonymity in pseudonym systems, while section 9.3

concludes the chapter with a brief summary.

142



9.2 Security of pseudonym systems

9.2 Security of pseudonym systems

In this section we describe our model of a pseudonym system. We regard a pseudonym system

as being comprised of the players in the system and the procedures through which they

interact. The players are divided into users, issuing organisations and verifying organisations.

Since users are known to each organisation under a different pseudonym, indeed possibly

under multiple pseudonyms, a procedure must be in place according to which a user and

an organisation establish a new pseudonym; we call this the ‘pseudonym establishment

protocol’. Procedures must also be in place that allow users to obtain credentials (using the

pseudonym that was established with the issuer) and to show them (using the pseudonym

that was established with the verifier). We call the former the ‘credential issuing protocol’

and the latter the ‘credential showing protocol’.

In our model, credential types are in one-to-one correspondence with (combinations of) user

attributes; in other words, each combination of attributes defines a credential type. In our

model, an organisation that, for example, issues demographic credentials containing the fields

sex and age group, with possible values of {male,female} and {18-,18-30,30-50,50+}
respectively, may actually issue credentials of up to eight different types (one for each com-

bination of values).

9.2.1 The model

A protocol prot is assumed to be a tuple of interactive Turing machines [186]; an execution

of prot is said to be successful if and only if all machines accept. The set of all non-zero

polynomial functions in the natural number k is denoted by poly(k). A real-valued function

ε : N→ R, is said to be negligible in k if and only if 0 ≤ ε(k) < 1/|q(k)| for any q ∈ poly(k)

and for all sufficiently large k.

Remark 1 We are concerned in this chapter with situations where two functions f and g

satisfy f(k) > g(k) + ε(k) for any negligible function ε and for all sufficiently large k. To

simplify the discussion we abuse our notation slightly and simply say that f is greater

than g + ε(k), i.e. we omit explicit references to k, and we also omit the rider ‘for all

sufficiently large k’.

143



9.2 Security of pseudonym systems

We now give a formal definition of an anonymous credential system.

Definition 1 A pseudonym system is a tuple

(U, I, V, k, init, P, T, peprot, ciprot, csprot)

whose elements are as follows.

• U is the set of users. Its elements are probabilistic polynomial time Turing machines.

• I is the set of credential issuing organisations (‘issuers’ in short). Its elements are

probabilistic polynomial time Turing machines.

• V is the set of credential verifying organisations (‘verifiers’ in short). Its elements are

probabilistic polynomial time Turing machines.

• P is the set of pseudonyms.

• T is the set of credential types.

• k (a natural number) is the system security parameter.

• init is the system’s probabilistic, polynomial time initialisation algorithm; on input

(U, I, V, k), it outputs descriptions of the sets P and T . Depending on the particular

scheme, it may also output public parameters and private values for (a subset of) the

players in the scheme, i.e. users, issuers and verifiers. Furthermore, the init algorithm

outputs a set Ti ⊆ T for each i ∈ I. The set Ti represents the credential types that

the issuer i will issue in the future9.1. It is required that, for all distinct i, i′ ∈ I,

Ti ∩ Ti′ = ∅. (This is easily achieved by having a unique identifier of each i embedded

into all its types Ti.) The set of active credential types in the system is denoted by

T ∗
def
=

⋃
i∈I Ti.

• peprot is the pseudonym establishment protocol : any user/organisation pair (u, o) ∈
U×(I∪V ) may execute peprot; if the protocol succeeds, u and o will have established

a pseudonym p ∈ P and we write peprotu,o,p. The probability distribution according

to which p is chosen from P is defined by the protocol. (The user u is called the owner

of p, and will typically also possess some private output associated with p as necessary

to engage in ciprot and csprot.)

9.1In certain existing pseudonym systems, e.g. [37], credential types are identified with some form of public
verification key. While these keys are typically published, their private counterparts are kept secret by the
corresponding issuer.

144



9.2 Security of pseudonym systems

• ciprot is the credential issuing protocol : any user/issuer pair (u, i) ∈ U × I may

execute ciprot with respect to a pseudonym p ∈ P associated with u and i (established

using peprot) and for a credential type t ∈ Ti. If successful, we say that i has issued

a credential of type t on pseudonym p, and we write ciproti,p,t.

• csprot is the credential showing protocol : any user/verifier pair (u, v) ∈ U × V may

execute csprot with respect to a pseudonym p ∈ P associated with u and v (estab-

lished using peprot) and for a particular credential type t ∈ T ; if the protocol succeeds

we say that u has shown a credential of type t on pseudonym p to v, and we write

csprotv,p,t.

Note that, since init runs in polynomial time, |U |, |I|, |V |, |T ∗| ∈ poly(k). We can now

define what it means for a pseudonym system to be correct.

Definition 2 A pseudonym system is said to be correct if and only if executions of peprot,

ciprot and csprot are successful with probability greater than 1− ε(k) for some negligible

function ε.

At this point it is appropriate to introduce an example pseudonym system and explain how

its protocols work. The example we describe here is the pseudonym system by Chen [56].

Note that we give only simplified high-level description. For a detailed description of the

protocols the reader is referred to [56]. In Chen’s system, the pseudonym establishment

protocol peprotu,o,p is such that the user’s u pseudonym p appears as a random number to

the organisation o. The protocol, shown in Figure 9.1, which involves a trusted party, forces

the user to compute p using a factor c that is unique to u and common to all his pseudonyms.

First the trusted party sends c to u (step 1). Then u forms p as a function of c and a value s

that the user selects randomly and keeps secret. This computation is such that, given a

pseudonym p (and without knowledge of s), it is infeasible to learn anything about s. The

user then obtains from the trusted party a signature on a blinded version of p (step 2). This

is accomplished using a blind signature scheme (see section 1.1.5.3). The signature attests

to the fact that p is well-formed, i.e. that it is a function of c. In order to unblind this

signature such that it becomes valid on p, the user must know the corresponding s. Finally,

the user sends p and the trusted party’s signature on p to the organisation o (step 3). The

organisation verifies the signature and, if successful, registers p as a valid pseudonym.

145



9.2 Security of pseudonym systems

Figure 9.1: Pseudonym establishment protocol of Chen’s system

Figure 9.2: Credential issuing protocol of Chen’s system

The credential issuing protocol ciproti,p1,t of Chen’s system, shown in Figure 9.2, operates

as follows. First, the user authenticates itself to the issuer i under p1. The authentication

method is not specified in Chen’s system. What matters is that i is convinced that the

credential of type t will be issued to an authorised user. If authentication succeeds, i issues

a signature on a blinded version of p′ to the user, using a private key that corresponds to t

(see section 1.1.5.3). The pseudonym p′ is either the user’s pseudonym p2 under which he

wishes to later show the credential, or an ‘intermediate’ pseudonym that is not established

in the system. In both cases, the issuer’s blind signature has the property that it enables

the user to compute a valid signature on p2 only if he knows the secrets s1 and s2 that are

associated with p1 and p2.

The credential showing protocol csprotv,p2,t of Chen’s system, shown in Figure 9.3 operates

as follows. The user shows p2 and a signature on p2 that verifies with i’s public key that

corresponds to t. The user can obtain such a signature as a result of a ciproti,p1,t protocol

as described above. The verifier checks the signature and, if valid, accepts. It is worth

stressing that, since issuing a credential amounts to the issuer generating a blind signature,

the information that the user reveals to the verifier during credential showing does not reveal

any link to the information that the issuer saw during credential issuing.

146



9.2 Security of pseudonym systems

Figure 9.3: Credential showing protocol of Chen’s system

9.2.2 The games and soundness

Our notions of security follow well-established techniques from the field of provable security

(see, for example, [12, 17, 43, 118, 173]). In particular, each notion is defined by means of

a game between two Turing machines: a Challenger and an Adversary.

In this section we define Game 1, which captures ‘pseudonym owner protection’, Game 2,

which captures ‘credential unforgeability’, and Game 3, which captures ‘credential non-

transferability’. In sections 9.2.4 and 9.2.6 below we define Game 4 and Game 5, which

capture ‘unlinkability’ and ‘indistinguishability’ of pseudonyms, respectively.

At the beginning of all games, the Challenger sets up the system by selecting the set of

users U , issuers I, verifiers V , and a security parameter k and by running init with these

as input. At this point, the Challenger controls all the players in the system. The Adversary,

which is assumed to be a probabilistic polynomial time and space algorithm and is denoted

by A, then receives as input the sets U , I, V and Ti, descriptions of the sets P and T , and

the system’s public information.

Each of the games consists of two distinct and successive phases. During the first phase of

each game, A may issue (oracle type) queries to the Challenger. When receiving a query,

the Challenger performs a certain task and, depending on its outcome, responds in a certain

way. The response is given to A. During the second phase of the game A is no longer

allowed to issue queries.

We now describe the six query types that A may issue during the first phase of Games 1, 2

and 3. The query types for Games 4 and 5 are described in sections 9.2.4 and 9.2.6 below.

runpeprot(u, o): A arbitrarily selects a user/organisation pair (u, o) ∈ U×(I∪V ) and issues

this query. When this happens, the Challenger makes u and o execute peprotu,o,p. The

Challenger replies true if the protocol execution is successful and false otherwise. (If the

147



9.2 Security of pseudonym systems

execution is successful, u and o will have established a new pseudonym p ∈ P ; A, however,

does not learn its value.)

runciprot(u, i, t): A arbitrarily selects a user/issuer/credential type tuple (u, i, t) ∈ U×I×
Ti and issues this query. When this happens, the Challenger selects a pseudonym p from set

of pseudonyms that u and i have established and makes u and i execute ciproti,p,t. We do

not specify the probability distribution according to which the Challenger selects p from the

set of pseudonyms that is established between u and i, since the security notions that are

defined by means of the games in which queries of this type may occur, should hold for all

such distributions. The Challenger replies true if the protocol execution is successful and

false otherwise (including the case where u and i have not established any pseudonym).

Note that A does not learn the value of p.

runcsprot(u, v, t): A arbitrarily selects a user/verifier/credential type triple (u, v, t) ∈ U ×
V ×T and issues this query. When this happens, the Challenger selects a pseudonym p from

the set of pseudonyms that u and v have established, and makes u and v execute csprotv,p,t.

He replies true if the protocol execution is successful and false otherwise (including the

case where u and v have not established any pseudonym). Note that A does not learn the

value of p.

corruptUser(u): A arbitrarily selects a user u ∈ U and issues this query. When this

happens, the Challenger hands all the private information of u to A. This includes the

pseudonyms, credentials and all the past protocol views of u. From that point on, the

control of u is passed from the Challenger to A.

corruptIssuer(i): A arbitrarily selects an issuer i ∈ I and issues this query. When this

happens, the Challenger hands all the private information of i to A. This includes the set

of pseudonyms i has established and all its past protocol views. From that point on, the

control of i is passed from the Challenger to A.

corruptVerifier(v): A arbitrarily selects a verifier v ∈ V and issues this query. When this

happens, the Challenger hands all the private information of v to A. This includes the set

of pseudonyms v has established and all its past protocol views. From that point on, the

control of v is passed from the Challenger to A.

148



9.2 Security of pseudonym systems

In all games, a global and monotonically increasing variable τ counts A’s queries. We say

that the query is issued at the time indicated by τ . At a certain point in time, A exits the

first phase and enters the second phase. The value of τ at that point is denoted by τmax.

In the second phase A may no longer issue any queries; what takes place is specific to each

game and is described below.

To describe the games we require some additional notation. In the following, Pu,o ⊆ P

denotes the set of pseudonyms the user u ∈ U has established with the organisation o ∈
(I ∪ V ) at time τmax (via A’s runpeprot queries), i.e.

Pu,o
def
= {p ∈ P | a successful peprotu,o,p occurred at a time τ ≤ τmax}.

The set of pseudonyms belonging to u is defined as Pu
def
=

⋃
o∈(I∪V ) Pu,o and the set of

pseudonyms that o has established is defined as Po
def
=

⋃
u∈U Pu,o. (Since A does not

learn the value of pseudonyms during their establishment, only u knows Pu and only o

knows Po.) The set of active pseudonyms in the system is defined as P ∗
def
=

⋃
u∈U Pu,

or, equivalently, P ∗
def
=

⋃
o∈(I∪V ) Po. Since A is polynomially bounded in k, it holds that

|P ∗| ∈ poly(k). It is required that, for all distinct u, u′ ∈ U , Pu∩Pu′ = ∅. This requirement

is a technicality that we need in order to define the function f . It practice it can be met

by having peprot select pseudonyms uniformly at random from a large enough set P . The

pseudonym establishment protocols of some existing schemes are of this form. The function

f : P ∗ → U maps pseudonyms to their owners, which is well-defined by the assumption that

Pu ∩ Pu′ = ∅.

Let Û ⊆ U , Î ⊆ I and V̂ ⊆ V denote the subsets of users, issuers and verifiers respectively

that A corrupted during the first phase. Further, let Pu,t(x) ⊆ Pu denote the subset of

pseudonyms belonging to user u ∈ U on which a credential of type t ∈ T ∗ has been issued

prior to time x, i.e. Pu,t(x)
def
= {p ∈ Pu | a successful ciprotp,·,t occurred at time τ ≤ x}.

We now describe the second phase of Games 1, 2 and 3. As mentioned above, A may no

longer issue queries to the Challenger in this phase. He may, however, engage in ciproti,p,t

and csprotv,p,t executions directly with organisations (while pretending to be the user f(p)).

Game 1 (pseudonym owner protection): A selects a pseudonym/verifier/type triple (p, v, t) ∈
P ∗ × (V − V̂ )× T such that f(p) ∈ (U − Û). We say that A wins the game iff he can make

v accept in a csprotv,p,t execution.

149



9.2 Security of pseudonym systems

Game 2 (credential unforgeability): A selects a pseudonym/verifier/type triple (p, v, t) ∈
P ∗ × (V − V̂ )× (T −⋃

i∈Î Ti) such that Pf(p),t(τmax) = ∅ and
⋃

u∈Û Pu,t(τmax) = ∅. We say

that A wins the game iff he can make v accept in a csprotv,p,t execution.

Game 3 (credential non-transferability): A selects a pseudonym/verifier/type triple (p, v, t) ∈
P ∗ × (V − V̂ )× (T −⋃

i∈Î Ti) such that Pf(p),t(τmax) = ∅. We say that A wins the game iff

he can make v accept in a csprotv,p,t execution.

Definition 3 A pseudonym system is said to offer pseudonym owner protection, credential

unforgeability or credential non-transferability if and only if no adversary A can win Game 1,

2 or 3, respectively, with a probability greater than any negligible function in k.

9.2.3 Discussion

Game 1, ‘pseudonym owner protection’, captures the property that nobody — even when

colluding with users, issuers and verifiers — should be able to successfully show a credential

on a pseudonym of which he is not the owner (i.e. on a pseudonym which was not established

by himself). The property is typically achieved by having the pseudonym establishment

protocol generate certain private output for the user. This output is then treated as a secret

that enables the user to authenticate himself as the pseudonym owner during the execution

of the credential issuing and showing protocols.

In Chen’s system, the user’s private output from peprotu,o,p is the secret value s that used

to form the pseudonym p. This secret is not revealed by any of the sytem’s protocols and

knowledge of it is necessary in order to show a credential under p.

Games 2 and 3 capture security for organisations and users. In particular, Game 2 captures

what is usually perceived as ‘credential unforgeability’. If a (dishonest) user can construct

a credential by himself (i.e. without obtaining it legitimately from an issuing organisation),

if, in other words, the user can forge the credential, then the system clearly does not offer

credential unforgeability. Game 2 captures unforgeability in this sense. There is, however,

a simplistic way for a user to ‘forge’ a credential, namely by ‘borrowing’ it from another

user with whom he colludes (and who legitimately obtained the credential from an issuing

organisation). This type of ‘forgery’ is not captured by Game 2. In some applications

credential sharing is not a concern, while forgery is.

150



9.2 Security of pseudonym systems

In Chen’s system, unforgeability of credentials is guaranteed by the blind signature scheme

employed and the way pseudonyms are constructed. Section 4 of [56] provides a detailed

discussion of unforgeability.

Game 3, credential non-transferability, captures the case of credential sharing between users.

In a system that satisfies the credential non-transferability property, no user can successfully

show, using one of his own pseudonyms, a credential of a type he was never issued. This

holds even if the user colludes with other users that have been issued credentials of that

type. Note that the case where the user attempts to show a credential using someone else’s

pseudonym (with whom he colludes and who might have legitimately obtained a credential)

is not captured by the game. We call this latter type of credential transfer ‘pseudonym

sharing’. In fact, if users share all their secrets, it is impossible to prevent pseudonym

sharing, and thereby credential sharing.

In Chen’s pseudonym system, non-transferability is guaranteed by the fact that all pseudonyms

are a function of a unique common factor c. That is, the protocols of the system are such

that it is infeasible to show a credential on a pseudonym that is a function of a different c

than the pseudonym on which the credential was issued.

It is interesting to observe the relationship between the notions of unforgeability and non-

transferability: the latter, being stronger, implies the former. Clearly, if a dishonest user can

construct credentials by himself, then there is no need for him to collude with other users

in order to forge one. In the model, this is simply reflected by the fact that the adversary

is more restricted in his choice of the credential type in (the second phase of) Game 2 than

he is in (the second phase of) Game 3. A system that offers non-transferability also offers

unforgeability.

This relationship between unforgeability and non-transferability motivates the following de-

finition of a sound pseudonym system.

Definition 4 A pseudonym system is said to be sound if and only if it is correct, it offers

pseudonym owner protection, and it offers credential non-transferability.

Observe that it is challenging to construct pseudonym systems that prevent pseudonym

sharing. Certainly, as mentioned above, if two users share all their secrets, then they can

151



9.2 Security of pseudonym systems

act as each other in all circumstances. Thus, in order to prevent pseudonym sharing, one

will always have to assume that users will not share all their secrets, either because they will

be prevented by some means, e.g. by the use of tamper-resistant hardware, or because they

will be given a sufficiently strong incentive not to do so. Examples of schemes that follow the

latter strategy include those of Lysyanskaya [138], where sharing credentials implies sharing

a highly valued key (this is called ‘PKI-assured non-transferability’), and Camenisch and

Lysyanskaya [37], where sharing one credential implies sharing all credentials (this is called

‘all-or-nothing non-transferability’).

9.2.4 Unlinkability of pseudonyms

We now define Game 4 in order to capture the first privacy property required of pseudonym

systems, i.e. the property of pseudonym unlinkability. A second (weaker) privacy property

is defined in section 9.2.6.

In the first phase of the Game 4, A is allowed to issue queries from the following set of six

query types, the first three of which are similar but not identical to the first three query

types of section 9.2.2.

runpeprot(o,∆): A arbitrarily selects an organisation o ∈ (I ∪ V ) and a probability distri-

bution ∆ over U and issues this query. When this happens, the Challenger selects a user u

according to ∆ from U and makes u and o execute peprotu,o,p. The challenger replies true

if the protocol execution is successful and false otherwise. (If the execution is successful, A
knows that o has established a new pseudonym p ∈ P with some user, but neither learns p

nor the identity of its owner.)

runciprot(p, i, t): A arbitrarily selects a pseudonym/issuer/credential type triple (p, i, t) ∈
P × I × Ti and issues this query. When this happens, the Challenger selects the owner of

p and makes him execute ciproti,p,t with i. He replies true if the protocol execution is

successful and false otherwise (including the case where p has no owner). Note that A
does not learn who the owner of p is.

runcsprot(p, v, t): A arbitrarily selects a pseudonym/verifier/credential type triple (p, v, t) ∈
P × V × T and issues this query. When this happens, the Challenger selects the owner of

p and makes him execute csprotv,p,t with v. He replies true if the protocol execution is

152



9.2 Security of pseudonym systems

successful and false otherwise (including the case where p has no owner). Note that A
does not learn who the owner of p is.

corruptUser(u): As in section 9.2.2.

corruptIssuer(i): As in section 9.2.2.

corruptVerifier(v): As in section 9.2.2.

We now describe the second phase of Game 4. We denote the set of pseudonyms that belong

to uncorrupted users by P ∗∗
def
= P ∗ −⋃

u∈Û Pu.

Game 4 (pseudonym unlinkability): A outputs two distinct pseudonyms p1, p2 ∈ P ∗∗. We

say that A wins the game if and only if f(p1) = f(p2).

A may apply a variety of strategies in his effort to correlate pseudonyms. We now consider

what is perhaps the most naive strategy and arrive at the following simple result.

Lemma 1 If, during all runpeprot(o,∆) queries in an instance of Game 4, ∆ is the uniform

distribution (i.e. users are selected uniformly at random), and two pseudonyms, p1, p2 say,

are chosen at random from P ∗∗, then the probability that f(p1) = f(p2) is 1/|U − Û |.

Proof Suppose f(p1) = u ∈ (U − Û). Then the probability that f(p2) = u is 1/|U − Û |,
since all users are allocated uniformly at random to pseudonyms. The result follows. ¤

Thus it is tempting to define a pseudonym system that offers unlinkability of pseudonyms

as a system where A cannot win Game 4 with probability greater than 1/|U − Û |+ ε(k) for

any negligible function ε. However, this is only a reasonable definition of unlinkability if the

following two conditions hold.

1. In all runpeprot(·,∆) queries, ∆ is the uniform distribution.

2. No credentials are shown during the first phase of the game, i.e. there are no instances

of runcsprot.

We now examine the situation when these conditions do not hold. Suppose only the first of

153



9.2 Security of pseudonym systems

the two conditions does not hold, i.e. that the distributions ∆1, ∆2, . . . , ∆|P∗| according to

which users are assigned to the pseudonyms p1, p2, . . . , p|P∗| ∈ P ∗, are arbitrary probability

distributions over U . We arrive at the following generalisation of Lemma 1.

Lemma 2 If, in the second phase of Game 4, two pseudonyms, pi and pj say, are chosen

from P ∗, then the probability that f(pi) = f(pj) is equal to

Ppi,pj =
∑

u∈U

P∆i(u)P∆j (u) (9.1)

where ∆i and ∆j are the probability distributions that were used in the queries in which pi

and pj were established, and P∆i(u) denotes the probability that user u was selected during

the runpeprot(·, ∆) query that resulted in the establishment of the pseudonym pi.

Proof For any given u ∈ U , the probability that f(pi) = u is, by definition, P∆i(u), and

the probability that f(pj) = u is P∆j (u). The result now follows. ¤

By Lemma 2, in A’s view, the probability that f(pi) = f(pj) is given by equation 9.1. The

number of distinct pseudonym pairs in the system is |P ∗| × (|P ∗| − 1), which is polynomial

in k. Therefore A can evaluate Ppi,pj for all such pairs. It is now tempting to define a

pseudonym system that offers unlinkability of pseudonyms as a system where A cannot win

Game 4 with probability greater than

max
pi,pj∈P∗

pi 6=pj

(Ppi,pj ) + ε(k)

for any negligible function ε. However, this still assumes that the second of the above two

conditions holds.

We now examine the situation when neither of the two conditions hold. In this case, any

instance of runcsprot potentially provides A with information about possible links between

pseudonyms, and hence potentially increases its probability of success in linking pseudonyms.

Thus, the definition of pseudonym unlinkability needs to take this additional information

into account.

Assuming a sound pseudonym system, there are two types of deduction that can be made.

154



9.2 Security of pseudonym systems

• Suppose a runcsprot invocation, say runcsprot(p, v, t) for some p, v and t, issued

at time τ , returns true. Then, as a result of the non-transferability of credentials, A
can deduce, with probability greater than 1− ε(k) for some negligible function ε, that

there exists some p′ ∈ ⋃
u∈U Pu,t(τ) such that f(p) = f(p′).

• Suppose a runcsprot invocation, say runcsprot(p, v, t) for some p, v and t, issued at

time τ , returns false. Then, as a result of the non-transferability of credentials, A
can deduce, with probability greater than 1− ε(k) for some negligible function ε, that

f(p) 6= f(p′) for all p′ ∈ ⋃
u∈U Pu,t(τ).

In any instance of Game 4, which in its first phase will involve a series of runcsprot queries,

A will be able to make a series of deductions about matchings of pseudonyms based on the

outcomes ({true,false}) of runcsprot queries, as above. Based on these observations, A
can refine the probability Pp1,p2 for each pair of distinct pseudonyms p1, p2 ∈ P ∗∗.

We now define P̄ to be the maximum of these probabilities, i.e.

P̄
def
= max

p1,p2∈P∗∗
p1 6=p2

(Pp1,p2).

We can now define the notion of pseudonym unlinkability.

Definition 5 A sound pseudonym system is said to offer pseudonym unlinkability if and

only if no A can win Game 4 with probability greater than P̄ + ε(k) for any negligible

function ε.

In Chen’s pseudonym system, unlinkability is guaranteed by that fact that (a) pseudonyms

appear like random numbers to organisations, (b) issuing a credential amounts to the issuer

generating a blind signature (see section 1.1.5.3) on one of the user’s pseudonyms, and (c)

the user can, based on such a signature, compute a valid signature on any of his other

pseudonyms in a way that does not reveal any connection to the pseudonym under which

the credential was issued.

Two examples of how the two types of deduction mentioned above might be applied to

compute P̄ are given in the next section.

155



9.2 Security of pseudonym systems

Example Scenarios

The following two example scenarios illustrate how the adversarial strategies are captured

by the probability bound P̄ .

For the sake of simplicity, in the first example there are: one issuer which issues only one

type of credential, one verifier, and two users. It is assumed that, during the first phase

of Game 4 (unlinkability), the adversary corrupts all parties except for the two users, i.e.

I = Î = {i}, V = V̂ = {v}, U = {u1, u2}, Û = ∅ and T ∗ = Ti = {t1}.

Table 9.1: Example scenario 1.

Time Query type Parameters Pseudonym Type Outcome
1 runpeprot i, {2/5, 3/5} p1 n/a true
2 runpeprot i, {4/7, 3/7} p2 n/a true
3 runpeprot v, {1/2, 1/2} p3 n/a true
4 runciprot i p2 t1 true

5 runcsprot v p3 t1 false

At time τ = 3 (i.e. between the third and the fourth query), A can calculate Ppi,pj

for all pseudonym pairs, based on the probability distributions in the runpeprot queries

and according to Equation 9.1. This yields the values Pp1,p2 = 17/35, Pp1,p3 = 1/2,

and Pp2,p3 = 1/2.

However, after the runcsprot query, A can deduce that f(p3) 6= f(p2), i.e. that Pp2,p3 = 0.

This means that, either f(p2) = u1 and f(p3) = u2, or vice versa, i.e. f(p2) = u2 and

f(p3) = u1.

A has to examine both cases: in the former, Pp1,p2 = 2/5 and Pp1,p3 = 3/5, and in the

latter Pp1,p2 = 3/5 and Pp1,p3 = 2/5. Since each of two cases are equally likely, A can deduce

that, overall, Pp1,p2 = 3/5×1/2+2/5×1/2 = 50% and Pp1,p3 = 2/5×1/2+3/5×1/2 = 50%.

Thus, if A outputs either (p1, p2) or (p1, p3) at the end of the game, it has a 50% winning

chance. If a (sound) pseudonym system offers pseudonym unlinkability, then no A should

be able to break this bound by a non-negligible quantity.

In the second example there are: one issuer which issues only one type of credential, one

verifier, and three users. It is assumed that, during the first phase of Game 4 (unlinkability),

156



9.2 Security of pseudonym systems

the adversary corrupts all parties except for the three users, i.e. I = Î = {i}, V = V̂ = {v},
U = {u1, u2, u3}, Û = ∅ and T ∗ = Ti = {t1}.

Table 9.2 depicts the queries that A issues in this example scenario.

Table 9.2: Example scenario 2.

Time Query type Parameters Pseudonym Type Outcome
1 runpeprot i, {1/3, 1/3, 1/3} p1 n/a true
2 runpeprot i, {1/3, 1/3, 1/3} p2 n/a true
3 runpeprot i, {1/3, 1/3, 1/3} p3 n/a true
4 runpeprot v, {1/3, 1/3, 1/3} p4 n/a true
5 runpeprot v, {1/3, 1/3, 1/3} p5 n/a true
6 runpeprot v, {1/3, 1/3, 1/3} p6 n/a true

7 runciprot i p1 t1 true
8 runciprot i p2 t1 true
9 runciprot i p3 t1 true

10 runcsprot v p4 t1 true
11 runcsprot v p5 t1 false
12 runcsprot v p6 t1 false

In this example, A selected the uniform distribution during the establishment of all pseudonyms

in queries 1–6. From the first runcsprot query, A can deduce that at least one of f(p4) =

f(p1), f(p4) = f(p2), and f(p4) = f(p3) must be true. From the second runcsprot query,

A can deduce that f(p5) 6= f(p1) and f(p5) 6= f(p2) and f(p5) 6= f(p3). From the third

runcsprot query, A can deduce that f(p6) 6= f(p1), f(p6) 6= f(p2), and f(p6) 6= f(p3).

Combining the three runcsprot queries, A can deduce, with certainty, that f(p4) 6= f(p5)

and that f(p4) 6= f(p6). It follows that p5 and p6 must belong to the set {u1, u2, u3} −
{f(p4)}. So, the probability Pp5,p6 that f(p5) = f(p6) is 1/2. This happens to be the

maximum over all distinct pseudonym pairs and thus, in the example, P̄ = 1/2. In other

words, if A, at the end of the game, outputs (p5, p6), he has a 50% chance of winning the

game. If a (sound) pseudonym system offers pseudonym unlinkability, then no A should be

able to break this bound by a non-negligible quantity.

157



9.2 Security of pseudonym systems

9.2.5 Discussion

In the real world, colluding organisations could come up with many strategies that can

be used in order to correlate pseudonyms potentially more effectively than those discussed

above. Examples include attacks that take into account information such as the time or the

geographical location of events that occur in the system. These attacks, however, are not

captured by the model, simply because they lie at a different level of abstraction. Protection

against, say, timing attacks, de-anonymising traffic analysis or social engineering, is required

irrespective of which particular pseudonym system is being used. The only adversarial

strategies to correlate pseudonyms that are inherent in the system, and therefore lie at the

same level of abstraction, are the following.

1. If some user is asked for, but fails to produce, a credential of a given type, the colluding

organisations know that none of the pseudonyms on which a credential of that type

was previously issued belongs to that user.

2. If some user successfully shows a credential of a given type on one of his pseudonyms,

the colluding organisations know that at least one of the pseudonyms on which a

credential of that type was previously issued belongs to that user.

These strategies are captured by the probability bound P̄ . A pseudonym system cannot

protect against these strategies without breaching one of its essential properties: that of

credential non-transferability. In other words, if a (sound) pseudonym system satisfies Def-

inition 5, this means then that the probability that pseudonyms can be successfully linked

does not exceed the given bound (by a non-negligible quantity), provided that no ‘out-of-

scope’ attacks place.

9.2.6 Indistinguishability of pseudonyms

We now establish our second privacy property, namely the notion of indistinguishability of

pseudonyms and show that it is a necessary condition for pseudonym unlinkability.

Consider the following game between a Challenger and a polynomial time (and space) ad-

versary A. First, the Challenger chooses sets of users U , issuers I, and verifiers V , a sound

158



9.2 Security of pseudonym systems

pseudonym system, and a security parameter k. On input U, I, V, k, he runs init and

gives the set U of users to A. A then chooses two users u0, u1 ∈ U and gives them to the

Challenger. The Challenger now chooses an unbiased random bit b ∈ {0, 1} and makes ub

execute peprotu,o,p with some organisation o ∈ (I∪V ). He then gives o’s private information

(including the protocol view and the resulting pseudonym p) to A.

Game 5 (pseudonym indistinguishability): A outputs a bit b′ ∈ {0, 1}. We say that A wins

the game if and only if b′ = b.

Definition 6 A pseudonym system is said to offer indistinguishability of pseudonyms if and

only if no adversary A can win the above game with probability Pr > 1/2 + ε(k), for any

negligible function ε.

We can now give our main result.

Theorem 1 If a sound pseudonym system offers pseudonym unlinkability then it also offers

pseudonym indistinguishability.

Proof Suppose the converse, i.e. suppose the pseudonym system offers pseudonym un-

linkability but does not offer pseudonym indistinguishability. Given Ai, an adversary

that breaks pseudonym indistinguishability, we construct Au, an adversary that breaks

pseudonym unlinkability, as follows. While playing Game 4 (unlinkability) with the Chal-

lenger, Au plays the role of the Challenger in Game 5 (indistinguishability) with Ai.

Choose a negligible function ε. Let µ(k) =
√

ε(k)/2, which, by definition, is also negligible.

In Game 4, Au corrupts all but two users, say u0 and u1, and one organisation, say o, i.e.

(U − Û) = {u0, u1} and Î ∪ V̂ = {o}. Then Au issues runpeprot(o, ∆) queries until three

pseudonyms, say p1, p2 and p3, are established between o and {u0, u1}. Au chooses ∆ to be

the uniform distribution over U in all these queries and does not issue any other queries.

Thus, both conditions listed in section 9.2.4 hold and, since |U − Û | = 2, Au is said to break

unlinkability if and only if it can win the game with probability greater than 1/2 + ε(k).

Au then plays three instances of Game 5 (indistinguishability) with Ai; in all these games

he defines the set of users to be U = {u0, u1} and the collection of organisations to be

I ∪ V = {o}. Au will use Ai’s ability to win instances of Game 5 in order to win, with non-

negligible advantage, the instance of Game 4. To this end, in the first instance of Game 5,

159



9.2 Security of pseudonym systems

he gives the pseudonym p1 together with o’s private information and corresponding peprot

view to Ai. Similarly, in the second and third instances he gives p2 and p3 respectively

(together with o’s private information and corresponding peprot views) to Ai. Denote

Ai’s output in the three instances of Game 5 by b1, b2 and b3 respectively. Now, since

we have assumed that Ai breaks pseudonym indistinguishability, we suppose that Ai wins

all instances of Game 5 with probability 1/2 + δ(k), where δ(k) > µ(k) for all sufficiently

large k.

Au then selects j, j′ ∈ {1, 2, 3}, j 6= j′, such that bj = bj′ , where the pair (j, j′) exists by the

pigeonhole principle, and outputs (pj , pj′). Now, since bj = bj′ and f(pj), f(pj′) ∈ {u0, u1},
we know that f(pj) = f(pj′) if either (f(pj) = ubj and f(pj′) = ubj ) or (f(pj) 6= ubj and

f(pj′) 6= ubj
). Hence:

Pr(f(pj) = f(pj′)) = Pr(f(pj) = ubj ) ·Pr(f(pj′) = ubj )

+ Pr(f(pj) 6= ubj ) ·Pr(f(pj′) 6= ubj )

= (1/2 + δ(k))2 + (1/2− δ(k))2

= 1/2 + 2δ(k)2

> 1/2 + 2µ(k)2 (for all sufficiently large k)

= 1/2 + ε(k)

where ε was assumed to be negligible. Thus Au breaks unlinkability, contradicting our

assumption, and the result follows. ¤

9.2.7 Anonymity of users

Consider a sound pseudonym system that offers pseudonym unlinkability. The owner u ∈
(U − Û) of pseudonym p (u = f(p)) is hidden in the anonymity set U − Û because, from A’s

point of view, any user in that set could potentially be the owner of p. The effective size of

the anonymity set, however, depends on the probability distribution ∆ according to which

users were selected during the establishment of p. Using the information-theoretic anonymity

metric and notation of [68, 184], this is given by

−
∑

u∈U−Û

P∆(u) log2 P∆(u)

160



9.3 Summary

where P∆(u) denotes the probability that u is selected under distribution ∆. As shown

in section 3.1 of [68], the value of the above expression is maximised if ∆ is the uniform

distribution, in which case the effective size of the anonymity set in which pseudonym p is

hidden is log2 |U−Û |. It is worth observing that it makes sense to consider the anonymity of a

user while acting using a particular pseudonym. In other words, two pseudonyms belonging

to the same user may (and, in practice, almost certainly will) offer different degrees of

anonymity for that user.

The above measure of anonymity only applies to a naive adversary; it only takes into ac-

count its a priori knowledge (i.e. the distributions ∆ that it selected during the issuing

of runpeprot queries). After observing the system for some time, in the sense of Game 4, A
may decrease the unlinkability between pseudonyms. This decrease in unlinkability yields,

for each pseudonym p, an a posteriori probability distribution ∆′ over the set of users. This

distribution effectively tells that A how likely it is for each user to be the owner of p. A is

able to calculate ∆′ using deductions that he can make from the scheme’s soundness. While

the distribution ∆′ defines the (effective) size of the anonymity set in which a pseudonym is

hidden, this does not necessarily mean that a reduction in unlinkability implies a reduction

in anonymity in the theoretical definition of the term. Of course, in practice, any linking

of pseudonyms is likely to lead to an increased risk of loss of anonymity because of ‘out of

scope’ attacks. As a result, unlinkability is a property of great importance in its own right.

9.3 Summary

In this chapter we have introduced a complexity theoretic model for anonymous credential

systems. We have formally defined the notions of pseudonym owner protection, credential

unforgeability, credential non-transferability, and pseudonym unlinkability. A key challenge

is thus to construct scheme(s) that meet the definitions in this model, and/or to prove, under

appropriate assumptions, the security of existing ones. There is, however, room to refine

and extend the model itself; determining the probability P̄ by which colluding organisations

should be bound when trying to correlate pseudonyms, given a specific history of events

in the system, is clearly of importance. Naive strategies for computing P̄ appear to be of

exponential complexity. Hence, deriving efficient strategies for computing, approximating

or bounding P̄ is desirable.

161



9.3 Summary

It is hoped that further study of the model described above will enable better techniques to

be devised for estimating the achievable degrees of unlinkability and anonymity, e.g. using

the information-theoretic metrics that were recently proposed in [68, 184, 191]. This should

provide further insight into the inherent limits of unlinkability and anonymity in credential

systems. We believe that this will also provide insight into what such systems have to

achieve in order not to be the weakest link in the context within which they will operate.

An extended version of the model could capture additional properties of pseudonym systems,

for example credentials that can be shown only a limited number of times, or a capability

for anonymity revocation.

Another direction for future research is the analysis of real-world user behaviour in the con-

text of pseudonym systems. This might lead to the description of strategies that users might

follow, in a realistic setting, in order to maximise the unlinkability of their pseudonyms.

Given the statistical properties of the context, this could also lead to descriptions of how

long any given pseudonym can be kept before it should be renewed (if the context allows

for this). Unfortunately, to the best of our knowledge and at the time of writing, there are

no public deployments of anonymous credential systems and, therefore, this research has to

wait.

162



Chapter 10

A peer-to-peer system that improves
privacy of electronic transactions

Contents
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

10.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

10.3 The scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

10.3.1 High level description . . . . . . . . . . . . . . . . . . . . . . . . 165

10.3.2 Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

10.3.3 Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

10.3.4 The protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

10.4 Security and privacy . . . . . . . . . . . . . . . . . . . . . . . . . 173

10.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

10.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

This chapter describes a peer-to-peer system that helps protect against the attacks described

in chapter 8. Moreover, the system provides real-time feedback to users of an anonymous

credential system about the level of anonymity that they enjoy.

10.1 Introduction

In chapters 8 and 9 it was pointed out that colluding organisations can always link transac-

tions that occur in a (sound) anonymous credential system by using the type of the credential

involved. Chapter 8 elaborated on this attack in the case where credentials had to be checked

for freshness. These attacks apply particularly to systems where credentials are relatively

short-lived. It was therefore established that the degree of unlinkability that anonymous

credential systems can provide is inherently limited, and depends on factors that may differ

significantly between individual transactions. As users typically neither have any control

163



10.2 Motivation

over, nor receive any feedback on, these factors, the real degree of unlinkability (and there-

fore privacy) they enjoy remains uncertain. In fact, in certain scenarios this uncertainty

may lead to a false sense of privacy, since it is possible that the user’s transactions are not

unlinkable at all.

In this chapter we address these problems. The next section provides a motivating example

and points out the problems in detail. Section 10.3 presents a peer-to-peer scheme that

addresses the problems. Section 10.4 discusses security and privacy issues and section 10.5

describes a prototype implementation and its performance. Finally, section 10.6 concludes

with directions for further research and development.

10.2 Motivation

Consider the following scenario. Alice is one of Igor’s customers. As part of a loyalty reward

scheme, she is entitled to a free cinema visit, and she obtains the relevant credential from

Igor’s website. Two hours later, Alice shows the credential to Victor who runs a cinema. In

this scenario, Igor is the issuer and Victor is the verifier. Using Victor’s website, she selects

the movie she would like to see, i.e. “Fahrenheit 9/11”, and prints her ticket10.1. Since the

credential system used is anonymous, Alice expects that her privacy will be protected, i.e.

that the system will prevent Igor from finding out which movie she went to see, and Victor

from learning which of Igor’s customers came to see “Fahrenheit 9/11”.

Unfortunately, and as pointed out in chapters 8 and 9, even if the underlying cryptosystem

flawlessly offers unlinkability, it may still be possible for Victor and Igor to link Alice’s acts

of credential issuing and showing, using timing information. The attacks we consider are

made possible if one of the following conditions hold.

• It is known that most users show the ‘cinema ticket’ credential after some constant

‘waiting’ time (e.g. two hours). In this case Igor and Victor may conclude that the

above issuing and showing acts correspond, with high probability, to the same user.

• Alice is the first and only person who obtains this ticket credential from Igor up to

the time it is shown to Victor. In this case Igor and Victor reach the above conclusion
10.1The ticket contains a verification code that will allow the cinema staff to authenticate it as genuine.

164



10.3 The scheme

with certainty.

Alice has no way of knowing how many others, if any, have obtained a similar credential

from Igor. Without such feedback it remains unclear to Alice how unlinkable this particular

pair of her transactions (issuing and showing) really is. The next section proposes a scheme

that attempts to provide this type of feedback while offering resistance to the above timing

attacks.

10.3 The scheme

This section presents the proposed scheme. A high level description is given first, in order

to provide intuition for the protocol descriptions that follow.

10.3.1 High level description

The idea underlying our approach is based on the observation that users have to rely on

each other in order for their interactions to remain unlinkable and, as a result, for their

anonymity to be protected. In order to decrease the exposure to timing attacks we describe

a scheme for the electronic world that attempts to model the following behaviour.

Users who intend to obtain a credential of some type first form a group; they ‘meet’ each

other and wait. Only when there are enough users present, do they go ahead and obtain the

credential. As long as this is done in a sufficiently synchronised manner, exposure to the

timing attacks mentioned in the previous section is significantly mitigated. This is because:

• any given user knows that he is not the only one who wishes to obtain a credential

of the specified type; moreover he has an estimate for the number of other users that

wish to do so, and

• in scenarios with a constant waiting time between issuing and showing, the fact that

all group members obtain the credential at approximately the same time means that

they will also show it at approximately the same time (at least for the first time),

thereby maintaining unlinkability.

165



10.3 The scheme

It would be undesirable for users to rely on a third party to help them form groups, because

this contradicts the threat model of anonymous credential systems (where it is assumed

that any external organisations may collude against the user). Instead, users need to be

able to form groups in an ad hoc manner. This service appears to be a natural peer-to-peer

application, and our scheme follows this paradigm.

10.3.2 Roles

Three different roles must be supported in order for the scheme to work. The first role,

namely that of a discovery server (DS), is not specific to a particular credential type; the DS

role-holder provides a general supporting function for users of the scheme. The second role,

that of group manager (GM), is specific to a credential type, and supports the formation of

a group of users all wishing to gain a credential of this type. The third role is that of a group

member (PM), wishing to obtain a credential in a way that provides additional anonymity

protection.

10.3.2.1 Discovery Servers

As in any peer-to-peer scheme, users need a way of finding each other. For this reason, those

who are willing to donate some of their spare bandwidth and computational power may run

a DS, in a role similar to that present in many existing peer-to-peer systems. How the list

of currently active DSs is communicated to users is outside the scope of the scheme, but

this could be achieved using websites, dynamic updates, peer-to-peer messaging, or by some

other means.

A user who wants to obtain a credential as part of a group, first needs to join such a group.

If he does not know the address of any suitable GM (see below), he first has to ask a DS.

To achieve this, he issues a ‘discovery request’ to the DS that contains descriptions of the

credential type he wishes to obtain, the minimum and maximum acceptable size of the

group he wishes to be part of, and applicable policy statements (see section 10.3.3). The DS

searches its list of registered GMs and responds with the addresses of those that satisfy the

given requirements. If no suitable GM is found, the user may either try a different DS, or

establish his own GM service for the required credential type.

166



10.3 The scheme

10.3.2.2 Group Managers

The GM service is also provided by a user willing to donate some of his spare resources. The

lifetime of a GM, however, is expected to be much less than that of a DS because it typically

ends when the group members obtain the credential of the required type. A GM is respon-

sible for managing the assembly of a group of users all wishing to obtain a credential of a

specified type. In particular, the GM’s duties include (1) registering at one or more DSs,

(2) admitting new users to the group, (3) providing feedback to existing members about

users joining and leaving, (4) responding to explicit update requests from members, (5) in-

forming members when the group is full and ready to obtain the credential in a maximally

synchronised manner, and (6) deregistering from DSs (which should take place as soon as

the function of the GM is complete).

The GM of our scheme additionally acts as an anonymising proxy through which all group

members obtain their credentials (i.e. the scheme provides an anonymous user-to-issuer

channel). Issuers only see the GM’s network address. As a result, even if verifiers see

a PM’s real network address, unlinkability is not compromised through communications

with the GM.

10.3.2.3 Group members

Any user who wishes to obtain a credential using this scheme, and who does not wish to

act as a GM for this credential type, must become a PM by joining an appropriate group.

The PM joins a group by sending a ‘join request’ to a suitable GM. The GM then informs

the PM how many other PMs are currently in the group and, during the subsequent lifetime

of the group, notifies the PM when other PMs join or leave the group. Finally the GM

notifies the PM when it is time to obtain the credential. Once this latter stage is reached,

the PM should then obtain the credential from the issuer, using the GM as a proxy. PMs

do not have to blindly trust the GM. They may, for example, ping each other periodically

in order to establish liveness and trust in the GM.

167



10.3 The scheme

10.3.3 Policies

As part of the above scheme, GMs and PMs follow and enforce policies. GMs report their

policies to DSs during registration and include them in their responses to join requests.

A GM’s policy not only includes the size of the group it serves, but also may include

restrictions that are required to hold for the group as a whole. For example, a GM that

wishes to establish a group of 15 PMs before helping them to obtain credentials may require

that the PMs in the group belong to at least five different administrative domains and three

different jurisdictions. In general, a GM will refuse to admit new PMs if their presence in

the group may prevent the GM’s policy being satisfied.

PMs may similarly place restrictions on the groups they join. These PM policy statements

are sent to the DS as part of a discovery request, and the DS may choose to only report back

to the PM those GMs that are consistent with the expressed policy. The PM will also check

the policy reported by the GM during the joining process against its own policy. The PM

can also check the group composition against its policy statements on an ongoing basis, as

the group forms. If a PM realises that its policy, at any point, is no longer satisfiable, then

it may withdraw from the group.

Fur the purposes of the scheme, the policy for each of the communicating entities is assumed

to be a collection of statements expressed using some generally agreed syntax. A policy field

is included in certain of the messages of the scheme. However, it is neither necessary nor

desirable to send the whole collection of policy statements belonging to an entity in every

protocol; instead, a subset (or ‘view’) of the set of policy statements is selected according

to the circumstances and purpose of the protocol.

10.3.4 The protocols

There are nine protocols in our scheme: Echo, Register, Discover, Join, Leave, SingleUpdate,

Update, Deregister, and Run. These are now described.

168



10.3 The scheme

10.3.4.1 Echo

This protocol is executed between a pair of peers. Its purpose is to allow the initiator to

establish the liveness of the responder and to estimate the latency between them. It operates

as follows.

Initiator−→Responder: Echo Request

Responder−→Initiator: Echo Reply

The echo request message contains the initiator’s timestamp, indicating the time at which

the message was sent. The responder echoes the timestamp back to the initiator in the echo

reply message. The initiator then estimates the latency based on the difference in time

between receipt of the message and the timestamp. The protocol is repeatedly executed

at regular time intervals, defined by the initiator’s policy and preferences. The allowed

(initiator, responder) role pairs for this protocol are as follows.

• (PM, PM): A PM may run the protocol with another PM in order to establish that

the latter exists. Successful completion of the protocol may serve as evidence that

the GM is not misbehaving (by reporting non-existent PMs).

• (GM, PM): A GM should run the protocol with all PMs in its group in order to

detect disconnected or failed network nodes. If no response to an Echo Request is

received within a specific timeout period, the PM is removed from the group, and the

remaining PMs are notified using the SingleUpdate protocol (see below). The GM

also records and keeps a running average of the latency for each PM.

• (PM, GM): As GMs may also unexpectedly disconnect from the network, PMs are

required to run this protocol with the GM. If no response is received within a specified

timeout period, the PM assumes that the group no longer exists and may try to join

another such group.

• (DS, GM): A GM registers at one or more DSs at the beginning of its lifetime, but

may fail to deregister once it has completed its task. A DS executes this protocol in

order to detect and remove ‘dead’ GMs from its lists.

• (GM, DS): A GM may execute this protocol in order to detect failed DSs.

169



10.3 The scheme

10.3.4.2 Register

This protocol is executed between a GM and a DS. Its purpose is to enable the GM to

register with the DS (so that it can ‘be discovered’ subsequently) and operates as follows.

GM−→DS: RPolicy

DS−→GM: Success or Failure

The GM sends (an appropriate view of) its policy to the DS. Under normal circumstances,

the DS adds the GM to its list of active GMs and responds with a success message.

However, if, for whatever reason, the DS is unwilling to do so (e.g. the GM is known to be

a misbehaving node), then it responds with a failure message. In this case the GM may

wish to register with another DS.

10.3.4.3 Discover

This protocol is executed between a PM and a DS. Its purpose is to enable the PM to

obtain the network addresses of GMs that have been set up to establish credentials of the

desired type, and that satisfy the PM’s policy. It operates as follows.

PM−→DS: DPolicy

DS−→PM: GMList

The PM sends a discovery request message to the DS, specifying (an appropriate view of)

its policy and the credential type it wishes to obtain. The DS responds with a list of GMs

that satisfy the PM’s requirements. If the DS cannot find a suitable GM the list is empty.

10.3.4.4 Join

This protocol is executed between a PM and a GM. Its purpose to enable for the PM to

join the group established by the GM. It operates as follows.

170



10.3 The scheme

PM−→DS: JPolicy

DS−→PM: (GPolicy || GList) or Failure

First, the PM sends (an appropriate view of) its policy to the GM. If the group is not

full, and if the policies match, the GM admits the PM to the group by responding with the

(appropriate view) of its own policy and the list of PMs that are already part of the group.

If, for any reason, the GM decides not to admit the PM, it responds with a suitable error

message. In this case the PM may wish to join another group.

After a sufficient number of PMs has joined the group, the GM runs the Deregister protocol

with all DSs it was registered with, and the Run protocol with all the PMs in its group (see

below).

10.3.4.5 Leave

This protocol is executed between a PM and a GM. It allows the PM to announce that it

wishes to leave the group. It operates as follows.

PM−→GM: Leave

After receiving a leave message from a PM, the GM removes it from the group membership

list and notifies the remaining PMs of the change using the SingleUpdate protocol (see

below).

10.3.4.6 SingleUpdate

This protocol is run between a GM and all the PMs currently in the group. The purpose of

the protocol is to let the PMs know when a PM joins or leaves the group.

GM−→PM: SingleUpdate

The message contains the PM address and the action (joining or leaving) taken by the PM

in question.

171



10.3 The scheme

10.3.4.7 Update

This protocol is periodically executed between a PM and its GM. It allows the PM to

explicitly request the current member list of the group, and operates as follows.

PM−→GM: Update Request

GM−→PM: Update Reply

The update reply message contains the full list of all PMs currently in the group. The

protocol is necessary to re-synchronise PMs that have missed SingleUpdate messages. The

protocol also allows each PM to check that it has not been evicted from the group (for

example, because of a lost echo reply message).

10.3.4.8 Deregister

This protocol is executed between a GM and a DS. Its purpose is to allow the GM to

announce to the DS that it is no longer acting as a group manager and operates as follows.

GM−→DS: Degerister

The deregister message contains a description of the reasons for deregistration, typically

that the GM has successfully completed the credential establishment process for its group

members. The DS removes the GM from its list.

10.3.4.9 Run

This protocol is run between a GM and a PM. Its purpose is to allow the GM to announce

that the group is now full and that the group members should now each obtain a credential.

It operates as follows.

GM−→PM: Run

PM−→GM: Acknowledgement

172



10.4 Security and privacy

The GM must send the run message to all the PMs in the group in a maximally synchronised

manner. The acknowledgement message serves as a final confirmation that the PM is willing

to obtain the credential. After the receipt of this acknowledgement, the GM connects to the

issuer and acts as a proxy for the PM for the remainder of the communication.

Comment: Ideally, the SingleUpdate and Run protocols should be implemented via a

broadcast technique that allows the GM to send the message to all its PMs simultaneously.

In a routed network (such as the Internet), however, this it not possible and could be replaced

by multicast or dedicated unicast messages for each PM. In this case, the GM should take

into account the individual network latencies that were recorded by the Echo protocol, in

order to maximise the synchrony with which the PMs act.

10.4 Security and privacy

Given that this is a service that is offered at the network level, the scheme does not depend

on the underlying anonymous credential system. Therefore the above scheme does not affect

the security of the underlying credential system (in terms of credential unforgeability and

similar security notions — see Chapter 9). In the ideal case, where all users interested in

a credential of a given type form a single group, and then obtain the credential together in

a perfectly synchronised manner, the degree of unlinkability [191] of the transactions of a

single user is maximised in the face of the timing attacks mentioned in section 10.2. Further,

users learn the size of the group, and can therefore estimate this degree of unlinkability.

Unfortunately, unlinkability may be compromised in the presence of an adversary that col-

ludes with organisations. An omnipresent adversary, for example, that controls all network

communications, can impersonate DSs, GMs and PMs; it can therefore easily mislead a user

into believing that he is part of a group of any particular size while, in fact, he may be

alone. While this does not necessarily mean complete loss of unlinkability (other legitimate

users may still obtain a credential of the same type from the issuer), the scheme — like all

anonymity schemes — collapses in the presence of such an extremely powerful adversary.

Of course, such a powerful adversary may be very difficult to implement in practice.

A possibly more realistic adversary could compromise or introduce its own DSs, GMs

and PMs. This attack is equivalent to the ‘Sybil’ attack that is always possible in de-

173



10.4 Security and privacy

centralised peer-to-peer networks where there is no reliable method of establishing node

identities [71]. Indeed, it is arguable that protecting against Sybil attacks requires a level of

linkability for network nodes, so that, where necessary, two ‘identities’ of the same entity can

be linked. An adversarial DS can gather the network addresses of users that express interest

in obtaining a credential of a particular type. This information, however, would in any case

be disclosed to issuers directly if the scheme was not in use. An adversarial GM is more

serious as it learns the network addresses of all PMs in the group. Further, it can report the

presence of nonexistent PMs or initiate the credential issuing procedure prematurely. Such

behaviour, however, can be detected by PMs because they may ping each other directly and,

if not satisfied, may leave the group. An adversarial PM also learns the network addresses

of other PMs in the group. Additionally, it reduces the group’s effective size by one and

therefore gives the other PMs a false sense of privacy. The careful management and use

of policies mitigate the exposure to this risk. A policy, for example, that requires group

members to originate from at least x different network locations implies that the adversary

must be present at x−1 locations in order to fully compromise the anonymity of victim PM,

assuming that network locations cannot be spoofed.

There are several ways for a user to reduce its exposure to potentially adversarial DSs

and GMs. Firstly, DS lists should be updated frequently, and each query should ideally be

sent to a different subset of DSs. This will decrease the probability of repeatedly choosing

adversarial DSs. Secondly, users can maintain a list of the GMs that were returned by

different DSs. If a DS reports the same GM(s) in different time periods, then this may be an

indication that both are adversarial and can thus be blocked. Thirdly, a reputation scheme

could be used in order to block untrustworthy peers.

Finally, the adversary could perform traffic analysis in order to find out the network addresses

of PMs. In this respect our scheme is similar to the MorphMix anonymous peer-to-peer

communication scheme [178]; the dynamically changing topology and short lifetime of groups

requires an almost omnipresent adversary in order to carry out this attack effectively over

a long period of time.

In any case, if an adversary that colludes with organisations and learns the network addresses

of PMs is a concern, it is advisable that users show their credentials to organisations using

some other anonymous channel. In any event, use of such a channel during credential

showing is highly recommended in the case of multiple-show credentials, in order to avoid

174



10.5 Implementation

the possible linking of different showing events (rather than linking the issuing and showing

acts).

10.5 Implementation

This section describes our prototype implementation of the scheme, which was written in

Java 1.4.2. It has been successfully tested under Windows, Red Hat Linux and Knoppix.

Each peer role is implemented as a service that runs over customisable TCP ports. All

protocols were implemented over TCP (rather than UDP) in order to avoid the complexity

of dealing with lost or out-of-order datagrams. A dummy credential issuer was implemented

in order to test the proxy functionality and measure the arrival times of credential issuing

requests. The source code of the implementation can be found in Appendix B. Due to

the limitations of our test environment (both technical and geographical), the use of group

restrictions in policies, such as specifying a minimum number of represented subnets or

jurisdictions, were not implemented.

In order to give an indication of performance, an experiment was conducted. It involved

forming a group of nine PMs, all of which then obtained a credential from an issuer. The PMs

were managed by one GM which was registered at a single DS. Four machines were used in

the experiment. Their respective configurations and connection types were as follows.

1. Pentium III 500 Mhz, Windows 2000, DS, Dummy Issuer, 3 PMs, 10Mbp/s (ethernet).

2. Pentium III, 1.2 GHz, Windows 2000, GM, 2 PMs, 52Kbps (modem).

3. Pentium IV, 2.4 GHz, Knoppix, 2 PMs, 10Mbps (ethernet).

4. Pentium IV, 2.4 GHz, Knoppix, 2 PMs, 10Mbps (ethernet).

Note that, in order to artificially cause non-trivial network delays, the GM was running

on machine 2, i.e. the machine with the slow modem connection. Also, machines (3) and

(4) were located on a different subnet to machine (1). Figure 10.1 shows the time it took

for the views of PMs to converge as new PMs joined the group. In particular, the time

represents the number of milliseconds between the instant the GM received the join request

of a new PM until the last existing PM received notification of this event. Observe that this

175



10.5 Implementation

Figure 10.1: Convergence delay for a group of nine peers

Figure 10.2: Arrival time of issuing requests for a group of nine peers

delay is determined by the PM which has the slowest connection to the GM; most PMs will

have updated their views faster than that.

Figure 10.2 depicts the degree of synchronisation achieved. In particular, the vertical axis

shows the number of milliseconds between the arrival of credential issuing requests at the

issuer; all nine issuing requests arrived within less than 1.4 seconds. Given the amount of

time it currently takes to actually issue an anonymous credential (which is typically in the

order of several seconds [38]), this level of synchronisation is likely to be adequate.

Finally, Figure 10.3 depicts the user interface of a GM. It consists of a simple, user friendly

progress bar which shows dynamically the number of users in the group. Below that we see

the list of (the network addresses of) the DSs the GM is currently registered with, along

with their respective latencies as recorded by the echo protocol. The first number counts

the number of pings exchanged, the second is the latest latency, while the third represents a

moving average. Further below we see the list of (the network addresses of) the current PMs,

again with their respective latencies. The interface for a PM consists of a similar progress

bar and, optionally, the list of current PMs in the group.

176



10.6 Summary

Figure 10.3: Screenshot of Group Manager

10.6 Summary

This chapter introduced a new peer-to-peer application that improves user privacy properties

of anonymous credential systems. Peer-to-peer based privacy enhancing technologies that

have been proposed and developed in the past, such as that described in [178], focus on hiding

the user’s real network address from servers; the main focus of our scheme, by contrast, is

the synchronisation of events in an anonymous credential system in order to protect against

timing attacks that would compromise the unlinkability of those events. Moreover, the

scheme provides feedback to users that enables them to quantify the obtained degree of

unlinkability. We also presented a prototype implementation of the scheme and described

its efficiency.

Several research and implementation issues remain open. It would be interesting to investi-

gate the feasibility of integrating our scheme with an implementation of a ‘real’ anonymous

credential system, for example the idemix anonymous credential system [40]. Such an in-

tegration would unify user interfaces and enable testing in a more realistic environment.

Integrating our scheme with a general peer-to-peer anonymous communication system, such

as [178], is another possibility. Such an integration, however, only makes sense if a real

anonymous credential system is already running underneath.

Refining the protocol implementation could improve the efficiency considerably. In partic-

ular, using UDP rather than TCP for certain messages would avoid the TCP connection

setup/teardown overheads that the current implementation has to bear. However, this will

introduce more complexity, as the application will then need to perform end-to-end transport

177



10.6 Summary

management. It may also be worth investigating the possibility of coupling our scheme with

a suitable reputation scheme, in order to detect and block malicious peers more efficiently.

Finally, it remains to conduct a rigorous analysis of the unlinkability offered by anonymous

credential systems in general, and in particular when used in conjunction with our scheme.

178



Chapter 11

Introduction to privacy-aware single
sign-on

Contents
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

11.2 Privacy-awareness in different architectures . . . . . . . . . . . 180

11.2.1 Local pseudo-SSO . . . . . . . . . . . . . . . . . . . . . . . . . . 180

11.2.2 Local true SSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

11.2.3 Proxy-based pseudo-SSO . . . . . . . . . . . . . . . . . . . . . . 182

11.2.4 Proxy-based true SSO . . . . . . . . . . . . . . . . . . . . . . . . 182

11.3 Privacy-awareness in existing schemes . . . . . . . . . . . . . . . 183

11.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

This chapter introduces the notion of a privacy-aware SSO system. It also examines different

possible architectures for such schemes, and considers both their feasibility and the extent to

which ‘privacy-awareness’ can be achieved.

11.1 Introduction

In the context of SSO it is sometimes desirable, from a privacy perspective, to prevent

different SPs from linking different identifiers that belong to the same user. This requirement

should be met even if SPs cooperate and actively try to correlate the identifiers. An SSO

scheme that meets this requirement, i.e. that prevents such correlations taking place, is said

to be ‘privacy-aware’. It is worth noting that, if an SSO scheme is proxy-based, we call

it privacy-aware only if it prevents this identifier linking even if SPs cooperate with the

operator of the proxy. In other words, SPs are not only allowed to cooperate with each

other, but also with the proxy, if one is present.

179



11.2 Privacy-awareness in different architectures

Of course, there may be ways in which cooperating SPs/proxy operators may link user

identifiers, even if the SSO scheme in use is privacy-aware. Traffic analysis, linking of user

attributes, and the analysis of his behaviour or location are examples of strategies that

may be employed by cooperating SPs and proxy operators when attempting to correlate

identifiers. These types of attack, however, occur at a level of abstraction that is different

from that at which the SSO scheme operates. They therefore lie outside the scope of the

system. If one wishes to protect against them, other mechanisms should be used in parallel

with the SSO scheme. If, for example, traffic analysis would enable SPs to link different

identifiers, a mechanism that provides an anonymous user-to-SP channel should be used

in conjunction with the scheme. A privacy-aware SSO scheme could be augmented with

functionality that protects against these types of attack. As mentioned in section 2.1.4,

such an augmented system could then be considered to be an Identity Management system.

In this chapter, we examine each of the four types of SSO system architecture that were

introduced in chapter 3 with respect to the feasibility and extent to which privacy-awareness

can be achieved. We also revisit two concrete and well-known SSO schemes with respect to

privacy-awareness.

11.2 Privacy-awareness in different architectures

This section examines the four types of SSO scheme, namely local pseudo-SSO, local true SSO,

proxy-based pseudo-SSO and proxy-based true SSO, with respect to the feasibility and ex-

tent to which privacy-awareness can be achieved.

11.2.1 Local pseudo-SSO

Recall that in a local pseudo-SSO scheme the AS is running on the user machine. After

authenticating the user locally, it automatically executes SP-specific user authentication

mechanisms on the user’s behalf. As mentioned in section 3.4.1, under pseudo-SSO it is

the SPs that determine the format and sometimes the content of the user identifier. Co-

operating SPs may thus force the user to use an identifier that is unambiguously linked to

his real identity (e.g. his national insurance or his credit card number) and can, in this way,

trivially link his transactions.

180



11.2 Privacy-awareness in different architectures

Many SPs specify the format but not the content of the user identifiers. They might, for

example, expect users to choose their own usernames or require them to log in using an

e-mail address. In these cases, a user who is interested in keeping his identifiers unlinkable

should choose them in a way that obscures any conceivable correspondence. Unfortunately,

in practice, users cannot be relied upon to generate such identifiers. A local pseudo-SSO

scheme could be augmented to choose such identifiers on behalf of the user at registration

time, and implement rules ensuring that no obvious correspondence exists between any

two identifiers. The effectiveness, however, of this measure depends on the format that

different SPs impose on user identifiers. Thus the extent to which a pseudo-SSO scheme can

be privacy-aware depends on issues outside the scope of the scheme itself.

11.2.2 Local true SSO

In a local true SSO scheme, the AS again runs on the user machine, but here all SPs follow

the same protocols for the purposes of user identification. This means that the identifiers

have a uniform format throughout the system. A local true SSO scheme can therefore be

privacy-aware, if properly constructed. The scheme described in section 6.3.2 is an example

of a privacy-aware local true SSO scheme. (The privacy awareness of that scheme was

analysed in section 6.4.2.)

Unfortunately, if a local true SSO scheme is not privacy-aware by design, it is not straight-

forward to modify it to ensure that it does possess this property. In order to see this,

consider the following example of a PKI-based local true SSO scheme. Each user has a key

pair for a signature scheme, the public part of which is certified by a system-wide CA and

the private part of which is kept in a smartcard. In order to log into an SP, a challenge

message sent by the SP to the user, e.g. a random number, must be signed using the user’s

private key. The signature is sent, along with the user’s public key certificate, to the SP who

checks them for correctness. For the signature to be generated, the user’s smartcard has

to be present. Thus, this simple scheme provides user authentication by means of proof of

possession of the smartcard. The scheme described in chapter 5 is based on this idea. It is

not privacy-aware since the same public key is sent to all SPs. (The user identifier, another

field in the public key certificate, is also unique throughout the system.) Moreover, the CA

knows the identifiers of all users in the system. Making this scheme privacy-aware would

involve the generation of unlinkable user identifiers, preventing the CA from learning these

181



11.2 Privacy-awareness in different architectures

identifiers while, at the same time, providing assurance to SPs that users are in possession

of genuine cards.

It seems that one has to resort to fundamentally different cryptographic primitives, such

as those on which anonymous credential systems are based, in order to achieve privacy-

awareness. Of course, this remark applies to all (local and proxy-based) true SSO schemes

that are not themselves based on such primitives.

11.2.3 Proxy-based pseudo-SSO

In a proxy-based pseudo-SSO scheme, the proxy executes SP-specific authentication methods

on the user’s behalf. This means that, by necessity, the proxy has access to all the user’s

identifiers. Therefore, privacy-awareness cannot be achieved. Typically, however, it is not

an issue if the proxy knows the user’s identifiers, as it is trusted to perform authentication

on his behalf, a task that is usually perceived as more sensitive. In this scenario it is still

desirable, from a privacy perspective, to prevent SPs from linking different identifiers, albeit

without being allowed to cooperate with the proxy. A notable advantage of the proxy-

based pseudo-SSO architecture in this respect is that the proxy can provide an anonymous

user-to-SP channel as an additional service, thereby protecting against traffic analysis and

similar attacks that would enable the SPs to link identifiers whose correspondence would be

otherwise obscured. The scheme described in chapter 7 implements precisely these services.

Had the scheme been a local one, such a service would have to be provided by an additional

entity.

11.2.4 Proxy-based true SSO

A proxy-based true SSO scheme can be designed to be privacy-aware, since all SPs are

required to follow the same protocols. In such a scheme, a user would use an identifier (i.e. a

pseudonym) p0 with the AS (which runs on the proxy), and separate identifiers p1, p2, . . . , pn

with the n SPs in the system that they have a relationship with. All n + 1 identifiers would

need to be unlinkable to one another as well as to the identity of the user. The user would

authenticate himself to the proxy under p0 and, if successful, obtain an ‘authentication

assertion’ from the AS. He would use this assertion in order to log into one of the n− 1 SPs

using the appropriate identifier.

182



11.3 Privacy-awareness in existing schemes

Intuitively, the authentication assertion should not contain the user’s identifier p0, but the

user should, at the same time, only be able to use it with one of his own identifiers, i.e.

p1, p2, . . . , pn. More precisely, the assertion may ‘contain’ p0 as long as it is not revealed

to SPs during the login process. It is also clear that new identifiers have to be established

in the system in a uniform way that ensures that (a) they are unlinkable even if SPs and

the proxy cooperate, and (b) no user can log into SPs under pseudonyms that were not

established by himself. As shown in the previous chapters, anonymous credential systems

provide such services. In the following chapter we examine ways to construct proxy-based

true SSO schemes using such systems.

It is worth noting here that, unfortunately, the proxy of a privacy-aware SSO scheme cannot

be used to provide an anonymous user-to-SP channel. This is because by doing so (and

by cooperating with the SPs) it could trivially correlate the user’s identifiers using traffic

analysis, thereby defeating the very goal of privacy-awareness.

11.3 Privacy-awareness in existing schemes

In this section we revisit two well-known proxy-based true SSO schemes, namely Microsoft

Passport and the Liberty Alliance, and briefly examine them with respect to privacy-

awareness.

Microsoft Passport: As mentioned in section 3.5.3, Microsoft Passport users are identified

throughout the system using a unique 64-bit number, chosen by the proxy (i.e. Microsoft).

Therefore, any subset of SPs can cooperate in order to combine their respective information

about any given user, even without help from Microsoft.

Liberty Alliance: As mentioned in section 3.5.2, the Liberty Alliance specification re-

quires the proxy to choose a different identifier for each user/SP pair. This means that

different SPs know a given user under different identifiers. However, when the user obtains

an authentication assertion from the proxy, he has to state SPs he wishes to use it with, so

that the correct identifier is encoded into the assertion. As a result, if the proxy collaborates

with the SPs, user pseudonyms can be linked. Hence, an SSO scheme that conforms to the

specifications is not privacy aware. Under the assumption, however, that the proxy is honest

and does not cooperate with SPs, the user’s identifiers appear unlinkable to any subset of

183



11.4 Summary

cooperating SPs. If, of course, the proxy is malicious, it can easily encode information into

a user’s identifiers that would enable anyone to link them.

In order for the Microsoft Passport or the Liberty Alliance schemes to become privacy-aware,

a major redesign would be needed. Their operation would then require the installation of

special software on the user’s machine to support the required protocols, data structures

and privacy-preserving cryptographic primitives. However, one of the design goals for these

schemes was that they should work with already deployed web browsers while explicitly

avoiding the need for a user to install additional software [167]. It is therefore perhaps fair

to note at this point that both schemes essentially achieved this goal, something that would

have been impossible if they were designed to be privacy-aware in the first place.

11.4 Summary

This chapter introduced the notion of privacy-awareness for an SSO scheme. A scheme that

is privacy-aware prevents SPs in the system from linking the identifiers of a given user.

A proxy-based scheme is also required to protect against collaboration between SPs and

the proxy. To the best of the author’s knowledge, no existing real-world SSO scheme is

privacy-aware in this sense.

It was shown that local pseudo-SSO schemes can only hide the correspondence between

a user’s identifiers to the degree that the SP-imposed format of these identifiers allows.

While proxy-based pseudo-SSO schemes cannot, by definition, achieve privacy-awareness,

true SSO schemes, both local and proxy-based, can, as long as they are properly designed

and constructed. Finally, it was shown why Microsoft Passport and the Liberty Alliance, two

well-known proxy-based true SSO schemes, fail to possess the privacy-awareness property.

184



Chapter 12

Constructing privacy-aware single sign-
on systems

Contents
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

12.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

12.3 Privacy-aware proxy-based true SSO systems . . . . . . . . . . 187

12.3.1 A general privacy-aware SSO scheme . . . . . . . . . . . . . . . . 189

12.3.2 A simplified privacy-aware SSO scheme . . . . . . . . . . . . . . 190

12.4 Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

12.4.1 Trust issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

12.4.2 Security versus usability . . . . . . . . . . . . . . . . . . . . . . . 192

12.4.3 Privacy versus security . . . . . . . . . . . . . . . . . . . . . . . . 193

12.4.4 Usability versus privacy . . . . . . . . . . . . . . . . . . . . . . . 196

12.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

This chapter shows how to combine proxy-based true SSO with anonymous credentials in

order to achieve privacy-aware user authentication in an open environment. Issues that

arise are also discussed.

12.1 Introduction

To the best of the author’s knowledge, virtually all existing real-world true SSO schemes, in-

cluding those described in part I of this thesis (except the scheme described in section 6.3.2),

do not prevent the operator of the proxy from working out the user’s identifiers at the SPs of

the system. In these systems, the user either has a single system-wide identifier, as is the case

with a traditional PKI (see section 1.1.5), Kerberos (see section 3.5.1), and Microsoft Pass-

port [144] (see section 3.5.3), or, if different SPs know the user under different identifiers, the

proxy knows these identifiers. (For example, the Liberty Alliance specifications require the

185



12.2 Motivation

proxy to generate SP-specific identifiers for the user — see section 3.5.2). From a privacy

perspective, this situation is undesirable. Further, in existing proxy-based SSO schemes,

the proxy can trivially impersonate users to all the SPs in the system. This situation is

undesirable from a trust management perspective.

In this chapter, we describe the operation of a proxy-based true SSO scheme without these

deficiencies, along with issues that arise in this particular setting. By contrast with the

scheme described in section 6.3.2, the scheme described here does not require tamper-

resistant hardware. In line with the definition given in Chapter 11, we call this SSO scheme

‘privacy-aware’, meaning that it hides the identifer-to-user mapping from the SPs in the sys-

tem. In other words, the mapping between users and identifiers is not revealed to the SPs,

even if they collaborate (and, in the case of proxy-base schemes, even if the SPs collaborate

with the operator of the proxy).

12.2 Motivation

The previous chapter discussed the feasibility and extent to which privacy-awareness can be

achieved in any of the four types of SSO scheme that were identified in chapter 3. It was

shown that, while proxy-based pseudo-SSO schemes cannot, by definition, be privacy aware,

local pseudo-SSO schemes can, if either the user or local software generates unlinkable

pseudonyms. However, restrictions on the format and content of pseudonyms, imposed

by SPs, may limit the ability to generate unlinkable pseudonyms. Moreover, users are

unlikely to be able, or willing, to generate such pseudonyms.

True SSO schemes, on the other hand, have the potential to be privacy-aware in the above

sense. In order to motivate the construction of privacy-aware true SSO schemes, we briefly

revisit some of the advantages of true SSO over pseudo-SSO schemes.

• A global policy can be formulated, published and enforced by the AS operator. This

cannot be achieved in a pseudo-SSO scheme, since in such a scheme each SP uses

its own user authentication mechanism; hence, the authentication mechanisms used

by the SPs are essentially independent of each other. Thus, no precisely defined

trust relationships exist with the AS operator, and therefore no global policy can be

formulated.

186



12.3 Privacy-aware proxy-based true SSO systems

• Several user authentication mechanisms can be supported in parallel. The AS can

offer these as a service to both users and SPs. Under pseudo-SSO this possibility does

not exist for the same reasons as above.

• An SP may change its preferred user authentication mechanism, without having to

change its infrastructure, protocols and interfaces. As long as the AS offers the desired

mechanism, all the SP has to do is to publish its preference.

• User mobility is preserved. The user can authenticate himself from anywhere in the

network to the AS and use the SSO scheme. However, the chosen user authentication

mechanism may impose certain restrictions on this.

Note that the last point applies only to a proxy-based scheme. In the sequel we focus

on an SSO system where a proxy authenticates users without learning their SP-specific

identifiers. We call such a system a privacy-aware proxy-based true SSO (PAPTS) system.

Of course, there may be more than one proxy in a given network; this would result in

an architecture similar to that of the Liberty Alliance specifications. For simplicity of

exposition, however, in the sequel we focus on the case where only one proxy exists.

12.3 Privacy-aware proxy-based true SSO systems

The construction of a PAPTS scheme using an anonymous credential system appears to

be straightforward. The idea underlying the constructions given below is to have the AS

issue an anonymous credential to the user that encodes his authentication status, and the

user subsequently shows the credential to SPs in order to access a protected resource. We

identify below two different approaches to the construction of a PAPTS scheme using this

general approach. We also discuss a number of issues that arise in this special application

of an anonymous credential system.

Before describing the constructions, is is necessary to introduce the notion of an authen-

tication context [129]. An authentication context is a description of the means used to

authenticate the user to the proxy. It includes all the information that an SP is likely to

require in order to make a decision when the user attempts to access a protected resource

using an SSO scheme. The amount and nature of this information depends on the environ-

ment and technical issues, but may also depend on legislation and culture. Each of the user

187



12.3 Privacy-aware proxy-based true SSO systems

authentication mechanisms of the SSO schemes in part I of this thesis has its own context.

This is implicitly defined by the scheme and the environment in which it is deployed. As in

this chapter we use an arbitrary anonymous credential system along with an arbitrary user

authentication mechanism, we need to explicitly define what makes up an authentication

context; this is because the context determines the type of credential that will be issued in

the system.

The following is a list of the types of information that together define an authentication

context.

• a description of the authentication mechanism used (proof of knowledge of a secret,

biometrics, or proof of possession of a hardware token),

• a description of the protocols and/or cryptographic primitives that are used for au-

thentication (e.g. password hash, Diffie-Hellman key agreement, RSA signatures, etc.),

• a description of the initial user registration procedure at the AS (e.g. face to face,

e-mail verification, shared secret),

• a description of the protection mechanisms in place at the AS (e.g. restricted physical

access, third-party security accreditation),

• a description of the protection mechanisms possessed by the user (e.g. encrypted files,

smartcard), and

• a description of service level or liability agreements that apply.

We now introduce notation that will be used for the description of our PAPTS constructions.

In our scenario we suppose that a user U wishes to log into two SPs, denoted A and B.

Before the user can use the system for SSO, he needs to establish a pseudonym with the AS

(i.e. the proxy) and the two SPs. In both constructions we require that he does so using

the pseudonym establishment protocol of the underlying anonymous credential system. We

denote the established pseudonyms by pAS , pA and pB respectively. Moreover, the user

and the AS must establish at least one authentication context under which the user can

authenticate himself to the AS. The identifier under which the user authenticates himself is

denoted UID. A high-level description of the SSO protocol in our constructions for a PAPTS

scheme follows.

188



12.3 Privacy-aware proxy-based true SSO systems

1. U ↔ AS: negotiation of authentication context c

2. U → AS: authentication of UID to AS under c

3. U ← AS: issue credential of type t = (c, τ) under pAS

4. U → A: show credential of type t under pA

5. U → B: show credential of type t under pB

The credential type t encodes a combination of the authentication context c and a timestamp τ

that represents the instant in time when authentication (step 2) took place. Observe that a

user authenticates himself to the AS under the identifier UID, obtains the credential under

the pseudonym pAS , and shows it to SPs A and B under the pseudonyms pA and pB respec-

tively. We now examine two different approaches to combining an authentication context

with an anonymous credential system.

12.3.1 A general privacy-aware SSO scheme

In the first scheme, the authentication context remains decoupled from the anonymous

credential system. This means that any number of user authentication mechanisms may be

employed by the AS. Before the user can authenticate himself he has to establish at least

one such context with the AS. In general, several contexts may be established by a user;

this is why the first step of the protocol (step 1) is the negotiation of the context c that is to

be used subsequently. The format of the identifier UID under which the user authenticates

himself (step 2) depends on the negotiated context c. Unlike a pseudonym used in an

anonymous credential system, the identifier UID might or might not bear a connection to

the user’s real identity; it could be a random number, a nickname, an e-mail address, a

social security number, a biometric, the user’s real name, etc.

In this setting it is possible that the AS learns the user’s real identity as a result of estab-

lishing an authentication context, although not all contexts may require the AS to know

the user’s real identity. As an example of a situation where the AS will have to know the

user’s real identity, a user may have established a ‘strong’ context for which he was obliged

to appear in person at the AS with his passport. Authentication under this context may be

required by high-risk scenarios, for example online banking or electronic government trans-

actions. At the same time, the user may have established a ‘normal’ context, for example

189



12.3 Privacy-aware proxy-based true SSO systems

by demonstrating the ability to receive e-mail at a particular address. This context may

be sufficient for lower-risk operations, such as online purchases or logging into electronic

forums.

A user may not only establish different authentication contexts with the AS, but, assuming

that this is allowed, he may establish multiple identifiers UID for a given context. Each

established indentifier UID (whether or not in the same context) has to be unambiguously

linked to one of the pseudonyms that the user has established with the AS. This binding

is maintained by the AS, as it has to issue credentials under the correct pseudonym pAS

(step 3). In order to keep identifiers separate, a user could establish a new pseudonym pAS

for each AS identifier UID. However, in certain situations this may be an avoidable overhead.

For example, if two identifiers UID can be trivially linked to each other, or if the user does

not mind the AS knowing that both correspond to the same user, the same pseudonym pAS

may be associated with both.

12.3.2 A simplified privacy-aware SSO scheme

The PAPTS scheme described in the previous section essentially required two systems to run

in parallel, namely a series of user authentication mechanisms and an anonymous credential

system. In order to use that scheme, the user has to establish at least two identifiers with

the AS, namely one for authentication and one for credential issuing. In this section we

describe a special case of the previous scheme that is less complicated.

A user of a pseudonym system typically possesses a secret associated with each of his

pseudonyms. This enables him to prove, for the purposes of credential issuing and show-

ing, that he is the legitimate owner of the pseudonym in question. Thus, in the context

of PAPTS, the pseudonym system already provides a protocol for authenticating the holder

of a pseudonym to the proxy and the SPs. Rather than adding complexity to the system,

in certain situations it may be reasonable to use this protocol for user authentication at

the proxy (step 2 in section 12.3). In such a setting, the user does not have to establish

a separate UID or, more precisely, in this setting UID = pAS . As pAS is established using

the pseudonym system protocols, the pseudonym does not have any connection to the user’s

real identity. Therefore, this approach supports situations where there is no need for the AS

to know the user’s real identity.

190



12.4 Issues

A question that arises naturally in this setting is the following. Since, in a given pseudonym

system, users are required to authenticate their pseudonyms using the system-specific pro-

tocol, can the proxy then offer multiple authentication contexts c?

Indeed, the pseudonym authentication protocol of the pseudonym system may limit the

types of authentication mechanism a PAPTS system can offer, as all such mechanisms must

conform to the pseudonym system protocols. In other words, in this simplified version

of PAPTS, the AS can no longer offer arbitrary user authentication mechanisms, but only

those that can be implemented as part of the pseudonym system.

Even under these constraints, it is still possible to construct different user authentication

contexts. If, for example, the protocols require the user to prove knowledge of a secret

value, it is potentially important for the SP to be able to determine where that value is

stored and how it was generated. A smartcard-based mechanism is different from a setting

where the value is simply stored in a computer file. Similarly, a mechanism where the

secret was generated using high-entropy randomness is different from a mechanism where

the randomness was derived from a password. Although the authentication protocols may

be identical, the associated user authentication contexts are different.

12.4 Issues

This section discusses issues that arise in the PAPTS systems described above. In particular,

the next subsection identifies an important advantage of the PAPTS schemes constructed

here over ‘traditional’ proxy-based SSO schemes, and sections 12.4.2, 12.4.3 and 12.4.4

discuss the tradeoffs between usability, security and privacy that are inherent to PAPTS

schemes constructed as above.

12.4.1 Trust issues

Recall, from chapter 9, that one of the properties that a sound anonymous credential system

must satisfy is that of pseudonym owner protection. According to this property, no entity,

including any coalition of SPs and the proxy, should be able to successfully show a credential

using a pseudonym that was not established by the entity to which the credential was issued.

191



12.4 Issues

Thus, in the protocol of section 12.3 above, the AS will not be able to show any credential

under pA or pB (steps 4 and 5).

This observation illustrates a remarkable property of a PAPTS scheme constructed in the

above way, namely that a dishonest or compromised proxy operator cannot impersonate

users to SPs. In other words, the proxy does not need to be trusted not to impersonate

users; it only needs be trusted to carry out user authentication properly. This contrasts

with existing proxy-based SSO systems, where the proxy can typically impersonate users to

all SPs in the system.

12.4.2 Security versus usability

The PAPTS schemes described in this chapter do not necessarily require more manual

interaction from the user than any other proxy-based true SSO scheme. Manual interaction

with the user is only required for the initial authentication to the AS (step 2); the subsequent

issuing and showing of credentials could be handled by the user’s software transparently and

automatically. This software may, of course, need to have access to additional data, some

of which may be secret. If cross-platform mobility is an issue, care has to be taken so that

these secrets can follow the user. Ideally, the pseudonym system-related secrets could be

stored together with the secrets required for the user authentication mechanisms (step 2);

in this way, cross-platform mobility can be supported whenever the authentication context

supports it.

The protocols that are executed in a PAPTS system of the above type are more complex

and typically require more bandwidth and computation that those of traditional systems.

The added overhead might be especially significant when the scheme is augmented with

an anonymous user-to-SP channel, for example a MIX cascade [45]. This overhead would

potentially adversely affect the system’s usability; however, the overhead is a constant factor

that could probably be reduced to a satisfactory level by making available additional band-

width and computational power. We believe that, in certain scenarios, the benefits offered

by the scheme are worth this additional cost.

In terms of tradeoffs between usability and security, the main tradeoff comes from the fact

already mentioned in section 2.2 that a single authentication credential enables access to

192



12.4 Issues

more that one service. It is therefore of great importance for this credential to be main-

tained in a secure fashion, within the scope of the corresponding authentication context. Of

course, in order for an adversary to impersonate the user to many SPs, it is not sufficient

to compromise the user’s single authentication credential; he also needs access to the user’s

pseudonym system-specific secrets. Since typically there is one such secret per established

pseudonym, knowledge of multiple secrets is required to enable the adversary to gain access

to more than one SP. However, if the above suggestion to store pseudonym-system related

secrets together with those required for user authentication is implemented, it may be likely

that compromising one of the user’s secrets is essentially as simple as compromising them

all. In this case, the usability/security tradeoffs of a PAPTS scheme are very similar to

those applying to any SSO scheme.

12.4.3 Privacy versus security

As discussed in the previous chapters, it is desirable for the credential type t to encode

the minimum amount of information necessary. The minimum amount of information that

a SP is likely to require is a unique identifier for the authentication context c in use, and

a timestamp τ that indicates the instant in time when the authentication (step 1 in sec-

tion 12.3) took place; we henceforth assume that no other information is encoded into t. We

also assume that the proxy and all SPs in the system maintain loosely synchronised clocks.

Each ordered pair (c, τ) represents a separate credential type. Thus, credentials that encode

a different combination of context and time do not belong to the same anonymity set. In

other words, users that were authenticated under a different context c, or at in a different

time period (as encoded by τ), are distinguishable. Furthermore, as the user has to show the

credential (in steps 4 and 5) before it has expired, the timestamp τ enables certain timing

attacks, including those described in chapter 8, to be launched against the system. The

objective of these attacks is to link the user’s pseudonyms. As shown in that chapter, it is

desirable for the accuracy of τ to be as coarse as possible in order to reduce the exposure to

such attacks. From a security perspective, on the other hand, the accuracy of timestamps

should be as fine-grained as possible. These contradicting requirements constitute a tradeoff

that is perhaps the most fundamental in the construction of a PAPTS scheme. The choice

for the accuracy of τ is therefore a sensitive issue.

193



12.4 Issues

Figure 12.1: Average number of credentials issued per unit time (vertical axis) vs. accuracy
of timestamp τ (horizontal axis).

Figure 12.1 shows how the accuracy of the timestamp τ affects anonymity. The vertical

axis depicts the average number of pseudonyms on which a credential carrying a particular

timestamp τ is issued, and the horizontal axis represents the length (in unit time) of periods

in which time is divided by τ . Reading from top to bottom, the four lines represent the

cases where, on average, 10, 2, 0.5 and 0.1 credentials are issued per unit time. Clearly, the

relationship is linear. If, for example, 1 authentication occurs every 2 minutes (on distinct

pseudonyms), a timestamp accuracy of 30 minutes gives an average anonymity set size of 15.

However, this measure does not adequately describe the anonymity of the system; while,

on average, transactions may be hidden in relatively large anonymity sets, a substantial

number of individual transactions may be exposed. Other statistical measures (such as

standard deviation, skewness, etc.) of the authentication event distribution per unit time

should be taken into account. By modeling incoming authentication requests as a Poisson

process with arrival rate λ authentications per unit time, we can use the formula

P (n) =
λne−λ

n!

in order to derive the probability P (n) of n authentications occurring per unit time. The

Poisson distribution has been used in the field of traffic engineering as a measure of incoming

requests to a server per unit time [86], as well as in the context of anonymity systems [183].

We believe that it is reasonable to choose this distribution in order to model the process at

hand.

Using this technique we can study the statistical behaviour of the system and how a par-

ticular selection of parameters affects the size of the anonymity set in which authentication

194



12.4 Issues

events are hidden. For example, we can calculate the percentage of time periods (as encoded

by τ) in which at least 5 authentications occur, given an average of, say, λ = 10, as follows.

1−
4∑

n=0

P (n) ≈ 1−4.539×10−5−4.539×10−4−2.699×10−3−7.566×10−3−1.891×10−2 ≈ 97%

This result essentially states that, if 10 credentials are issued (on average) with a common

timestamp τ , 97% of these credentials will share a common τ with at least four other

credentials; the remaining 3% will share their type with three other credentials or less.

Similarly, we can calculate the required accuracy of the timestamp τ in order to achieve

a given confidence level in the minimum number of pseudonyms on which a credential is

issued in each period. For example, in order for, say, 95% of credentials to be issued in a

period in which at least 10 credentials are issued in total, the average number of incoming

authentications per unit time has to be λ = 3.512.1. In other words, in a system with, say, 5

incoming authentications per minute on average, the accuracy of τ needs to be 3.1 minutes

(186 seconds) in order for 95% of credentials to be issued in a period in which at least 10

credentials are issued in total.

The above statistical analysis helps us estimate the number of credentials that are issued

(or are not issued) within periods in which sufficiently many credentials are issued in total.

Two issues arise here. Firstly, the definition of ‘sufficiently many’ is likely to be different

from user to user. Secondly, even with a, say, 99% chance of being authenticated in a period

in which sufficiently many other users do the same, a user might not wish to have even a

1% chance of his anonymity being compromised. For users that require stronger guarantees

than those offered by probabilistic arguments, the scheme described in chapter 10 seems to

be particularly appropriate.

The peer-to-peer synchronisation scheme of chapter 10 addresses both the above issues.

Firstly, it allows the user to specify the desired minimum number of users that should

gather in order to synchronise their acquisition of a credential (i.e. be authenticated by the

same mechanism). Secondly, in the absence of attacks not addressed by the scheme, the

number of users actually obtaining the credential is always at least the specified minimum,
12.1A more precise approximation for the percentage of such credentials, given λ = 15.5,
is 94.8%. This value has been derived from the table of cumulative Poisson probabilities
ugrad.stat.ubc.ca/ stat241/tables/Poisson (row x = 9, column α = 15.5).

195



12.4 Issues

100% of the time.

12.4.4 Usability versus privacy

In this section we discuss the tradeoffs between usability and privacy that are inherent in

a PAPTS scheme constructed as described in section 12.3.

Consider a setting where the AS offers two authentication contexts, denoted c1 and c2.

Suppose that context c1 is stronger than c2, meaning that SPs that accept credentials of

type (c2, τ) also accept credentials of type (c1, τ) (but not vice versa). Consider a user that

has obtained a credential of type t1 = (c1, τ1) in order to log into an SP that requires a

credential that encodes this stronger authentication context. Next, the user wishes to log

into an SP that requires only context c2, and therefore also accepts the above credential. The

question that arises in this situation is the following. Assuming that the credential (c1, τ1)

has not expired, is it a better strategy for the user to (a) obtain a credential (c2, τ2) by

first authenticating himself to the AS under context c2, or (b) reuse the credential (c1, τ1)?

Obviously, from a usability perspective, it is preferable to reuse the existing credential, as

obtaining a new one requires the user to re-authenticate himself under context c2, and might

therefore require manual interaction.

We now attempt to answer this question from a privacy perspective. If there were more

credentials issued that encode context c1 in time period τ1 than credentials encoding con-

text c2 in time period τ2, then it is also preferable to reuse the same credential from a privacy

perspective. This is because linking the credential showing to its issuing would be harder

in this case. Of course, if more credentials of type (c2, τ2) were issued than credentials of

type (c1, τ1), then the reverse applies.

Without some system that gives relevant feedback to the user, such as the peer-to-peer

scheme of chapter 10, there is no way for him to know how many similar credentials are issued

in any given time period, and, thus the user cannot decide which strategy is better from a

privacy perspective. So, one solution is to use a scheme that provides appropriate feedback

to the user and then reuse the same credential. However, this analysis only considers the

issue from the point of view of a single user. As we have seen in the previous chapters in this

part of this thesis, from a global privacy perspective it is preferable for as many credentials

196



12.5 Summary

to be issued as possible. Thus, if the user follows strategy (b) above, although he himself

may not be better off in terms of privacy (i.e. transaction unlinkability), he contributes to

the privacy of other users in the system. Thus, if all users follow that strategy, i.e. obtain

a credential encoding an authentication context of minimally accepted strength whenever

possible, every user’s privacy would be enhanced.

Note that following this strategy does not mean loss of the SSO functionality; a user still

reuses the same credentials with SPs that require the same authentication context. However,

following that strategy is likely to impair usability without buying the individual more

privacy. It is a challenge to incorporate mechanisms into this system that will motivate

users to act selflessly for the ‘overall good’. This challenge also extends to other privacy-

protecting systems.

12.5 Summary

This chapter described a method for constructing PAPTS schemes using a series of user

authentication mechanisms and an anonymous credential system. Such a scheme enables

users to be authenticated by a centralised proxy, and then obtain services at a number

of SPs. A PAPTS system constructed in this way has two important properties, namely

that (a) no coalition of SPs and the proxy can learn which pseudonyms belong to which

users, and (b) the proxy cannot impersonate users at SPs. In particular, it is only trusted

to perform authentication properly. It was pointed out that one of the most sensitive issues

in this setting is the choice for the accuracy of the timestamp that indicates the time of

authentication at the proxy. A weakness is the fact that users do not get feedback on the

level of unlinkability their pseudonyms actually enjoy in a working system. The scheme

proposed in chapter 10 could be used to address this issue.

197



Part III

Conclusions

198



Chapter 13

Conclusions and directions for fur-
ther research

Contents
13.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

13.2 Directions for further research . . . . . . . . . . . . . . . . . . . 201

This chapter presents the overall conclusions of this thesis and gives some directions for

further research.

13.1 Conclusions

This thesis contains a variety of contributions. In the first part, four novel and pragmatic

interdomain user authentication schemes were proposed and their properties were discussed.

Three of these schemes were based on existing deployed infrastructures, namely GSM/UMTS

telephony, EMV credit/debit smartcards, and computing platforms conformant to the TCG

specification, respectively. The overall level of security of these schemes is likely to be higher

than that provided by many existing schemes because of the added protection offered by the

tamper-resistance of the hardware used in these schemes. Furthermore (with the exception

of the scheme described in chapter 6), key management practices for the underlying security

infrastructures are well defined and have been in place for some time. This is likely to

contribute to smooth and secure operations in the SSO context as well.

The schemes demonstrate that it is possible to reuse existing security infrastructures in

contexts other than that in which they were originally deployed. Of course, care has to be

taken to separate application domains in order to avoid security vulnerabilities and potential

199



13.1 Conclusions

attacks that apply in one domain extending to another.

A further important advantage gained by reusing existing infrastructure in a different con-

text is that the schemes of chapters 4, 5, and 6 are potentially cheap and straightforward to

deploy, and hence are fundamentally pragmatic solutions. However, the systems also inherit

properties of the underlying infrastructure that may be undesirable in the new environment.

For example, the schemes based on GSM/UMTS and EMV, described in chapters 4 and 5

respectively, enable cooperating SPs to trivially correlate the identifiers of any given user.

This ‘feature’ is inherited from the underlying security infrastructure, and may be unde-

sirable in scenarios where privacy protection plays an important role. The situation with

respect to the exploitation of TCG-conformant platforms is a little different, as the TCG-

based infrastructure was always intended to be ‘general purpose’ in nature; in particular, it

provides sophisticated privacy functionality, especially in the case of platforms conforming

to version 1.2 of the TCG specifications.

The fourth SSO scheme of part I, described in chapter 7, does not rely on a existing de-

ployed infrastructure. It has the unique feature that no long-term secrets are disclosed to

the user’s local machine, while enabling the user to log into SPs that use arbitrary user

authentication methods. In other words, it combines two services that previously did not

exist in a single SSO system: it both provides one-time authentication, and is transparent

to SPs. The scheme was also implemented in a ‘real-world’ setting as a web proxy and was

successfully tested with a variety of browsers. The scheme is useful in scenarios where a

roaming user needs to use untrusted machines or network access devices.

Part II of the thesis examined a type of cryptosystem called an ‘anonymous credential’ or a

‘pseudonym’ system. In chapter 8 certain timing attacks that apply to anonymous credential

system were described. The aim of these attacks is to link otherwise unlinkable identifiers

of a given user using timing information. A complexity theoretic adversarial model was

then formulated in chapter 9, and applicable security and privacy notions were defined. In

chapter 10 a peer-to-peer scheme was proposed that offers a degree of protection against

some of the attacks described in chapter 8, and additionally provides real-time feedback to

users of anonymous credential systems.

The idea of using an anonymous credential system in order to build what we call a ‘privacy-

aware’ SSO scheme is also explored in part II of the thesis. In particular, two methods of

200



13.2 Directions for further research

combining a pseudonym system with user authentication schemes are discussed in chapter 12.

The first method, although more complicated than the second, is flexible in the sense that

any user authentication mechanism is supported. The second method, although simpler, is

less flexible in the sense that the only supported user authentication mechanisms are those

that follow the pseudonym system protocols.

More generally, we believe that there is a lack of available technology that protect user

privacy in the electronic world; moreover, the technology that does exist fails to meet all the

potential user privacy requirements. Thus, the construction, implementation and analysis of

schemes to protect user privacy remains a challenge that is not only open, but becomes more

important as the number of available services grows. Moreover, emerging and novel network

architectures and the associated applications and services pose new risks to user privacy

and, as such, require innovative solutions. It is therefore important to raise awareness and

develop appropriate privacy protecting technologies. It is hoped that this thesis contributes

towards such an effort.

13.2 Directions for further research

Throughout the thesis a number of directions for further research have been identified.

This section summarises what we believe to be the most important and interesting ones.

We divide potential further research directions into two categories, namely practical and

theoretical. On the practical side, we believe that the following directions are of interest.

• Implementation of real-world privacy-aware SSO schemes, as described in chapter 12,

possibly with the add-on scheme described in chapter 10 or using some other anony-

mous user-to-SP channel.

• Integration of SSO and privacy-protecting identity management systems.

• Identification of applications in the area of ubiquitous computing (e.g. sensor networks)

for the scheme described in chapter 7.

• Integration of an anonymous credential system (e.g. that of Camenisch and van Her-

reweghen [40]) and the peer-to-peer scheme described in chapter 10.

201



13.2 Directions for further research

On the theoretical side, open questions arise in connection with the security model presented

in chapter 9. As mentioned in section 9.3, it is a challenge to construct cryptosystems that

satisfy the definitions of the model. It is also interesting to discover whether or not existing

schemes meet the definitions. Finally, it would also be desirable to refine the model so that

it captures additional properties such as anonymity revocation and the use of credentials

that can only be shown a predetermined number of times.

202



Bibliography

[1] M. Abadi and P. Rogaway. Reconciling two views of cryptography (the computational

soundness of formal encryption). Journal of Cryptology, 15(2):103–127, 2002.

[2] B. Aboba, L. Blunk, J. Vollbrecht, and J. Carlson. RFC 3748: Extensible Authenti-

cation Protocol (EAP), 2004.

[3] G.-J. Ahn, D. Shin, and S.-P. Hong. Information assurance in federated identity

management: Experimentations and issues. In X. Zhou, S. Y. W. Su, M. P. Papa-

zoglou, M. E. Orlowska, and K. G. Jeffery, editors, Web Information Systems — WISE

2004, 5th International Conference on Web Information Systems Engineering, Bris-

bane, Australia, November 22-24, 2004, Proceedings, number 3306 in Lecture Notes in

Computer Science, pages 79–90. Springer Verlag, Berlin, November 2004.

[4] M. A. Al-Meaither and C. J. Mitchell. A secure GSM-based Murabaha transaction.

In Proceedings of the 1st International Conference on Information & Communication

Technologies from Theory to Applications (ICTTA), pages 77–78. IEEE Press, April

2004.

[5] American National Standards Institute. ANSI 9.84-2003: Biometric Information

Management and Security for the Financial Services Industry, 2003.

[6] T. Aura and P. Nikander. Stateless connections. In Y. Han, T. Okamoto, and S. Quing,

editors, ICICS ’97: Proceedings of the First International Conference on Information

and Communication Security, volume 1334 of Lecture Notes in Computer Science,

pages 87–97, London, UK, 1997. Springer-Verlag.

[7] A. Back, U. Möller, and A. Stiglic. Traffic analysis attacks and trade-offs in anonymity

providing systems. In I. S. Moskowitz, editor, Information Hiding, 4th International

Workshop, IHW 2001, volume 2137 of Lecture Notes in Computer Science, pages 245–

257. Springer Verlag, Berlin, 2001.

203



BIBLIOGRAPHY

[8] M. Backes and B. Pfitzmann. A cryptographically sound security proof of the

Needham-Schroeder-Lowe public-key protocol. IEEE Journal on Selected Areas in

Communications, 22(10):2075–2086, 2004.

[9] B. Balacheff, L. Chen, S. Pearson, D. Plaquin, and G. Proudler. Trusted Computing

Platforms: TCPA Technology in Context. Prentice-Hall, 2003.

[10] G. Barish and K. Obraczka. World wide web caching: Trends and techniques. IEEE

Communications Magazine, 38(5):178–185, May 2000.

[11] M. Bellare, R. Canetti, and H. Krawczyk. Pseudorandom functions revisited: The

cascade construction and its concrete security. In Proceedings of the 37th Annual

Symposium on the Foundations of Computer Science (FOCS), pages 514–523. IEEE,

1996.

[12] M. Bellare, R. Canetti, and H. Krawczyk. A modular approach to the design and

analysis of authentication and key exchange protocols. In Proceedings of the 30th

Annual Symposium on the Theory of Computing, pages 419–428. ACM, 1998.

[13] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of

symmetric encryption. In Proceedings of the 38th Annual Symposium on Foundations

of Computer Science (FOCS), pages 394–403. IEEE Computer Society, 1997.

[14] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions

of security for public-key encryption schemes. In H. Krawczyk, editor, Advances in

Cryptology – CRYPTO 1998, volume 1462 of Lecture Notes in Computer Science,

pages 26–45. Springer-Verlag, 1998.

[15] M. Bellare and C. Namprempre. Authenticated encryption: Relations among notions

and analysis of the generic composition paradigm. In T. Okamoto, editor, Advances in

Cryptology — Asiacrypt 2000, Proceedings, volume 1976 of Lecture Notes in Computer

Science, pages 531–545. Springer-Verlag, Berlin, 2000.

[16] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing

efficient protocols. In ACM Conference on Computer and Communications Security,

pages 62–73. ACM, 1993.

[17] M. Bellare and P. Rogaway. Entity authentication and key distribution. In D. Stinson,

editor, Advances in Cryptology – CRYPTO 1993, volume 773 of Lecture Notes in

Computer Science, pages 232–249. Springer-Verlag, Berlin, 1994.

204



BIBLIOGRAPHY

[18] M. Bellare and P. Rogaway. Provably secure session key distribution: The three party

case. In Proceedings of the 27th Annual ACM Symposium on Theory of Computing

STOC, pages 57–66. ACM, 1995.

[19] M. Bellare, H. Shi, and C. Zhang. Foundations of group signatures: The case of

dynamic groups. In A. Menezes, editor, Topics in Cryptology - CT-RSA 2005, The

Cryptographers’ Track at the RSA Conference 2005, San Francisco, CA, USA, Feb-

ruary 14-18, 2005, Proceedings, volume 3376 of Lecture Notes in Computer Science,

pages 136–153. Springer, 2005.

[20] S. M. Bellovin and M. Merritt. Limitations of the Kerberos authentication system. In

USENIX Conference Proceedings, pages 253–267, Dallas, TX, Winter 1991. USENIX.

[21] T. Berners-Lee, L. Masinter, and M. M. (editors). Uniform Resource Locators, 2004.

[22] O. Berthold and M. Köhntopp. Identity management based on P3P. In H. Federrath,

editor, Designing Privacy Enhancing Technologies, International Workshop on Design

Issues in Anonymity and Unobservability, July 2000, number 2009 in Lecture Notes

in Computer Science, pages 141–160. Springer-Verlag, Berlin, 2001.

[23] A. Biryukov, J. Lano, and B. Preneel. Cryptanalysis of the alleged SecurID hash

function. Cryptology ePrint Archive, Report 2003/162, 2003. http://eprint.iacr.

org/.

[24] S. Blake-Wilson and A. Menezes. Authenticated Diffie-Hellman key agreement pro-

tocols. In S. E. Tavares and H. Meijer, editors, Selected Areas in Cryptography ’98,

SAC’98, Kingston, Ontario, Canada, August 17-18, 1998, Proceedings, volume 1556

of Lecture Notes in Computer Science, pages 339–361. Springer Verlag, Berlin, 1999.

[25] C. W. Blanchard. Wireless security. In R. Temple and J. Regnault, editors, Internet

and wireless security, chapter 8, pages 147–162. IEE, 2002.

[26] A. Boldyreva. Efficient threshold signature, multisignature and blind signature

schemes based on the gap-Diffie-Hellman-group signature scheme. In Y. Desmedt,

editor, International Workshop on Practice and Theory in Public Key Cryptography –

PKC 2003, volume 2567 of Lecture Notes in Computer Science, pages 31–46. Springer-

Verlag, 2003.

[27] C. Boyd. A framework for design of key establishment protocols. In J. Pieprzyk and

J. Seberry, editors, Australasian Conference on Information Security and Privacy,

205



BIBLIOGRAPHY

volume 1172 of Lecture Notes in Computer Science, pages 146–157. Springer Verlag,

Berlin, 1996.

[28] C. Boyd and W. Mao. On a limitation of BAN logic. In T. Helleseth, editor, Advances

in Cryptology — EUROCRYPT ’93, volume 765 of Lecture Notes in Computer Science,

pages 240–247. Springer-Verlag, Berlin, 1994.

[29] C. Boyd and A. Mathuria. Key establishment protocols for secure mobile communi-

cations: A selective survey. In C. Boyd and E. Dawson, editors, Information Security

and Privacy: Third Australasian Conference, ACISP’98, Brisbane, Australia, July

1998. Proceedings, volume 1438 of Lecture Notes in Computer Science, pages 344–355.

Springer Verlag, Berlin, 1998.

[30] C. Boyd and A. Mathuria. Protocols for Authentication and Key Establishment.

Springer Verlag, 2003.

[31] S. Brands. Rethinking Public Key Infrastructures and Digital Certificates — Building

in Privacy. The MIT Press, Cambridge, Massachusetts, 2000.

[32] D. Branstad. Security aspects of computer networks. In AIAA Computer Network

Systems Conference, Huntsville, Alabama, April 1973. AIAA Paper No. 73-427.

[33] E. Brickell, J. Camenisch, and L. Chen. Direct anonymous attestation. In CCS ’04:

Proceedings of the 11th ACM Conference on Computer and Communications Security,

pages 132–145, New York, NY, USA, 2004. ACM Press.

[34] G. Brown. The use of hardware tokens for identity management. Information Security

Technical Report, 9(1):22–25, January–March 2004.

[35] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. Technical Re-

port 39, Digital Systems Research Center, February 1989.

[36] J. Camenisch. Better privacy for trusted computing platforms: (extended abstract).

In P. Samarati, D. Gollmann, and R. Molva, editors, Computer Security - ESORICS

2004: 9th European Symposium on Research in Computer Security, Sophia Antipo-

lis, France, September 13 - 15, 2004. Proceedings, volume 3193 of Lecture Notes in

Computer Science, pages 73–88, 2004.

[37] J. Camenisch and A. Lysyanskaya. An efficient system for non-transferable anonymous

credentials with optional anonymity revocation. In B. Pfitzmann, editor, Advances in

206



BIBLIOGRAPHY

Cryptology — EUROCRYPT 2001, International Conference on the Theory and Appli-

cation of Cryptographic Techniques, Innsbruck, Austria, May 6-10, 2001, Proceedings,

volume 2045 of Lecture Notes in Computer Science, pages 93–118. Springer Verlag,

Berlin, 2001.

[38] J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to efficient

revocation of anonymous credentials. In M. Yung, editor, Advances in Cryptology —

CRYPTO 2002, 22nd Annual International Cryptology Conference, Santa Barbara,

California, USA, August 18-22, 2002, Proceedings, volume 2442 of Lecture Notes in

Computer Science, pages 61–76. Springer Verlag, Berlin, 2002.

[39] J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous credentials from

bilinear maps. In M. Franklin, editor, Proceedings of the 24th Annual International

Cryptology Conference, Santa Barbara, California, USA, August 15-19 — CRYPTO

2004, volume 3152 of Lecture Notes in Computer Science, pages 56–72. Springer-

Verlag, Berlin, 2004.

[40] J. Camenisch and E. Van Herreweghen. Design and implementation of the idemix

anonymous credential system. In Proceedings of the 9th ACM Conference on Computer

and Communications Security, pages 21–30. ACM Press, New York, 2002.

[41] R. Canetti. Universally composable security: a new paradigm for cryptographic pro-

tocols. In Proceedings of the 42nd IEEE Symposium on Foundations of Computer

Science (FOCS), pages 136–145. IEEE Computer Society, 2001.

[42] R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited. In

Proceedings of the 13th Annual ACM Symposium on the Theory of Computing, pages

209–218. ACM, 1993.

[43] R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use for

building secure channels. In B. Pfitzmann, editor, Advances in Cryptology – EURO-

CRYPT 2001, volume 2045 of Lecture Notes in Computer Science, pages 453–474.

Springer-Verlag, 2001.

[44] R. Canetti and H. Krawczyk. Universally composable notions of key exchange and

secure channels. In L. Knudsen, editor, Advances in Cryptology – EUROCRYPT 2002,

volume 2332 of Lecture Notes in Computer Science, pages 337–351. Springer-Verlag,

2002.

207



BIBLIOGRAPHY

[45] D. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.

Communications of the ACM, 24(2):84–90, 1981.

[46] D. Chaum. Blind signatures for untraceable payments. In R. Rivest, A. Sherman, and

D. Chaum, editors, Advances in Cryptology – CRYPTO 82, pages 199–203. Plenum

Press, 1983.

[47] D. Chaum. Blind signature system. In D. Chaum, editor, Advances in Cryptology –

CRYPTO 83, page 153. Plenum Press, 1984.

[48] D. Chaum. Security without identification: Transaction systems to make big brother

obsolete. Communications of the ACM, 28(10):1030–1044, October 1985.

[49] D. Chaum. Privacy protected payments: Unconditional payer and/or payee untrace-

ability. In D. Chaum and I. Schaumueller-Bichl, editors, SMART CARD 2000, pages

69–93. Elsevier Science Publishers B.V., 1989.

[50] D. Chaum. Showing credentials without identification: Transferring signatures be-

tween unconditionally unlinkable pseudonyms. In J. Seberry and J. Pieprzyk, editors,

Advances in Cryptology – AUSCRYPT 90, volume 453 of Lecture Notes in Computer

Science, pages 246–264. Springer-Verlag, Berlin, 1990.

[51] D. Chaum. One-show blind signature systems. U.S. Patent ser. no. 4,987,593. Filed

April 1990. Continuation of abandoned application Ser. No. 07/168,802, filed March

1988, January 1991.

[52] D. Chaum. Unpredictable blind signature systems. U.S. Patent serial number 4,991,210.

Filed May 1989., February 1991.

[53] D. Chaum. Achieving electronic privacy. Scientific American, 267(2):96–101, August

1992.

[54] D. Chaum and J.-H. Evertse. A secure and privacy-protecting protocol for transmit-

ting personal information between organizations. In A. M. Odlyzko, editor, Advances

in Cryptology — CRYPTO ’86, Santa Barbara, California, USA, 1986, Proceedings,

number 263 in Lecture Notes in Computer Science, pages 118–168. Springer Verlag,

Berlin, 1987.

[55] D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash. In S. Goldwasser, editor,

Advances in Cryptology – CRYPTO 88, volume 403 of Lecture Notes in Computer

Science, pages 319–327. Springer-Verlag, Berlin, 1988.

208



BIBLIOGRAPHY

[56] L. Chen. Access with pseudonyms. In E. Dawson and J. D. Golic, editors, Cryp-

tography: Policy and Algorithms, International Conference, Brisbane, Queensland,

Australia, July 3-5, 1995, Proceedings, number 1029 in Lecture Notes in in Computer

Science, pages 232–243. Springer Verlag, Berlin, 1995.

[57] J. Claessens, B. Preneel, and J. Vandewalle. Combining World Wide Web and wireless

security. Informatica, 26(2):123–132, 2002.

[58] S. Clauß and M. Köhntopp. Identity management and its support of multilateral

security. Comput. Networks, 37(2):205–219, 2001.

[59] Compaq, Hewlett-Packard, Intel, Lucent, Microsoft, NEC, Philips. Universal Serial

Bus Specification, 2nd edition, April 2000.

[60] Computer Security Center of the Department of Defense, Meade, Fort George G.,

Maryland 20755. Department of Defense Password Management Guideline, April 1985.

CSC-STD-002-85.

[61] S. Contini and Y. L. Yin. Improved cryptanalysis of SecurID. Cryptology ePrint

Archive, Report 2003/205, 2003.

[62] B. P. Cosell, P. R. Johnson, J. H. Malman, R. E. Schantz, J. Sussman, R. H. Thomas,

and D. C. Walden. An operational system for computer resource sharing. In SOSP

’75: Proceedings of the fifth ACM symposium on operating systems principles, pages

75–81. ACM Press, 1975.

[63] I. Damg̊ard. Payment systems and credential mechanisms with provable security

against abuse by individuals. In S. Goldwasser, editor, Advances in Cryptology —

CRYPTO ’88: Proceedings, number 403 in Lecture Notes in Computer Science, pages

328–335. Springer Verlag, 1990.

[64] D. W. Davies and W. L. Price. Security for computer networks: an introduction to

data security in teleprocessing and electronic funds transfer. John Wiley & Sons, Inc.,

2nd edition, 1989.

[65] J. De Clercq. Single sign-on architectures. In G. I. Davida, Y. Frankel, and O. Rees,

editors, Infrastructure Security, International Conference, InfraSec 2002 Bristol, UK,

October 1-3, 2002, Proceedings, volume 2437 of Lecture Notes in Computer Science,

pages 40–58. Springer Verlag, 2002.

209



BIBLIOGRAPHY

[66] Y. Demchenko. Virtual organisations in computer grids and identity management.

Information Security Technical Report, 9(1):59–76, January–March 2004.

[67] A. Dent and C. Mitchell. User’s Guide to Cryptography and Standards. Artech House,

2005.

[68] C. Dı́az, S. Seys, J. Claessens, and B. Preneel. Towards measuring anonymity. In

R. Dingledine and P. F. Syverson, editors, Proceedings of Privacy Enhancing Tech-

nologies, 2nd International Workshop, PET 2002, number 2482 in Lecture Notes in

Computer Science, pages 54–68. Springer-Verlag, Berlin, 2002.

[69] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions on

Information Theory, IT-22(6):644–654, 1976.

[70] D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Transactions

on Information Theory, 29(2):198–208, March 1983.

[71] J. R. Douceur. The Sybil attack. In P. Druschel, F. Kaashoek, and A. Rowstron, ed-

itors, Peer-to-Peer Systems: First International Workshop, IPTPS 2002, Cambridge,

MA, USA, March 7-8, volume 2429 of Lecture Notes in Computer Science, pages

251–260. Springer-Verlag, Berlin, 2002.

[72] J. Edwards. Single sign-on technology streamlines network access. Software Magazine,

13(17):35–42, 1993.

[73] Electronic Industries Alliance. EIA232E: Interface between Data Terminal Equipment

and Data Circuit Terminating Equipment employing serial binary data interchange,

1991.

[74] J. H. Ellis. The possibility of secure non-secret digital encryption. Report, CESG,

January 1970.

[75] EMV. EMV2000 Integrated Circuit Card Specification for Payment Systems Version

4.0 — Book 1: Application Independent ICC to Terminal Interface Requirements,

December 2000.

[76] EMV. EMV2000 Integrated Circuit Card Specification for Payment Systems Version

4.0 — Book 2: Security and Key Management, December 2000.

[77] EMV. EMV2000 Integrated Circuit Card Specification for Payment Systems Version

4.0 — Book 3: Application Specification, December 2000.

210



BIBLIOGRAPHY

[78] EMV. EMV2000 Integrated Circuit Card Specification for Payment Systems Version

4.0 — Book 4: Cardholder, Attendant and Acquirer Interface Requirements, December

2000.

[79] European Telecommunications Standards Institution (ETSI). Digital cellular telecom-

munications system (Phase 2+); Security aspects (GSM 02.09 version 8.0.1), June

2001.

[80] European Telecommunications Standards Institution (ETSI). Digital cellular telecom-

munications system (Phase 2+); Security related network functions (GSM 03.20 ver-

sion 8.1.0), July 2001.

[81] D. Flanagan. Java in a Nutshell. O’Reilly, 3rd edition, November 1999.

[82] W. Ford and M. Baum. Secure Electronic Commerce. Prentice Hall, 1996.

[83] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen, and

L. Stewart. RFC 2617: HTTP Authentication: Basic and Digest Access Authentica-

tion. Internet Engineering Task Force, June 1999.

[84] S. Galbraith and W. Mao. Invisibility and anonymity of undeniable and confirmer

signatures. In M. Joye, editor, Topics in Cryptology - CT-RSA 2003, The Cryptog-

raphers’ Track at the RSA Conference 2003, San Francisco, CA, USA, April 13-17,

2003, Proceedings, volume 2612 of Lecture Notes in Computer Science, pages 80–97.

Springer, 2003.

[85] R. Ganesan. Yaksha: augmenting Kerberos with public key cryptography. In SNDSS

’95: Proceedings of the 1995 Symposium on Network and Distributed System Security

(SNDSS’95), pages 132–143, Washington, DC, USA, 1995. IEEE Computer Society.

[86] M. Ghanbari, C. Hughes, M. Sinclair, and J. Eade. Principles of Performance En-

gineering for Telecommunication and Information Systems. Institution of Electrical

Engineers, 1997.

[87] O. Goldreich. Randomness, interactive proofs, and zero-knowledge – a survey. In

R. Herken, editor, The Universal Turing Machine: A Half Century Survey, pages

377–405. Oxford University Press, 1988.

[88] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their valid-

ity or all languages in np have zero-knowledge proof systems. Journal of the ACM,

38(3):690–728, 1991.

211



BIBLIOGRAPHY

[89] D. M. Goldschlag, M. G. Reed, and P. F. Syverson. Onion routing for anonymous

and private internet connections. Communications of the ACM, 42(2):84–88, January

1999.

[90] S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure against

adaptive chosen-message attacks. SIAM J. Comput., 17(2):281–308, 1988.

[91] S. Gritzalis, D. Spinellis, and P. Georgiadis. Security protocols over open networks

and distributed systems: Formal methods for their analysis, design, and verification.

Computer Communications, 22(8):697–709, May 1999.

[92] T. Gross. Security analysis of the SAML single sign-on browser/artifact profile. In

Proceedings of the 19th Annual Computer Security Applications Conference, pages

298–307. IEEE Press, December 2003.

[93] T. Gross and B. Pfitzmann. Proving a WS-federation passive requestor profile. In

ACM Secure Web Services Workshop. ACM Press, 2004. to appear.

[94] M. F. Grubb and R. Carter. Single sign-on and the system administrator. In Proceed-

ings of the Twelfth Systems Administration Conference (LISA 98). Usenix, 1998.

[95] M. Hansen, P. Berlich, J. Camenisch, S. Clau, A. Pfitzmann, and M. Waidner. Privacy-

enhancing identity management. Information Security Technical Report, 9(1):35–44,

January–March 2004.

[96] S. M. Hansen, J. Skriver, and H. R. Nielson. Using static analysis to validate the saml

single sign-on protocol. In WITS ’05: Proceedings of the 2005 workshop on Issues in

the theory of security, pages 27–40, New York, NY, USA, 2005. ACM Press.

[97] IEEE. IEEE 1284.1 Standard for Information TechnologyTransport Independent Print-

er/System Interface (TIP/SI), 1997.

[98] IEEE. Standard 802.11b-1999/Cor 1-2001(Corrigendum to IEEE Std 802.11b-1999),

1999-2001.

[99] Internet Engineering Task Force. RFC 1510: The Kerberos Network Authentication

Service (V5), September 1993.

[100] Internet Engineering Task Force. RFC 2898: PKCS #5: Password-Based Cryptogra-

phy Specification Version 2.0, September 2000.

[101] Internet Engineering Task Force. RFC 2821: Simple Mail Transfer Protocol, April

2001.

212



BIBLIOGRAPHY

[102] Internet Engineering Taskforce. Extensible Authentication Protocol Method for GSM

Subscriber Identity Modules (EAP-SIM), December 2004. work in progress.

[103] L. Ishitani, V. Almeida, and W. M. Jr. Masks: Bringing anonymity and personalization

together. IEEE Security and Privacy, 1(3):18–23, May–June 2003.

[104] ITU-T Recommendation X.509. Information technology — Open Systems Intercon-

nection — The Directory: Public-key and attribute certificate frameworks, 2000.

[105] B. Ives, K. R. Walsh, and H. Schneider. The domino effect of password reuse. Com-

munications of the ACM, 47(4):75–78, April 2004.

[106] U. Jendricke and D. G. tom Markotten. Usability meets security — the identity-

manager as your personal security assistant for the internet. In Proceedings of the 16th

Annual Computer Security Applications Conference, pages 344–355. IEEE Computer

Society, 2000.

[107] J. Jeong, D. Shin, D. Shin, and K. Moon. Java-based single sign-on library supporting

SAML for distributed web services. In J. X. Yu, X. Lin, H. Lu, and Y. Zhang, edi-

tors, Advanced Web Technologies and Applications, 6th Asia-Pacific Web Conference,

APWeb 2004, Hangzhou, China, April 14-17, 2004, volume 3007 of Lecture Notes in

Computer Science, pages 891–894. Springer Verlag, Berlin, 2004.

[108] A. Jøsang and M. A. Patton. User interface requirements for authentication of com-

munication. In CRPITS ’18: Proceedings of the Fourth Australian user interface

conference on User interfaces 2003, pages 75–80, Darlinghurst, Australia, Australia,

2003. Australian Computer Society, Inc.

[109] W. K. Josephson, E. G. Sirer, and F. B. Schneider. Peer-to-peer authentication with

a distributed single sign-on service. In G. M. Voelker and S. Shenker, editors, Peer-to-

Peer Systems III, Third International Workshop, IPTPS 2004, La Jolla, CA, USA,

February 26-27, 2004, Revised Selected Papers, volume 3279 of Lecture Notes in Com-

puter Science, pages 250–258. Springer, 2005.

[110] A. Juels, M. Luby, and R. Ostrovsky. Security of blind digital signatures. In B. S.

Kaliski, editor, Advances in Cryptology – CRYPTO ’97, volume 1294 of Lecture Notes

in Computer Science, pages 150–164, London, UK, 1997. Springer-Verlag.

[111] J. Katz and M. Yung. Complete characterization of security notions for probabilistic

private-key encryption. In STOC ’00: Proceedings of the thirty-second annual ACM

symposium on theory of computing, pages 245–254. ACM Press, 2000.

213



BIBLIOGRAPHY

[112] C. Kaufman, R. Perlman, and M. Speciner. Network Security: Private Communication

in a Public World. Prentice Hall, 2nd edition, 2002.

[113] R. A. Kemmerer, C. Meadows, and J. K. Millen. Three systems for cryptographic

protocol analysis. Journal of Cryptology, 7(2):79–130, 1994.

[114] S. T. Kent. Encryption-based protection protocols for interactive user-computer com-

munication. Laboratory for Computer Science Technical Report 162, Massachusetts

Institute of Technology, May 1976.

[115] S. T. Kent. Encryption-based protection for interactive user/computer communication.

In Proceedings of the fifth symposium on data communications, pages 5.7–5.13. ACM

Press, 1977.

[116] R. Khare and S. Lawrence. Upgrading to TLS Within HTTP/1.1, 2000.

[117] V. Khu-Smith and C. Mitchell. Using GSM to enhance e-commerce security. In

Proceedings of the Second ACM International Workshop on Mobile Commerce (WMC

’02), pages 75–81, New York, 2002. ACM Press.

[118] N. Koblitz and A. Menezes. Another look at “provable security”. Cryptology ePrint

Archive, Report 2004/152, 2004. http://eprint.iacr.org/.

[119] J. Kohl, B. Neuman, and T. Ts’o. The evolution of the Kerberos authentication

service. In Distributed Open Systems, pages 78–94. IEEE Computer Society Press,

1994.

[120] D. P. Kormann and A. D. Rubin. Risks of the Passport single signon protocol. In

Proceedings of the 9th international World Wide Web conference on computer networks

: the international journal of computer and telecommunications networking, pages 51–

58, Amsterdam, The Netherlands, The Netherlands, 2000. North-Holland Publishing

Co.

[121] H. Krawczyk. Simple forward-secure signatures from any signature scheme. In CCS

’00: Proceedings of the 7th ACM conference on computer and communications security,

pages 108–115, New York, NY, USA, 2000. ACM Press.

[122] L. Law, A. Menezes, M. Qu, J. Solinas, and S. Vanstone. An efficient protocol for

authenticated key agreement. Des. Codes Cryptography, 28(2):119–134, 2003.

[123] C.-C. Lee, W.-P. Yang, and M.-S. Hwang. Untraceable blind signature schemes based

on discrete logarithm problem. Fundam. Inf., 55(3-4):307–320, 2003.

214



BIBLIOGRAPHY

[124] J.-Y. Lee, J. H. Cheon, and S. Kim. An analysis of proxy signatures: Is a secure

channel necessary? In M. Joye, editor, Topics in Cryptology - CT-RSA 2003, The

Cryptographers’ Track at the RSA Conference 2003, San Francisco, CA, USA, April

13-17, 2003, Proceedings, volume 2612 of Lecture Notes in Computer Science, pages

68–79. Springer, 2003.

[125] B. N. Levine, M. Reiter, C. Wang, and M. Wright. Stopping timing attacks in low-

latency mix-based systems. In A. Juels, editor, Proceedings of Financial Cryptography,

8th International Conference, FC 2004, Key West, FL, USA, February 9-12, volume

3110 of Lecture Notes in Computer Science. Springer, Berlin, 2004.

[126] B. Li, S. Ge, T. Wo, and D. Ma. Research and implementation of single sign-on

mechanism for ASP pattern. In H. Jin, Y. Pan, N. Xiao, and J. Sun, editors, Grid and

Cooperative Computing - GCC 2004: Third International Conference, Wuhan, China,

October 21-24, 2004. Proceedings, volume 3251 of Lecture Notes in Computer Science,

pages 161–166. Springer, 2004.

[127] Liberty Alliance. Identity Systems and Liberty Specification, version 1.1, Interoper-

ability, January 2003.

[128] Liberty Alliance. Liberty Architecture Glossary v.1.2-04, April 2003.

[129] Liberty Alliance. Liberty Authentication Context Specification v.1.2-05, April 2003.

[130] Liberty Alliance. Liberty ID-FF Architecture Overview v.1.2-03, April 2003.

[131] Liberty Alliance. Liberty ID-FF Bindings and Profiles Specification v.1.2-08, April

2003.

[132] Liberty Alliance. Liberty ID-FF Implementation Guidelines v.1.2-02, April 2003.

[133] Liberty Alliance. Liberty ID-FF Protocols and Schema Specification v.1.2-08, April

2003.

[134] M. Linden and I. Vilpola. An empirical study on the usability of logout in a single

sign-on system. In R. H. Deng, F. Bao, H. Pang, and J. Zhou, editors, Proceedings

of the First Information Security Practice and Experience Conference (ISPEC 2005),

volume 3439 of Lecture Notes in Computer Science, pages 243–254. Springer Verlag,

Berlin, 2005.

[135] G. Lowe. An attack on the Needham-Schroeder public-key authentication protocol.

Inf. Process. Lett., 56(3):131–133, 1995.

215



BIBLIOGRAPHY

[136] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using FDR.

In T. Margaria and B. Steffen, editors, Tools and Algorithms for Construction and

Analysis of Systems, Second International Workshop, TACAS ’96, Passau, Germany,

March 27-29, 1996, Proceedings, volume 1055 of Lecture Notes in Computer Science,

pages 147–166. Springer-Verlag, 1996.

[137] A. Lysyanskaya. Signature schemes and applications to cryptographic protocol design.

PhD thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts, Sep-

tember 2002.

[138] A. Lysyanskaya, R. L. Rivest, A. Sahai, and S. Wolf. Pseudonym systems. In H. M.

Heys and C. M. Adams, editors, Selected Areas in Cryptography, 6th Annual Inter-

national Workshop, SAC’99, Kingston, Ontario, Canada, August 9-10, 1999, Pro-

ceedings, volume 1758 of Lecture Notes in Computer Science, pages 184–199. Springer

Verlag, Berlin, 2000.

[139] W. Mao. Modern Cryptography: Theory and Practice. Prentice Hall PTR, 2003.

[140] C. Meadows. Applying formal methods to the analysis of a key management protocol.

Journal of Computer Security, 1(1):5–36, 1992.

[141] A. Menezes, M. Qu, and S. Vanstone. Some new key agreement protocols providing

mutual implicit authentications. Proceedings of the 2nd Workshop on Selected Areas

in Cryptography (SAC’95), Carleton University, Ottawa, Canada, May 1995, pages

22–32, May 1995.

[142] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied Cryp-

tography. CRC Press, Boca Raton, 1997.

[143] R. C. Merkle. Secure communications over insecure channels. Commun. ACM,

21(4):294–299, 1978.

[144] Microsoft. Microsoft .NET Passport Review Guide, November 2002.

[145] S. Nanavati, M. Thieme, and R. Nanavati. Biometrics: Identity Verification in a

Networked World. Wiley, March 2002.

[146] National Bureau of Standards, U.S. Department of Commerce, Washington D.C.

Federal Information Processing Standards Publication 46-3: Data Encryption Stan-

dard(DES), October 1999.

216



BIBLIOGRAPHY

[147] National Institute of Standards and Technology. Federal Information Processing Stan-

dards Publication 180-1: Secure Hash Standard, April 1995.

[148] R. M. Needham and M. D. Schroeder. Using encryption for authentication in large

networks of computers. Communications of the ACM, 21(12):993–999, 1978.

[149] OASIS, http://www.oasis-open.org/committees/security/. Security Services Technical

Commitee Homepage.

[150] OASIS. Assertions and Protocol for the OASIS Security Assertion Markup Language

(SAML), May 2002.

[151] R. Oppliger. Microsoft .NET passport and identity management. Information Security

Technical Report, 9(1):26–34, January–March 2004.

[152] P. Pagliusi and C. J. Mitchell. PANA/GSM authentication for Internet access. In

Proceedings of SympoTIC ’03, Joint IST Workshop on Mobile Future and Symposium

on Trends in Communications, pages 146–152. IEEE Press, October 2003.

[153] A. Pashalidis. A cautionary note on automatic proxy configuration. In M. Hamza,

editor, IASTED International Conference on Communication, Network, and Informa-

tion Security, CNIS 2003, New York, USA, December 10-12, 2003, Proceedings, pages

153–158. ACTA Press, December 2003.

[154] A. Pashalidis and C. Mitchell. A security model for anonymous credential systems. In

S. J. Y. Deswarte, F. Cuppens and L. Wang, editors, Information Security Manage-

ment, Education and Privacy, Proceedings of the 3rd Working Conference on Privacy

and Anonymity in Networked and Distributed Systems (I-NetSec’04), pages 183–199.

Kluwer Academic Publishers, August 2004.

[155] A. Pashalidis and C. Mitchell. Using EMV cards for single sign-on. In S. K. Katsikas,

S. Gritzalis, and J. Lopez, editors, Public Key Infrastructure, First European PKI-

Workshop: Research and Applications, EuroPKI 2004, Samos Island, Greece, June

25-26, 2004, Proceedings, volume 3093 of Lecture Notes in Computer Science, pages

205–217. Springer Verlag, June 2004.

[156] A. Pashalidis and C. J. Mitchell. Single sign-on using trusted platforms. In C. Boyd

and W. Mao, editors, Information Security, 6th International Conference, ISC 2003,

Bristol, UK, October 1-3, 2003, Proceedings, volume 2851 of Lecture Notes in Com-

puter Science, pages 54–68. Springer-Verlag, October 2003.

217



BIBLIOGRAPHY

[157] A. Pashalidis and C. J. Mitchell. A taxonomy of single sign-on systems. In R. Safavi-

Naini and J. Seberry, editors, Information Security and Privacy – 8th Australasian

Conference, ACISP, volume 2727 of Lecture Notes in Computer Science, pages 249–

264. Springer Verlag, July 2003.

[158] A. Pashalidis and C. J. Mitchell. Using GSM/UMTS for single sign-on. In Proceedings

of SympoTIC ’03, Joint IST Workshop on Mobile Future and Symposium on Trends

in Communications, Bratislava, Slovakia, pages 138–145. IEEE Press, October 2003.

[159] A. Pashalidis and C. J. Mitchell. Impostor: A single sign-on system for use from

untrusted devices. In Proceedings of the IEEE Globecom Conference, Dallas, Texas,

USA, November 29 – December 3. IEEE Press, 2004.

[160] A. Pashalidis and C. J. Mitchell. Single sign-on using trusted platforms. In C. J.

Mitchell, editor, Trusted Computing, chapter 6, pages 175–193. IEE Press, London,

2005.

[161] A. Pashalidis and C. J. Mitchell. Limits to anonymity when using credentials. In

Proceedings of the 12th International Workshop on Security Protocols, Cambridge,

U.K., Lecture Notes in Computer Science. Springer Verlag, to appear.

[162] T. P. Pedersen and B. Pfitzmann. Fail-stop signatures. SIAM J. Comput., 26(2):291–

330, 1997.

[163] G. Persiano and I. Visconti. An efficient and usable multi-show non-transferable anony-

mous credential system. In A. Juels, editor, Proceedings of the Eighth International

Financial Cryptography Conference (FC ’04), volume 3110 of Lecture Notes in Com-

puter Science, pages 196–211, 2004.

[164] A. Pfitzmann and M. Köhntopp. Anonymity, unobservability, and pseudonymity -

a proposal for terminology. In H. Federrath, editor, Designing Privacy Enhancing

Technologies, International Workshop on Design Issues in Anonymity and Unobserv-

ability, July 2000, number 2009 in Lecture Notes in Computer Science, pages 141–160.

Springer-Verlag, Berlin, 2001.

[165] B. Pfitzmann. Privacy in enterprise identity federation — policies for Liberty 2 single

sign on. Information Security Technical Report, 9(1):45–58, January–March 2004.

[166] B. Pfitzmann. Privacy in enterprise identity federation — policies for Liberty single

signon. In Proceeings: 3rd Workshop on Privacy Enhancing Technologies (PET 2003),

218



BIBLIOGRAPHY

Dresden, March 2003, Lecture Notes in Computer Science. Springer-Verlag, Berlin, to

appear.

[167] B. Pfitzmann and M. Waidner. Privacy in browser-based attribute exchange. In S. Ja-

jodia and P. Samarati, editors, WPES ’02: Proceedings of the 2002 ACM workshop

on Privacy in the Electronic Society, pages 52–62, New York, NY, USA, 2002. ACM

Press.

[168] B. Pfitzmann and M. Waidner. Analysis of Liberty single-sign-on with enabled clients.

Internet Computing, 7(6):38–44, November/December 2003.

[169] D. Pointcheval and J. Stern. Provably secure blind signature schemes. In M. Y. Rhee

and K. Kim, editors, Advances in Cryptology — Proceedings of ASIACRYPT ’96,

volume 1163 of Lecture Notes in Computer Science, pages 252–265. Springer-Verlag,

1996.

[170] G. J. Popek and C. S. Kline. Encryption and secure computer networks. ACM Comput.

Surv., 11(4):331–356, 1979.

[171] J. Postel and J. Reynolds. RFC 959: File Transfer Protocol. Internet Engineering

Task Force, October 1985.

[172] S. Prabhakar, S. Pankanti, and A. K. Jain. Biometric recognition: Security and privacy

concerns. IEEE Security and Privacy, 1(2):33–42, March-April 2003.

[173] M. Rabin. Digitalized signatures and public-key functions as intractable as factoriza-

tion. Technical Report LCS/TR-212, MIT Lab. for Computer Science, 1979.

[174] C. Radu. Implementing Electronic Card Payment Systems. Computer Security Series.

Artech House, Norwood, 2002.

[175] A. J. Rae and L. P. Wildman. A taxonomy of attacks on secure devices. In J. Slay,

editor, Proceedings of the Fourth Australian Information Warfare and IT Security

Conference, pages 251–263, 2003.

[176] K. Rannenberg. Identity management in mobile cellular networks and related appli-

cations. Information Security Technical Report, 9(1):77–85, January–March 2004.

[177] J.-F. Raymond. Traffic analysis: Protocols, attacks, design issues, and open prob-

lems. In H. Federrath, editor, Designing Privacy Enhancing Technologies, Interna-

tional Workshop on Design Issues in Anonymity and Unobservability, Berkeley, CA,

219



BIBLIOGRAPHY

USA, July 25-26, 2000, Proceedings, volume 2009 of Lecture Notes in Computer Sci-

ence, pages 10–29. Springer-Verlag, Berlin, 2001.

[178] M. Rennhard and B. Plattner. Introducing MorphMix: Peer-to-Peer based Anonymous

Internet Usage with Collusion Detection. In Proceedings of the Workshop on Privacy in

the Electronic Society (WPES 2002), Washington, DC, USA, November 2002. ACM.

[179] E. Rescorla. HTTP Over TLS, 2000.

[180] E. Rescorla. SSL and TLS. Addison-Wesley, Reading, Massachusetts, 2001.

[181] V. Samar. Single sign-on using cookies for web applications. In IEEE 8th International

Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises,

pages 158–164. IEEE Press, 1999.

[182] F. Satoh and T. Itoh. Single sign on architecture with dynamic tokens. In Proceedings

of the 2004 International Symposium on Applications and the Internet (SAINT’04),

pages 197–200. IEEE Press, 2004.

[183] A. Serjantov. On the anonymity of anonymity systems. Technical Report UCAM-CL-

TR-604, Computer Laboratory, University of Cambridge, U.K., October 2004.

[184] A. Serjantov and G. Danezis. Towards an information theoretic metric for anonymity.

In R. Dingledine and P. F. Syverson, editors, Privacy Enhancing Technologies, Second

International Workshop, PET 2002, San Francisco, CA, USA, April 14-15, 2002,

Revised Papers, volume 2482 of Lecture Notes in Computer Science, pages 41–53.

Springer-Verlag, Berlin, 2002.

[185] G. J. Simmons. Symmetric and asymmetric encryption. ACM Comput. Surv.,

11(4):305–330, 1979.

[186] M. Sipser. Introduction to the Theory of Computation. PWS Publishing Company,

1997.

[187] M. Small. Business and technical motivation for identity management. Information

Security Technical Report, 9(1):6–21, January–March 2004.

[188] N. Smart. Cryptography, An Introduction. McGraw-Hill, 2002.

[189] I. Spagui. Secured Single Signon in a Client/Server Environment. Vervante Corporate

Publishing, 1994.

220



BIBLIOGRAPHY

[190] W. Stallings. Cryptography and network security (2nd ed.): principles and practice.

Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1999.

[191] S. Steinbrecher and S. Koepsell. Modelling unlinkability. In R. Dingledine, editor,

Privacy Enhancing Technologies, Third International Workshop, PET 2003, Dresden,

Germany, March 26-28, 2003, Revised Papers, volume 2760 of Lecture Notes in Com-

puter Science, pages 32–47. Springer-Verlag, Berlin, 2003.

[192] J. G. Steiner, B. C. Neuman, and J. Schiller. Kerberos: An authentication service for

open network systems. In Proceedings of the Winter 1988 Usenix Conference, pages

191–201. Usenix, February 1988.

[193] R. J. Sutton. Secure Communications: Applications and Management. John Wiley &

Sons, 2002.

[194] P. F. Syverson and P. C. V. Oorschot. On unifying some cryptographic protocol

logics. In Proceedings of the IEEE Computer Security Foundations Workshop VII,

pages 14–29. IEEE Computer Society Press, 1994.

[195] N. T. Trask and M. V. Meyerstein. Smart cards in electronic commerce. BT Technology

Journal, 17(3):57–66, July 1999.

[196] Trusted Computing Group. TCG TPM Specification Version. 1.2 — Structures of the

TPM, 2003.

[197] Trusted Computing Group. TCG TPM Specification Version. 1.2 — TPM Commands,

2003.

[198] Trusted Computing Group. TCG TPM Specification Version. 1.2 Design Principles,

2003.

[199] U. Uludag and A. Jain. Attacks on biometric systems: a case study in fingerprints. In

Proceedings of SPIE-EI 2004, pages 622–633, San Jose, CA, January 2004. SPIE.

[200] K. Vedder. GSM: Security, services, and the SIM. In B. Preneel and V. Rijmen,

editors, State of the Art in Applied Cryptography, volume 1528 of Lecture Notes in

Computer Science, pages 224–240. Springer-Verlag, Berlin, 1997.

[201] E. R. Verheul. Self-blindable credential certificates from the Weil pairing. In C. Boyd,

editor, ASIACRYPT ’01: Proceedings of the 7th International Conference on the The-

ory and Application of Cryptology and Information Security, volume 2248 of Lecture

Notes in Computer Science, pages 533–551. Springer Verlag, Berlin, 2001.

221



BIBLIOGRAPHY

[202] A. Volchkov. Revisiting single sign-on: A pragmatic approach in a new context. IT

Professional, 3(1):39–45, January/February 2001.

[203] M. Walker and T. Wright. Security. In F. Hillebrand, editor, GSM and UMTS: The

creation of global mobile communication, chapter 14, pages 385–406. John Wiley &

Sons, 2002.

[204] J. Wayman, A. K. Jain, D. Maltoni, and D. Maio. Biometric Systems: Technology,

Design and Performance Evaluation. Springer Verlag, 2005.

[205] M. J. Williamson. Thoughts on cheaper non-secret encryption. Report, CESG, August

1976.

[206] J. D. Woodward Jr., N. M. Orlans, and P. T. Higgins. Biometrics: Identity Assurance

In The Information Age. McGraw Hill, January 2003.

[207] World Wide Web Consortium. The Platform for Privacy Preferences 1.0 (P3P 1.0)

Specification, April 2002.

222



Part IV

Appendices

223



Appendix A

Impostor source code

This appendix provides the source code of Impostor, the SSO scheme described in chapter 7.

The Impostor implementation is divided into Java classes. Each of the subsections below

contains the source code of one of these classes.

A.1 ChallengeResponseManager

/∗
Copyright (C) 2003 Andreas Pa sha l i d i s

This l i b r a r y i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or
modify i t under the terms o f the GNU Lesse r General Publ ic
L i cense as pub l i shed by the Free Software Foundation ; e i t h e r
v e r s i on 2 .1 o f the License , or ( at your opt ion ) any l a t e r v e r s i on .

This l i b r a r y i s d i s t r i b u t e d in the hope that i t w i l l be use fu l ,
but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesse r General Publ ic L i cense f o r more d e t a i l s .

You should have r e c e i v ed a copy o f the GNU Lesse r General Publ ic
L i cense along with t h i s l i b r a r y ; i f not , wr i t e to the Free Software
Foundation , Inc . , 59 Temple Place , Su i t e 330 , Boston , MA 02111−1307 USA

∗/

package impostor ;

/∗∗
∗ This i n t e r f a c e d e f i n e s the methods that a c l a s s must implement in order to

prov ide the
∗ f u n c t i o n a l i t y o f c r e a t i n g cha l l e n g e s f o r the Impostor daemon and v e r i f y i n g

r e sponse s that
∗ come back from use r s .
∗/

public interface ChallengeResponseManager
{

/∗∗
∗ The Impostor daemon c a l l s t h i s method in order to get the next cha l l eng e f o r
∗ ca r ry ing out user au then t i c a t i on . Note that i t i s independent o f any

p a r t i c u l a r

224



∗ user s i n c e the cha l l enge i s i s s u ed BEFORE the user has a chance to
∗ i d e n t i f y him/ h e r s e l f .
∗/

Object getNewChallenge ( ) ;

/∗∗
∗ The Impostor daemon c a l l s t h i s method in order to determine whether or not a

g iven
∗ user i d e n t i f i e r i s v a l i d (known) . At the moment , the i d e n t i f i e r
∗ i s a S t r ing ob j e c t that i s r e t r i e v e d from the user input o f the Impostor

l o g i n
∗ page ( l o g i n . html ) .
∗/

boolean i s V a l i d I d e n t i f i e r ( Object i d e n t i f i e r ) ;

/∗∗
∗ The Impostor daemon c a l l s t h i s method in order to v e r i f y whether or not the
∗ re sponse from the user i d e n t i f i e d by the g iven i d e n t i f i e r matches the
∗ given cha l l eng e . The cha l l eng e ob j e c t had been p r ev i ou s l y acqu i red
∗ us ing the getNewChallenge method . The i d e n t i f i e r and response parameters
∗ are S t r ing ob j ec t s , as entered by the user in to the Impostor l o g i n page (

l o g i n . html ) .
∗/

boolean ver i fyResponse ( Object i d e n t i f i e r , Object cha l l enge , Object re sponse ) ;
}

A.2 ContentFilter

/∗
Copyright (C) 2003 Andreas Pa sha l i d i s

This l i b r a r y i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or
modify i t under the terms o f the GNU Lesse r General Publ ic
L i cense as pub l i shed by the Free Software Foundation ; e i t h e r
v e r s i on 2 .1 o f the License , or ( at your opt ion ) any l a t e r v e r s i on .

This l i b r a r y i s d i s t r i b u t e d in the hope that i t w i l l be use fu l ,
but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesse r General Publ ic L i cense f o r more d e t a i l s .

You should have r e c e i v ed a copy o f the GNU Lesse r General Publ ic
L i cense along with t h i s l i b r a r y ; i f not , wr i t e to the Free Software
Foundation , Inc . , 59 Temple Place , Su i t e 330 , Boston , MA 02111−1307 USA

∗/

package impostor ;

/∗∗
∗ This i n t e r f a c e d e f i n e s the methods that a c l a s s must implement in order to

prov ide the
∗ f u n c t i o n a l i t y o f l ook ing for , and removing , s e n s i t i v e mate r i a l from HTTP

headers and HTML pages
∗ sent from webs i t e s back to the user ’ s browser .
∗/

public interface ContentF i l t e r
{

/∗∗
∗ The Impostor daemon c a l l s t h i s method in order to remove s e n s i t i v e

in fo rmat ion
∗ from HTTP headers sent from webs i t e s to the user ’ s browser .
∗/

St r ing fi lterHTTPHeaders ( S t r ing headers ) ;

225



/∗∗
∗ The Impostor daemon c a l l s t h i s method in order to remove s e n s i t i v e

in fo rmat ion
∗ from HTML pages sent from webs i t e s to the user ’ s browser . The method i s

c a l l e d on
∗ a l i n e−by−l i n e ba s i s .

∗/
St r ing f i l terWebPageLine ( S t r ing cur rentL ine ) ;

}

A.3 EmptyManager

/∗
Copyright (C) 2003 Andreas Pa sha l i d i s

This l i b r a r y i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or
modify i t under the terms o f the GNU Lesse r General Publ ic
L i cense as pub l i shed by the Free Software Foundation ; e i t h e r
v e r s i on 2 .1 o f the License , or ( at your opt ion ) any l a t e r v e r s i on .

This l i b r a r y i s d i s t r i b u t e d in the hope that i t w i l l be use fu l ,
but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesse r General Publ ic L i cense f o r more d e t a i l s .

You should have r e c e i v ed a copy o f the GNU Lesse r General Publ ic
L i cense along with t h i s l i b r a r y ; i f not , wr i t e to the Free Software
Foundation , Inc . , 59 Temple Place , Su i t e 330 , Boston , MA 02111−1307 USA

∗/

package impostor ;

/∗∗ This c l a s s prov ide s s imple or empty implementat ions o f the i n t e r f a c e s o f the <
code>impostor </code> package .

∗ I t i s used i n t e r n a l l y by an Impostor daemon that i s i n s t a n t i a t e d without a l l
arguments .

∗/
class EmptyManager implements ContentFi l te r , ChallengeResponseManager , UserManager ,

RequestRecognizer

{
// Simple or nu l l implementat ions o f Impostor i n t e r f a c e s

public St r ing fi lterHTTPHeaders ( S t r ing s t r i n g ) {return s t r i n g ;}
public St r ing f i l terWebPageLine ( S t r ing s t r i n g ) {return s t r i n g ;}
public Object getNewChallenge ( ) {return null ;}
public boolean i s V a l i d I d e n t i f i e r ( Object i d e n t i f i e r ) {return fa l se ;}
public boolean ver i fyResponse ( Object i d e n t i f i e r , Object cha l l enge , Object

re sponse ) {return fa lse ;}
public St r ing ge tUsernameFor Ident i f i e r ( Object i d e n t i f i e r , RequestRecognizer r r )

throws Exception {return null ;}
public St r ing ge tPas swordFor Iden t i f i e r ( Object i d e n t i f i e r , RequestRecognizer r r )

throws Exception {return null ;}
public RequestRecognizer getRequestRecogn ize r Ins tance ( ) {return null ;}
public void i n i t ( S t r ing host , int port , S t r ing r eque s t ) {} ;
public boolean i sRecogn ized ( ) {return fa l se ;}
public St r ing getServiceName ( ) {return null ;}
public St r ing f i l l InUsernameAndPassword ( St r ing username , S t r ing password ){return

null ;}
public St r ing getLogEntry ( ) {return null ;}

}

226



A.4 Impostor

/∗
Copyright (C) 2003 Andreas Pa sha l i d i s

This l i b r a r y i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or
modify i t under the terms o f the GNU Lesse r General Publ ic
L i cense as pub l i shed by the Free Software Foundation ; e i t h e r
v e r s i on 2 .1 o f the License , or ( at your opt ion ) any l a t e r v e r s i on .

This l i b r a r y i s d i s t r i b u t e d in the hope that i t w i l l be use fu l ,
but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesse r General Publ ic L i cense f o r more d e t a i l s .

You should have r e c e i v ed a copy o f the GNU Lesse r General Publ ic
L i cense along with t h i s l i b r a r y ; i f not , wr i t e to the Free Software
Foundation , Inc . , 59 Temple Place , Su i t e 330 , Boston , MA 02111−1307 USA

∗/

package impostor ;

import java . net . ∗ ;
import java . i o . ∗ ;
import java . s e c u r i t y . ∗ ;
import java . s e c u r i t y . c e r t . C e r t i f i c a t e ;
import javax . net . s s l . ∗ ;
import java . u t i l . Vector ;

/∗∗
∗ This c l a s s implements a s imple HTTP proxy daemon with S ing l e Sign−On

f un c t i o n a l i t y in to webs i t e s . I f i t
∗ i s i n s t a n t i a t e d proper ly , i t r e c o gn i z e s HTTP reque s t s that c on s t i t u t e a user ’ s

l o g i n r eque s t i n to
∗ a webs i te . The Impostor daemon then invokes a Challenge−Response au then t i c a t i on

mechanism in order to
∗ authent i ca t e the user . I f s u c c e s s f u l , i t automat i ca l l y f i l l s in the username

and password o f the
∗ authent i ca ted user f o r the webs i te that i s be ing v i s i t e d . In t h i s way the user

w i l l not have to remember
∗ mul t ip l e usernames and passwords f o r d i f f e r e n t webs i tes , and w i l l a l s o be ab le

to l og in to the
∗ webs i t e s without having to type h i s / her password in to the a c c e s s dev i c e he/ she

i s us ing ( t h i s could be ,
∗ f o r example , an untrusted dev i ce in an In t e rn e t c a f e ) . The Impostor daemon

a l s o ” i n t e r c e p t s ” SSL/TLS connec t ions by s e t t i n g
∗ up two separa t e SSL connect ions between the user ’ s browser and the v i s i t e d

webs i te . This way the daemon
∗ i s ab l e to ex t r a c t the HTTP reque s t s that are sent over the SSL/TLS connect ion .

<br> <br>
∗
∗ The daemon needs to have an asymmetric keypa i r and a c e r t i f i c a t e f o r i t s pub l i c

key in order to be ab le to s e t up
∗ SSL connect i ons . This data i s expected to be found in a keys to r e f i l e named <

code>prvkey</code> and the keys to r e
∗ password ( as we l l as the a l i a s password ) i s expected to be ”<code>s e c r e t </code

>”. An easy way to c r e a t e t h i s
∗ keys to r e f i l e i s us ing the command <code>keytoo l −genkey −keyalg RSA −key s i z e

1024 −keys to r e prvkey</code> and
∗ typing <code>s e c r e t </code> whenever asked f o r a password . <br> <br>
∗
∗ The daemon a l s o needs a c c e s s to two html pages , which are expected to be found

in f i l e s named <code>l o g i n . html</code> and
∗ <code>e r r o r . html</code >. These pages need to be cons t ruc ted accord ing to some

227



s imple g u i d e l i n e s and w i l l s e rve as
∗ the Impostor l o g i n and e r r o r pages r e s p e c t i v e l y . <br><br>
∗
∗ This c l a s s extends the {@link java . lang . Thread} c l a s s , which means that the

s t a r t method should be c a l l e d
∗ in order f o r the web proxy daemon to a c t ua l l y s t a r t s e rv ing incoming

connect i ons . I f i t i s d e s i r ed to stop
∗ the daemon , the <code>shutdown</code> method should be used .
∗
∗ @author Andreas Pa sha l i d i s
∗/

public f ina l class Impostor extends Thread
{

protected stat ic f ina l St r ing NAME=”Impostor v . 0 . 9 ” ;
private stat ic f ina l St r ing CONSOLENOTICE=”\n Impostor − wr i t t en by

Andreas Pa sha l i d i s \n −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\nThis
so f tware i s provided \” as i s \” without warranty o f any kind .\nNo
r e s p o n s i b i l i t y w i l l be accepted f o r any negat ive e f f e c t s the \ nso f tware may
cause . You use i t on your own r i s k .\n( ”+NAME+” ) \n” ;

private stat ic f ina l St r ing KEYSTOREFILENAME=”prvkey” ;
private stat ic f ina l St r ing KEYSTOREPASSWORD=” s e c r e t ” ;
private stat ic f ina l java . t ex t . DateFormat df = java . t ex t . DateFormat .

getDateTimeInstance (3 , 2 ) ;

private PrintWriter l og ;
private SSLContext s s l c ;
private ChallengeResponseManager crm ;
private UserManager um;
private ContentF i l t e r c f ;
private ServerSocket s s ;
private boolean i sAc t i v e ;

protected Vector s e n s i t i v e S t r i n g s ;
protected Vector r ep lacementSt r ings ;

/∗∗ Creates an Impostor web proxy that w i l l run on port 8080 and has no extra
f u n c t i o n a l i t y . Log messages w i l l be sent to standard output . ∗/

public Impostor ( ) throws Exception
{

this (8080 , new PrintWriter ( System . out , true ) , new EmptyManager ( ) , new
EmptyManager ( ) , new EmptyManager ( ) ) ;

}

/∗∗ Creates an Impostor web proxy that w i l l run on the s p e c i f i e d port but no
extra f u n c t i o n a l i t y . Log messages w i l l be sent to standard output . ∗/

public Impostor ( int port ) throws Exception
{

this ( port , new PrintWriter ( System . out , true ) , new EmptyManager ( ) , new
EmptyManager ( ) , new EmptyManager ( ) ) ;

}

/∗∗ Creates an Impostor web proxy that w i l l run on the s p e c i f i e d port but no
extra f u n c t i o n a l i t y . Log messages w i l l be sent to the s p e c i f i e d {@link
Pr intWriter } . ∗/

public Impostor ( int port , Pr intWriter l og ) throws Exception
{

this ( port , log , new EmptyManager ( ) , new EmptyManager ( ) , new EmptyManager ( ) ) ;
}

/∗∗ Creates an Impostor web proxy that w i l l run on the s p e c i f i e d port , send log
messages to the s p e c i f i e d {@link Pr intWriter } and w i l l use

∗ the s p e c i f i e d {@link ContentF i l t e r } .
∗/

public Impostor ( int port , Pr intWriter log , ContentF i l t e r c f ) throws Exception
{

228



this ( port , log , new EmptyManager ( ) , new EmptyManager ( ) , c f ) ;
}

/∗∗
∗ This i s the f u l l c on s t ruc to r that prov ide s the maximum f l e x i b i l i t y and

f u n c t i o n a l i t y . I t c r e a t e s an Impostor web proxy
∗ that w i l l run on the s p e c i f i e d port and sent l og messages to the s p e c i f i e d

{@link Pr intWriter } . I t a l s o a l l ows
∗ the c a l l e r to s p e c i f y implementat ions o f a {@link UserManager } , a {@link

ChallengeResponseManager} and a
∗ {@link ContentF i l t e r } .
∗
∗ @param port the port the Impostor proxy s h a l l run on
∗ @param log the {@link Pr intWriter } l og messages s h a l l be sent to
∗ @param um the {@link UserManager} implementation the Impostor s h a l l

use
∗ @param crm the {@link ChallengeResponseManager} implementation the

Impostor s h a l l use
∗ @param c f the {@link ContentF i l t e r } implementation the Impostor

s h a l l use
∗/

public Impostor ( int port , Pr intWriter log , UserManager um,
ChallengeResponseManager crm , ContentF i l t e r c f ) throws Exception

{
System . out . p r i n t l n (CONSOLENOTICE) ;
i f ( port <1 | | port >65535) throw new I l l ega lArgumentExcept ion ( ”Not a va l i d

port number : ”+port ) ;
i f ( l og==null ) throw new Nul lPo interExcept ion ( ”Logger i s nu l l ! ” ) ;
i f (um==null ) throw new Nul lPo interExcept ion ( ”UserMaager i s nu l l ! ” ) ;
i f ( crm==null ) throw new Nul lPo interExcept ion ( ”ChallengeResponseManager i s

nu l l ! ” ) ;
i f ( c f==null ) throw new Nul lPo interExcept ion ( ” ContentF i l t e r i s nu l l ! ” ) ;
this . l og=log ;
this .um=um;
this . crm=crm ;
this . c f=c f ;
l og ( ” I n i t i a l i z i n g SSL Environment . . . ” ) ;
KeyStore ks = KeyStore . g e t In s tance ( KeyStore . getDefaultType ( ) ) ;
ks . load (new Fi leInputStream (KEYSTOREFILENAME) , null ) ;

KeyManagerFactory kmf=KeyManagerFactory . g e t In s tance ( KeyManagerFactory .
getDefau l tAlgor i thm ( ) ) ;

kmf . i n i t ( ks , KEYSTOREPASSWORD. toCharArray ( ) ) ;
KeyManager [ ] kms = kmf . getKeyManagers ( ) ;
s s l c=SSLContext . g e t In s tance ( ”SSL” ) ;
s s l c . i n i t ( kmf . getKeyManagers ( ) , null , null ) ;
s s=new ServerSocket ( ) ;
setDaemon ( true ) ;
l og ( ”Attempting to s t a r t ”+NAME+” on port ”+port+” . . . ” ) ;
s s=new ServerSocket ( port ) ;
i sAc t i v e=fa l se ;
l og (NAME+” i s ready . . . ” ) ;

}

/∗∗
∗ This method has to be c a l l e d in order f o r the Impostor web proxy to s t a r t .
∗/

public f ina l void run ( )
{

i sAc t i v e=true ;
l og (NAME+” i s running . ” ) ;
while ( i sAc t i v e )
{

try
{

229



new Servant ( this , s s . accept ( ) ) ;
} catch ( IOException e )
{

// e . pr intStackTrace ( ) ;
l og ( ”Fata l I /O Exception : ”+e . getMessage ( ) ) ;

}
}

}

/∗∗
∗ As the stop method in {@link Thread} i s deprecated , t h i s method should be

c a l l e d in order
∗ to proper ly stop a running Impostor web proxy .
∗/

public f ina l void shutdown ( ) throws Exception
{

i f ( ! i sAc t i v e ) return ;
l og ( ”Attempting to stop ”+NAME+” . . . ” ) ;
s s . c l o s e ( ) ;
i sAc t i v e=fa l se ;
j o i n ( ) ;
l og (NAME+” stopped . ” ) ;

}

protected f ina l void l og ( S t r ing s ) { l og . p r i n t l n ( ” [ ”+df . format (new java . u t i l . Date ( )
)+” ] ”+s ) ; l og . f l u s h ( ) ;}

protected f ina l SSLContext getSSLContext ( ) {return s s l c ;}
protected f ina l SSLSocketFactory getSSLSocketFactory ( ) {return s s l c .

getSocketFactory ( ) ;}
protected f ina l SSLServerSocketFactory getSSLServerSocketFactory ( ) {return s s l c .

ge tServerSocketFactory ( ) ;}
protected f ina l ChallengeResponseManager getChallengeResponseManager ( ) {return crm

;}
protected f ina l UserManager getUserManager ( ) {return um;}
protected f ina l ContentF i l t e r g e tContentF i l t e r ( ) {return c f ;}

protected f ina l stat ic St r ing readInputStream ( InputStream i s ) throws IOException
{

byte [ ] r ep ly = new byte [ 6 5 5 3 6 ] ;
int s i z e=i s . read ( r ep ly ) ;
i f ( s i z e >0) return new St r ing ( reply , 0 , s i z e ) ; else return null ;

}
}

A.5 LoginHandler

/∗
Copyright (C) 2003 Andreas Pa sha l i d i s

This l i b r a r y i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or
modify i t under the terms o f the GNU Lesse r General Publ ic
L i cense as pub l i shed by the Free Software Foundation ; e i t h e r
v e r s i on 2 .1 o f the License , or ( at your opt ion ) any l a t e r v e r s i on .

This l i b r a r y i s d i s t r i b u t e d in the hope that i t w i l l be use fu l ,
but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesse r General Publ ic L i cense f o r more d e t a i l s .

You should have r e c e i v ed a copy o f the GNU Lesse r General Publ ic
L i cense along with t h i s l i b r a r y ; i f not , wr i t e to the Free Software
Foundation , Inc . , 59 Temple Place , Su i t e 330 , Boston , MA 02111−1307 USA

230



∗/

package impostor ;

import java . u t i l . Vector ;
import java . i o . ∗ ;
import java . net . Socket ;

f ina l class LoginHandler
{

private stat ic f ina l int t o l e r an c e =60; // how many seconds t o l e r an c e ?
private stat ic f ina l St r ing LOGINPAGEFILENAME=” l o g i n . html” ;

private stat ic java . s e c u r i t y . SecureRandom s r = new java . s e c u r i t y . SecureRandom ( ) ;

private Long handle ;
private Object cha l l eng e ;
private Socket s e r v e r ;
private RequestRecognizer r r ;

protected LoginHandler ( Socket se rver , RequestRecognizer rr , Object cha l l eng e )
throws java . net . SocketException , FileNotFoundException , IOException

{
s e r v e r . setKeepAl ive ( true ) ;
this . s e r v e r=s e r v e r ;
this . r r=r r ;
this . handle=new Long ( System . cur r entT imeMi l l i s ( ) ) ;
this . c ha l l eng e = cha l l eng e ;

}

protected Long getHandle ( ) {return handle ;}
protected Object getCha l l enge ( ) {return cha l l eng e ;}

protected boolean i sVa l i d ( )
{

long l a s t I n s t a n t=handle . longValue ( )+to l e r an c e ∗1000 ;
return ( System . cur r entT imeMi l l i s ( )< l a s t I n s t a n t ) ;

}

protected Socket ge tSe rve rSocket ( ) {return s e r v e r ;}

protected RequestRecognizer getRequestRecognizer ( )
{

return r r ;
}

protected St r ing makeLoginPage ( S t r ing cu r r en tS i t e ) throws IOException
{

St r ing page=”HTTP/1 .0 200 OK\ r \nServer : ”+Impostor .NAME+”\ r \nContent−Type :
t ex t /html\ r \n\ r \n” ;

BufferedReader br = new BufferedReader (new Fi leReader (LOGINPAGEFILENAME) ) ;
while ( br . ready ( ) ) page+=br . readLine ( ) ;
br . c l o s e ( ) ;
page=page . r e p l a c eA l l ( ”%Chal lenge%” , cha l l eng e . t oS t r i ng ( ) ) ;
page=page . r e p l a c eA l l ( ”%hand leSt r ing%” , handle . t oS t r i ng ( ) ) ;
page=page . r e p l a c eA l l ( ”%serviceName%” , r r . getServiceName ( ) ) ;
page=page . r e p l a c eA l l ( ”%cu r r en tS i t e%” , cu r r en tS i t e ) ;
return page ;

}

}

231



A.6 RequestHandler

/∗
Copyright (C) 2003 Andreas Pa sha l i d i s

This l i b r a r y i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or
modify i t under the terms o f the GNU Lesse r General Publ ic
L i cense as pub l i shed by the Free Software Foundation ; e i t h e r
v e r s i on 2 .1 o f the License , or ( at your opt ion ) any l a t e r v e r s i on .

This l i b r a r y i s d i s t r i b u t e d in the hope that i t w i l l be use fu l ,
but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesse r General Publ ic L i cense f o r more d e t a i l s .

You should have r e c e i v ed a copy o f the GNU Lesse r General Publ ic
L i cense along with t h i s l i b r a r y ; i f not , wr i t e to the Free Software
Foundation , Inc . , 59 Temple Place , Su i t e 330 , Boston , MA 02111−1307 USA

∗/

package impostor ;

import java . net . ∗ ;
import java . i o . ∗ ;
import java . u t i l . S t r ingToken i ze r ;

/∗∗ I n t e r na l Impostor c l a s s ∗/
f ina l class RequestHandler
{

private St r ing headers , po s tS t r i ng ;
private St r ing scheme , host ;
private int port ;
private boolean i sConnect=false , i sGet=false , i sPo s t=false , i s L o c a l=fa l se ;

protected RequestHandler ( InputStream i s ) throws IOException
{

headers=readHTTPHeaders ( i s ) ;
// we don ’ t support p e r s i s t e n t connect i ons ; so we downgrade to HTTP/1 .0
headers=java . u t i l . regex . Pattern . compi le ( ” accept−encoding : [ ˆ\ r ]∗ ” , 2) . matcher

( headers ) . r e p l a c eF i r s t ( ”Accept−Encoding : I d en t i t y ” ) ;
headers=java . u t i l . regex . Pattern . compi le ( ”HTTP/1 .1 ” ) . matcher ( headers ) .

r e p l a c eF i r s t ( ”HTTP/1 .0 ” ) ;
headers=java . u t i l . regex . Pattern . compi le ( ” connect ion : keep−a l i v e ” , 2) . matcher (

headers ) . r e p l a c eF i r s t ( ”Connection : Close ” ) ;
S t r ingToken i ze r s t = new Str ingToken i ze r ( headers ) ;
S t r ing ac t i on=s t . nextToken ( ) ;
i f ( a c t i on . equa l s ( ”CONNECT” ) )
{

i sConnect=true ;
examineURL( s t . nextToken ( ) ) ;

} else
i f ( a c t i on . equa l s ( ”POST” ) )
{

i sPo s t=true ;
examineURL( s t . nextToken ( ) ) ;
headers=headers . r e p l a c eF i r s t ( scheme+” :// ”+host+” : ”+port , ”” ) ;
headers=headers . r e p l a c eF i r s t ( scheme+” :// ”+host , ”” ) ;
po s tS t r i ng=Impostor . readInputStream ( i s ) ;
// check whether the user j u s t completed the Impostor Login Form
java . u t i l . regex . Matcher m = java . u t i l . regex . Pattern . compi le ( ” impostor=

impostor . s e c ” ) . matcher ( po s tS t r i ng ) ;
i s Lo c a l=m. f i nd ( ) ;

} else
{

232



i sGet=true ;
examineURL( s t . nextToken ( ) ) ;

headers=headers . r e p l a c eF i r s t ( scheme+” :// ”+host+” : ”+port , ”” ) ;
headers=headers . r e p l a c eF i r s t ( scheme+” :// ”+host , ”” ) ;

}
}

private void examineURL( St r ing u r l )
{

port=−1;

// look f o r the ” ://” sub s t r i ng ( which means that we have the scheme )
java . u t i l . regex . Matcher m;
m=java . u t i l . regex . Pattern . compi le ( ” : // ” ) . matcher ( u r l ) ;
boolean hasScheme=m. f i nd ( ) ;

i f ( hasScheme )
{

scheme=ur l . s ub s t r i ng (0 , m. s t a r t ( ) ) ;
m=java . u t i l . regex . Pattern . compi le ( ” : / / [ ˆ : / ] ∗ ” ) . matcher ( u r l ) ;
i f ( !m. f i nd ( ) ) throw new RuntimeException ( ”Could not parse the hostname

out o f t h i s u r l ( ”+ur l+” ) ” ) ;
host=ur l . s ub s t r i ng (m. s t a r t ( ) +3, m. end ( ) ) ;
i f ( u r l . s ub s t r i ng (m. end ( ) , m. end ( ) +1) . equa l s ( ” : ” ) )
{

java . u t i l . S t r ingToken ize r s t = new java . u t i l . S t r ingToken i ze r ( u r l .
s ub s t r i ng (m. end ( ) +1) , ”/” , fa l se ) ;

port=In t eg e r . pa r s e In t ( s t . nextToken ( ) ) ;
}
i f ( port <0)
{

i f ( scheme . equa l s ( ” http ” ) ) port =80;
i f ( scheme . equa l s ( ” https ” ) ) port =447;

}
} else
{

// we dont have the scheme , so scheme = nu l l
// we are expect ing host and port only i f t h i s i s a connect r eque s t ! (

whithout t h i s check we get Nul lPo inte rExcept ions )
i f ( i sConnect )
{

Str ingToken ize r s t=new Str ingToken i ze r ( ur l , ” : ” , fa l se ) ;
host=s t . nextToken ( ) ;
port=In t eg e r . pa r s e In t ( s t . nextToken ( ) ) ;

}
// i f t h i s i s NOT a connect r eque s t i t conta in s probably not the host
// ( i s i t probably a GET reques t f o r a r e l a t i v e URL)

}
}

protected St r ing getRequest ( ) { i f ( po s tS t r i ng==null ) return headers ; else return
headers+pos tS t r i ng ;}

protected St r ing getHeaders ( ) {return headers ;}
protected St r ing ge tPos tSt r ing ( ) {return pos tS t r i ng ;}
protected St r ing getScheme ( ) {return scheme ;}
protected St r ing getHost ( ) {return host ;}
protected int getPort ( ) {return port ;}
protected boolean i s L o c a l ( ) {return i s L o c a l ;}
protected boolean i sGet ( ) {return i sGet ;}
protected boolean i sConnect ( ) {return i sConnect ;}
protected boolean i sPo s t ( ) {return i sPo s t ;}

private stat ic void say ( St r ing s ) {System . out . p r i n t l n ( s ) ;}

233



private stat ic int getPort (URL ur l ) { int temp=ur l . getPort ( ) ; i f ( temp<10) return
u r l . ge tDe fau l tPort ( ) ; else return temp ;}

protected stat ic St r ing readHTTPHeaders ( InputStream i s ) throws IOException
{

byte [ ] r ep ly = new byte [ 4 0 9 6 ] ;
int replyLen = 0 ;
int newl inesSeen = 0 ;
while ( newl inesSeen < 2)
{

int i = i s . read ( ) ;
i f ( i < 0) throw new IOException ( ”Unexpected EOF a f t e r ( ”+new St r ing (

reply , 0 , replyLen )+” ) ” ) ;
i f ( i == ’ \n ’ )
{

newl inesSeen++;
} else
i f ( i != ’ \ r ’ )
{

newl inesSeen = 0 ;
}
r ep ly [ replyLen++] = (byte ) i ;

}
return new St r ing ( reply , 0 , replyLen ) ;

}
}

A.7 RequestRecognizer

/∗
Copyright (C) 2003 Andreas Pa sha l i d i s

This l i b r a r y i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or
modify i t under the terms o f the GNU Lesse r General Publ ic
L i cense as pub l i shed by the Free Software Foundation ; e i t h e r
v e r s i on 2 .1 o f the License , or ( at your opt ion ) any l a t e r v e r s i on .

This l i b r a r y i s d i s t r i b u t e d in the hope that i t w i l l be use fu l ,
but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesse r General Publ ic L i cense f o r more d e t a i l s .

You should have r e c e i v ed a copy o f the GNU Lesse r General Publ ic
L i cense along with t h i s l i b r a r y ; i f not , wr i t e to the Free Software
Foundation , Inc . , 59 Temple Place , Su i t e 330 , Boston , MA 02111−1307 USA

∗/

package impostor ;

/∗∗
∗ This i n t e r f a c e d e f i n e s the methods that a c l a s s must implement in order to

prov ide the
∗ f u n c t i o n a l i t y o f r e c ogn i z i ng HTML reque s t s sent from the user ’ s browser to

webs i t e s .
∗ I t i s the ba s i c f u n c t i o n a l i t y that enab l e s the Impostor daemon to prov ide

S ing l e Sign−On.
∗ For every incoming HTML reques t ( even those over SSL/TLS connect i ons ) the

Impostor daemon f i r s t a cqu i r e s a
∗ RequestRecognizer i n s t anc e
∗ us ing a {@link UserManager } ’ s <code>getRequestRecogn izer Instance </code> method .

I t then c a l l s the RequestRecognizer ’ s
∗ <code>i n i t </code> method in order to i n i t i a l i z e the RequestRecognizer . I f t h i s

234



r eque s t i s r e cogn i z ed as
∗ a user ’ s l o g i n attempt to the website , the <code>i sRecognized </code> method

should re turn true . I f t h i s
∗ i s the case , the Impostor daemon c a l l s the <code>getServiceName</code> and <

code>getLogEntry</code> methods in order to
∗ generate the Impostor l o g i n page and a log entry . Assuming s u c c e s s f u l user

au then t i c a t i on
∗ ( accord ing to the cha l l eng e / response mechanism implemented by the {@link

ChallengeResponseManager }) ,
∗ the Impostor daemon c a l l s the <code>f i l l InUsernameAndPassword </code> method

s p e c i f y i n g a s p e c i f i c username
∗ and password . The method should re turn a va l i d HTTP reques t that r e s u l t s in the

user being
∗ l ogged in to the webs i te under the s p e c i f i e d username .
∗/

public interface RequestRecognizer
{

/∗∗
∗ The Impostor daemon c a l l s t h i s method in order to i n i t i a l i z e the

RequestRecognizer .
∗ I t i s c a l l e d f o r every HTML reques t coming from a user . The parameters
∗ passed to the method i s the host name o f the website , the port number
∗ o f the TCP socket ( t h i s i s t y p i c a l l y 80 f o r HTTP or 447 f o r HTTPS) and the

HTTP
∗ r eque s t i t s e l f . This i n c l ud e s HTML reques t headers and , only in the case
∗ o f a POST request , the POST s t r i n g that f o l l ow s immet iate ly a f t e r the
∗ headers . An implementing c l a s s should ana lyze the r eque s t and determine
∗ whether t h i s i s a l o g i n r eque s t f o r a webs i te or not .
∗/
void i n i t ( S t r ing host , int port , S t r ing r eque s t ) ;

/∗∗
∗ The Impostor daemon c a l l s t h i s method in order to determine whether t h i s

RequestRecognizer
∗ r e cogn i z ed the HTTP reques t with which i t was i n i t i a l i z e d as a l o g i n attempt

in to a
∗ webs i te . The method should re turn f a l s e i f the <code>i n i t </code> method o f

t h i s ob j e c t has not been
∗ c a l l e d yet , or i f the r eque s t was not r e cogn i z ed as a l o g i n attempt . I f t h i s

method re tu rn s
∗ true , the Impostor daemon expect s the remaining methods to re turn non−nu l l

va lue s .
∗/
boolean i sRecogn ized ( ) ;

/∗∗
∗ The Impostor daemon c a l l s t h i s method only i f t h i s RequestRecognizer ’ s <code>

i sRecognized </code> method re tu rn s
∗ t rue . This method should re turn the name o f the s e r v i c e or webs i te t h i s

r e cogn i z ed reque s t
∗ i s a l o g i n attempt f o r . The daemon uses t h i s name in order to generate the

Impostor l o g i n page .
∗/
St r ing getServiceName ( ) ;

/∗∗
∗ A RequestRecognizer must a l s o implement the f u n c t i o n a l i t y to f i l l a g iven

username
∗ and password in to the HTTP reques t with which i s was i n i t i a l i z e d , such that

the r e s u l t i n g HTTP reques t e f f e c t i v e l y
∗ l o g s the s p e c i f i e d username in to the s i t e , us ing the s p e c i f i e d password . The

Impostor daemon
∗ c a l l s t h i s method only i f t h i s RequestRecognizer ’ s <code>i sRecognized </code>

method re tu rn s
∗ t rue . The daemon w i l l c a l l t h i s method only a f t e r a va l i d Impostor user has
∗ s u c c e s s f u l l y authent i ca ted him/ h e r s e l f . ( as determined by the imlementat ion o f

235



a
∗ {@link ChallengeResponseManager }) . The username and password the Impostor

daemon pas se s as parameters
∗ to t h i s method are determined by the implementation o f a {@link UserManager } .
∗/
St r ing f i l l InUsernameAndPassword ( St r ing username , S t r ing password ) ;

/∗∗
∗ The Impostor daemon c a l l s t h i s method in order to s t o r e an entry in a log f o r

t h i s
∗ RequestRecognizer . An implementation should re turn the d e t a i l s o f an HTTP

reques t
∗ i f , o f course , i t has been i n i t i a l i z e d .
∗/
St r ing getLogEntry ( ) ;

}

A.8 Servant

/∗
This c l a s s i s the implements the Servant thread f o r each incoming HTTP reques t ;

i t i s a Thread

Copyright (C) 2003 Andreas Pa sha l i d i s

This l i b r a r y i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or
modify i t under the terms o f the GNU Lesse r General Publ ic
L i cense as pub l i shed by the Free Software Foundation ; e i t h e r
v e r s i on 2 .1 o f the License , or ( at your opt ion ) any l a t e r v e r s i on .

This l i b r a r y i s d i s t r i b u t e d in the hope that i t w i l l be use fu l ,
but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesse r General Publ ic L i cense f o r more d e t a i l s .

You should have r e c e i v ed a copy o f the GNU Lesse r General Publ ic
L i cense along with t h i s l i b r a r y ; i f not , wr i t e to the Free Software
Foundation , Inc . , 59 Temple Place , Su i t e 330 , Boston , MA 02111−1307 USA

∗/
package impostor ;

import java . net . ∗ ;
import java . i o . ∗ ;
import javax . net . s s l . ∗ ;
import java . u t i l . Vector ;

f ina l class Servant extends Thread
{

private stat ic f ina l St r ing ERRORPAGEFILENAME=” e r r o r . html” ;
private stat ic Vector l og inHand l e r s=new Vector ( ) ;
private stat ic long t o t a l =0;
private long id ;
private Socket c l i e n t ;
private Impostor imp ;

protected Servant ( Impostor imp , Socket c l i e n t )
{

this . c l i e n t=c l i e n t ;
this . imp=imp ;
t o t a l++;
id=t o t a l ;
s t a r t ( ) ;

}

236



public void run ( )
{

St r ing c l i e n t S t r i n g=c l i e n t . get InetAddress ( ) . getHostName ( )+” : ”+c l i e n t . getPort
( ) ;

try
{

RequestHandler rh=new RequestHandler ( c l i e n t . getInputStream ( ) ) ;
// imp . l og (” Serv ing reque s t from ”+c l i e n t S t r i n g+” (”+ id+”) ”+rh . getRequest

( ) ) ;

i f ( rh . i s Lo c a l ( ) ) // someone j u s t completed a Impostor Logon Form
{

St r ing r eque s t=rh . getRequest ( ) ;
java . u t i l . regex . Matcher m;
m = java . u t i l . regex . Pattern . compi le ( ” i d e n t i f i e r =[ˆ&]∗” ) . matcher (

r eque s t ) ;
i f ( !m. f i nd ( ) ) throw new RuntimeException ( ”Could not f i nd i d e n t i f i e r

dur ing Impostor Logon ! ” ) ;
S t r ing i d e n t i f i e r=m. group ( ) . s ub s t r i ng (11) ;
m = java . u t i l . regex . Pattern . compi le ( ” cha l l eng e =[ˆ&]∗” ) . matcher (

r eque s t ) ;
i f ( !m. f i nd ( ) ) throw new RuntimeException ( ”Could not f i nd cha l l eng e

during Impostor Logon ! ” ) ;
S t r ing cha l l eng e=m. group ( ) . sub s t r i ng (10) ;
m = java . u t i l . regex . Pattern . compi le ( ” re sponse =[ˆ&]∗” ) . matcher ( r eque s t

) ;
i f ( !m. f i nd ( ) ) throw new RuntimeException ( ”Could not f i nd response

during Impostor Logon ! ” ) ;
S t r ing response=m. group ( ) . sub s t r i ng (9 ) ;
m = java . u t i l . regex . Pattern . compi le ( ” hand leSt r ing =[ˆ&]∗” ) . matcher (

r eque s t ) ;
i f ( !m. f i nd ( ) ) throw new RuntimeException ( ”Could not f i nd response

during Impostor Logon ! ” ) ;
Long handle = new Long (m. group ( ) . sub s t r i ng (13) ) ;
l og ( ” Impostor Login attempt with handle=”+handle+” , i d e n t i f i e r=”+

i d e n t i f i e r+” , cha l l enge=”+cha l l eng e+” and response=”+response ) ;
LoginHandler lh=f indLoginHandler ( handle ) ;
S t r ing errorPage=null ;
i f ( lh==null )
{

errorPage=makeErrorPage ( ”The timestamp ”+handle+” i s not va l i d (
any more ) . ” ) ;

} else
i f ( ! imp . getChallengeResponseManager ( ) . i s V a l i d I d e n t i f i e r ( i d e n t i f i e r ) )
{

i f ( i d e n t i f i e r . equa l s ( ”” ) ) errorPage=makeErrorPage ( ”You did not
s p e c i f y an i d e n t i f i e r . ” ) ; else

errorPage=makeErrorPage ( i d e n t i f i e r+” does not appear to be va l i d
on t h i s system . ” ) ;

} else
i f ( ! imp . getChallengeResponseManager ( ) . ve r i fyResponse ( i d e n t i f i e r , lh .

getCha l l enge ( ) , r e sponse ) )
{

errorPage=makeErrorPage ( ”Access Denied . ” ) ;
}
i f ( errorPage==null )
{

RequestRecognizer r r = lh . getRequestRecognizer ( ) ;
S t r ing username=imp . getUserManager ( ) . ge tUsernameFor Ident i f i e r (

i d e n t i f i e r , r r ) ;
S t r ing password=imp . getUserManager ( ) . g e tPas swordFor Iden t i f i e r (

i d e n t i f i e r , r r ) ;
r eque s t=r r . f i l l InUsernameAndPassword ( username , password ) ;
l og ( ” l ogg ing ”+i d e n t i f i e r+” in to ”+r r . getServiceName ( )+” with

username=”+username+” and password=”+password ) ;

237



// log (” the r eque s t f o r t h i s i s :\n”+reques t ) ;
Socket s e r v e r=lh . ge tServe rSocket ( ) ;
OutputStream os = s e rv e r . getOutputStream ( ) ;
os . wr i t e ( r eque s t . getBytes ( ) ) ;
os . f l u s h ( ) ;
s e rve rToCl i ent ( imp , se rver , c l i e n t ) ;

} else
{

OutputStream os=c l i e n t . getOutputStream ( ) ;
os . wr i t e ( errorPage . getBytes ( ) ) ;
os . f l u s h ( ) ;
c l i e n t . c l o s e ( ) ;

}
} else
i f ( rh . i sConnect ( ) ) // An SSL connect ion i s needed , so l e t ’ s s e t i t up !
{

// f i r s t get a proper SSL socket f a c t o r y .
SSLSocketFactory s f=imp . getSSLSocketFactory ( ) ;

// now take an SSL socket and connect i t to the remote web s e r v e r
SSLSocket s e r v e r=(SSLSocket ) s f . c r ea t eSocke t ( rh . getHost ( ) , rh . getPort ( )

) ;
s e r v e r . setUseClientMode ( true ) ;
s e r v e r . startHandshake ( ) ;

// now say to the c l i e n t that we are ready to upgrade to SSL
OutputStream os ;
os=c l i e n t . getOutputStream ( ) ;
S t r ing proxyResponse=”HTTP/1 .1 200 Connection Estab l i shed \ r \n\ r \n” ;
os . wr i t e ( proxyResponse . getBytes ( ) ) ;
os . f l u s h ( ) ;

// now do a c tua l l y the upgrade to SSL
St r ing c l i e n tHo s t=c l i e n t . get InetAddress ( ) . getCanonicalHostName ( ) ;
int c l i e n tPo r t=c l i e n t . getPort ( ) ;

SSLSocket SSLClient=(SSLSocket ) s f . c r ea t eSocke t ( c l i e n t , c l i en tHos t ,
c l i en tPo r t , true ) ;

SSLClient . setUseClientMode ( fa l se ) ; // we are the s e r v e r o f t h i s SSL
socket

SSLClient . startHandshake ( ) ;

// now get the new HTTP reques t from the c l i e n t
RequestHandler SSLrh=new RequestHandler ( SSLClient . getInputStream ( ) ) ;
S t r ing r eque s t=SSLrh . getRequest ( ) ;

// imp . l og (” Serv ing SSL reques t from ”+c l i e n t S t r i n g+” (”+ id+”) ”+
reques t ) ;

RequestRecognizer r r = imp . getUserManager ( ) .
ge tRequestRecogn izer Ins tance ( ) ;

r r . i n i t ( rh . getHost ( ) , rh . getPort ( ) , r eque s t ) ;

i f ( r r . i sRecogn ized ( ) )
{

l og ( c l i e n t S t r i n g+” : ”+r r . getLogEntry ( ) ) ;
// now we have to ask f o r impostor l o g i n be f o r e f i l l i n g in the

password
LoginHandler lh = new LoginHandler ( se rver , rr , imp .

getChallengeResponseManager ( ) . getNewChallenge ( ) ) ;
showLoginPage ( SSLClient , lh , ” http :// ”+rh . getHost ( ) ) ;
return ;

}

// forward the r eque s t to the s e r v e r
os=s e r v e r . getOutputStream ( ) ;
os . wr i t e ( r eque s t . getBytes ( ) ) ;

238



os . f l u s h ( ) ;

s e rve rToCl i ent ( imp , se rver , SSLClient ) ;
} else
// we have an HTTP GET
{

St r ing r eque s t = rh . getRequest ( ) ;
Socket s e r v e r=new Socket ( rh . getHost ( ) , rh . getPort ( ) ) ;
RequestRecognizer r r = imp . getUserManager ( ) .

ge tRequestRecogn izer Ins tance ( ) ;
r r . i n i t ( rh . getHost ( ) , rh . getPort ( ) , r eque s t ) ;
i f ( r r . i sRecogn ized ( ) )
{

l og ( c l i e n t S t r i n g+” : ”+r r . getLogEntry ( ) ) ;
// now we have to ask f o r impostor l o g i n be f o r e f i l l i n g in the

password
LoginHandler lh = new LoginHandler ( se rver , rr , imp .

getChallengeResponseManager ( ) . getNewChallenge ( ) ) ;
showLoginPage ( c l i e n t , lh , ” http :// ”+rh . getHost ( ) ) ;
return ;

}
OutputStream os=s e rv e r . getOutputStream ( ) ;
os . wr i t e ( r eque s t . getBytes ( ) ) ;
os . f l u s h ( ) ;
s e rve rToCl i ent ( imp , se rver , c l i e n t ) ;

}

} catch ( Exception e )
{

// e . pr intStackTrace ( ) ;
l og ( ”Error : ”+c l i e n t S t r i n g+” ”+e . getMessage ( )+” ( ”+id+” ) . ” ) ;
return ;

}
}

private stat ic void showLoginPage ( Socket c l i e n t , LoginHandler lh , S t r ing
cu r r en tS i t e ) throws IOException

{
l og inHand l e r s . addElement ( lh ) ;
OutputStream os = c l i e n t . getOutputStream ( ) ;
os . wr i t e ( lh . makeLoginPage ( cu r r en tS i t e ) . getBytes ( ) ) ;
os . f l u s h ( ) ;
c l i e n t . c l o s e ( ) ;

}

private stat ic LoginHandler f indLoginHandler (Long handle )
{

LoginHandler lh=null ;
java . u t i l . Enumeration e=log inHand l e r s . e lements ( ) ;
while ( e . hasMoreElements ( ) )
{

LoginHandler t e s t =(LoginHandler ) e . nextElement ( ) ;
i f ( ! t e s t . i sVa l i d ( ) )
{

l og inHand l e r s . removeElement ( t e s t ) ;
} else
i f ( t e s t . getHandle ( ) . equa l s ( handle ) )
{

lh=t e s t ;
}

}
l og inHand l e r s . remove ( lh ) ;
return lh ;

}

239



private stat ic void s e rve rToCl i ent ( Impostor imp , Socket se rver , Socket c l i e n t )
throws IOException , Inter ruptedExcept ion

{
InputStream i s = s e r v e r . getInputStream ( ) ;
OutputStream os = c l i e n t . getOutputStream ( ) ;
S t r ing headers=RequestHandler . readHTTPHeaders ( i s ) ;
java . u t i l . regex . Matcher m;
m = java . u t i l . regex . Pattern . compi le ( ” connect ion : keep−a l i v e ” , 2) . matcher (

headers ) ;
headers=m. r e p l a c eF i r s t ( ”Connection : Close ” ) ;
ContentF i l t e r c f=imp . ge tConten tF i l t e r ( ) ;
headers=c f . f i lterHTTPHeaders ( headers ) ;

// System . out . p r i n t l n (” F i l t e r e d Response Headers :\n”+headers ) ;
os . wr i t e ( headers . getBytes ( ) ) ;
os . f l u s h ( ) ;
m = java . u t i l . regex . Pattern . compi le ( ”Content−Type : t ex t /html” , 2) . matcher (

headers ) ;
i f (m. f i nd ( ) )
{

BufferedReader br = new BufferedReader (new InputStreamReader ( i s ) ) ;
S t r ing th i sL in e=br . readLine ( ) ;
while ( t h i sL i n e !=null )
{

t h i sL i n e=c f . f i l terWebPageLine ( th i sL i n e )+”\ r \n” ;
os . wr i t e ( th i sL i n e . getBytes ( ) ) ;
os . f l u s h ( ) ;
t h i sL i n e=br . readLine ( ) ;

}
os . c l o s e ( ) ;
br . c l o s e ( ) ;
return ;

}
boolean i sAc t i v e=true ;
byte [ ] b u f f e r=new byte [ 3 2 7 6 8 ] ;
int b ;
while ( i sAc t i v e )
{

b=i s . read ( bu f f e r ) ;
i f (b<0)
{

i sAc t i v e=fa l se ;
os . c l o s e ( ) ;

} else
{

os . wr i t e ( bu f f e r , 0 , b ) ;
os . f l u s h ( ) ;

}
}

}

private void l og ( S t r ing s ) {imp . l og ( id+” − ”+s ) ;}

protected stat ic St r ing makeErrorPage ( S t r ing e r r o r ) throws IOException
{

St r ing page=”HTTP/1 .1 200 OK\ r \nServer : ”+Impostor .NAME+”\ r \nContent−Type :
t ex t /html\ r \n\ r \n” ;

BufferedReader br = new BufferedReader (new Fi leReader (ERRORPAGEFILENAME) ) ;
while ( br . ready ( ) ) page+=br . readLine ( ) ;
br . c l o s e ( ) ;
page=page . r e p l a c eA l l ( ”%e r r o r%” , e r r o r ) ;

240



return page ;
}

}

A.9 UserManager

/∗
Copyright (C) 2003 Andreas Pa sha l i d i s

This l i b r a r y i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or
modify i t under the terms o f the GNU Lesse r General Publ ic
L i cense as pub l i shed by the Free Software Foundation ; e i t h e r
v e r s i on 2 .1 o f the License , or ( at your opt ion ) any l a t e r v e r s i on .

This l i b r a r y i s d i s t r i b u t e d in the hope that i t w i l l be use fu l ,
but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesse r General Publ ic L i cense f o r more d e t a i l s .

You should have r e c e i v ed a copy o f the GNU Lesse r General Publ ic
L i cense along with t h i s l i b r a r y ; i f not , wr i t e to the Free Software
Foundation , Inc . , 59 Temple Place , Su i t e 330 , Boston , MA 02111−1307 USA

∗/

package impostor ;

/∗∗
∗ This i n t e r f a c e d e f i n e s the methods that a c l a s s must implement in order to

prov ide the
∗ f u n c t i o n a l i t y o f mapping a given Impostor user to i t s username/password pa i r s

he/ she
∗ maintains at the webs i t e s f o r which S ing l e Sign−On i s to be achieved . A

UserManager
∗ implementation works very c l o s e with a {@link RequestRecognizer } implementation

: the RequestRecognizer
∗ r e c o gn i z e s HTTP reque s t s as l o g i n attemps in to a s p e c i f i c s e t o f webs i tes ,

whi l e
∗ the UserManager knows a l l Impostor u s e r s ’ usernames and passwords f o r exac t l y

t h i s
∗ s e t o f webs i t e s . A UserManager implementation must a l s o o f f e r a method to

c r e a t e
∗ i n s t an c e s o f the {@link RequestRecognizer } implementation t h i s UserManager

works with .
∗
∗/

public interface UserManager
{

/∗∗
∗ The Impostor daemon c a l l s t h i s method in order to determine the username

that the Impostor user
∗ i d e n t i f i e d by the g iven i d e n t i f i e r mainta ins at the webs i te f o r which the

g iven {@link RequestRecognizer }
∗ r e cogn i z ed a l o g i n r eque s t . The i d e n t i f i e r i s a S t r ing object , obta ined from

the user
∗ input from the Impostor l o g i n page , and the RequestRecognizer i s the

RequestRecognizer
∗ i n s t ance that r e cogn i z ed the HTTP reques t as a l o g i n r eque s t i n to a webs i te

.<br>

241



∗
∗ Note that be f o r e c a l l i n g t h i s method the Impostor daemon checks the

v a l i d i t y o f the user i d e n t i f i e r us ing the <code>i sVa l id </code> method
∗ o f the {@link ChallengeResponseManager} implementation with which the

daemon was i n s t a n t i a t e d
∗ Thus , a UserManager and a ChallengeResponseManager have common user

i d e n t i f i e r s : the
∗ i d e n t i f i e r s o f Impostor u s e r s .
∗/

St r ing getUse rnameFor Ident i f i e r ( Object i d e n t i f i e r , RequestRecognizer r r ) throws
Exception ;

/∗∗
∗ The Impostor daemon c a l l s t h i s method in order to determine the password

that the Impostor user
∗ i d e n t i f i e d by the g iven i d e n t i f i e r mainta ins at the webs i te f o r which the

g iven {@link RequestRecognizer }
∗ r e cogn i z ed a l o g i n r eque s t . The i d e n t i f i e r i s a S t r ing object , obta ined from

the user
∗ input from the Impostor l o g i n page , and the RequestRecognizer i s a

RequestRecognizer
∗ implementation p r ev i ou s l y obtained us ing the getRequestRecogn ize r Ins tance

method .
∗/

St r ing ge tPas swordFor Iden t i f i e r ( Object i d e n t i f i e r , RequestRecognizer r r ) throws
Exception ;

/∗∗
∗ A UserManager implementation has to work very c l o s e with a {@link

RequestRecognizer } implementation :
∗ the UserManager implementation knows the usernames and passwords o f Impostor

u s e r s at a s p e c i f i c
∗ s e t o f webs i tes , whi l e the RequestRecognizer implementation r e c o gn i z e s HTTP

lo g i n r eque s t s
∗ f o r exac t l y t h i s s e t o f webs i t e s . This method should re turn a new

RequestRecognizer
∗ i n s t ance o f the RequestRecognizer t h i s UserManager implementation works with

. The Impostor daemon
∗ c a l l s t h i s method f o r every incoming HTTP request , as i t needs a f r e s h

RequestRecognizer .<br>
∗
∗ Note that be f o r e c a l l i n g t h i s method the Impostor daemon checks the

v a l i d i t y o f the user i d e n t i f i e r us ing the <code>i sVa l id </code> method
∗ o f the {@link ChallengeResponseManager} implementation with which the

Impostor was i n s t a n t i a t e d .
∗ Thus , a UserManager and a ChallengeResponseManager have common user

i d e n t i f i e r s : the
∗ i d e n t i f i e r s o f Impostor u s e r s .
∗/

RequestRecognizer getRequestRecogn izer Ins tance ( ) ;
}

242



Appendix B

Source code of peer-to-peer system

This appendix provides the source code of the peer-to-peer synchronisation scheme described

in chapter 10.

The implementation of the scheme is divided into Java classes. Each of the sections below

contains the source code of a number of classes, grouped according to functionality they

provide.

B.1 Protocol Messages

This section provides the source code of the messages that are used by the protocols of the

scheme.

/∗
Copyright (C) 2003 Andreas Pa sha l i d i s

This l i b r a r y i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or
modify i t under the terms o f the GNU Lesse r General Publ ic
L i cense as pub l i shed by the Free Software Foundation ; e i t h e r
v e r s i on 2 .1 o f the License , or ( at your opt ion ) any l a t e r v e r s i on .

This l i b r a r y i s d i s t r i b u t e d in the hope that i t w i l l be use fu l ,
but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesse r General Publ ic L i cense f o r more d e t a i l s .

You should have r e c e i v ed a copy o f the GNU Lesse r General Publ ic
L i cense along with t h i s l i b r a r y ; i f not , wr i t e to the Free Software
Foundation , Inc . , 59 Temple Place , Su i t e 330 , Boston , MA 02111−1307 USA

∗/

package p ro t o c o l s ;

import java . net . ∗ ;
import java . i o . ∗ ;

243



/∗∗
∗ This c l a s s d e f i n e s a s t r u c tu r e f o r contac t ing In t e rn e t hos t s .
∗ I t i s a ho lder f o r an java . net . InetAddress and a port number .
∗
∗ @author Andreas Pa sha l i d i s
∗/

public f ina l class IpAndPort implements S e r i a l i z a b l e
{

private java . net . InetAddress ipaddr ;
private int port ;
public IpAndPort ( java . net . InetAddress ad , int port )
{

this . ipaddr=ad ;
this . port=port ;

}

public java . net . InetAddress getAddr ( )
{

return ipaddr ;
}
public int getPort ( )
{

return port ;
}

public boolean equa l s ( IpAndPort adr )
{

i f ( adr . getPort ( ) !=port ) return fa l se ;
i f ( ! ( adr . getAddr ( ) . getHostAddress ( ) . equa l s ( ipaddr . getHostAddress ( ) ) ) ) return

fa l se ;
return true ;

}

public St r ing toS t r i ng ( )
{

return ipaddr . getHostAddress ( )+” : ”+port ;
}

}

/∗∗
∗ This c l a s s i s the s up e r c l a s s o f a l l p r o to co l Messages .
∗/

package p ro t o c o l s ;

public class Message extends Object implements java . i o . S e r i a l i z a b l e
{

public int ve r s i on ;
}

/∗∗
∗ This c l a s s r ep r e s en t a g ene r i c p ro to co l message that i n d i c a t e s
∗ su c c e s s or f a i l u r e , from the sender ’ s po int o f view .
∗/

package p ro t o c o l s ;

public class MessageBinary extends Message
{

public boolean su c c e s s ;
public St r ing errorMessage ;

public MessageBinary (boolean succes s , S t r ing errorMessage )
{

ve r s i on =1;

244



this . s u c c e s s=suc c e s s ;
this . e r rorMessage=errorMessage ;

}
}

/∗∗
∗ This c l a s s r ep r e s en t a g ene r i c p ro to co l message that i n d i c a t e s
∗ su c c e s s or f a i l u r e , from the sender ’ s po int o f view .
∗/

package p ro t o c o l s . d i s c ov e r ;

public class DiscoveryRequest extends p ro t o c o l s . Message
{

public int low , high ;

public DiscoveryRequest ( int low , int high )
{

ve r s i on =1;
this . low=low ;
this . high=high ;

}
}

/∗∗
∗ This c l a s s r ep r e s en t a g ene r i c p ro to co l message that i n d i c a t e s
∗ su c c e s s or f a i l u r e , from the sender ’ s po int o f view .
∗/

package p ro t o c o l s . d i s c ov e r ;

public class DiscoveryReply extends p ro t o c o l s . Message
{

public java . u t i l . Vector GMRecords ;
public DiscoveryReply ( java . u t i l . Vector gmr)
{

ve r s i on =1;
this . GMRecords=gmr ;

}
}

/∗∗
∗ This c l a s s r ep r e s en t a g ene r i c p ro to co l message that i n d i c a t e s
∗ su c c e s s or f a i l u r e , from the sender ’ s po int o f view .
∗/

package p ro t o c o l s . echo ;

public class MessageEcho extends p ro t o c o l s . Message
{

public boolean echo ;
public long time ;

public MessageEcho (boolean echo , long time )
{

ve r s i on =1;
this . echo=echo ;
this . time=time ;

}
}

/∗∗
∗ This c l a s s r ep r e s en t a g ene r i c p ro to co l message that i n d i c a t e s
∗ su c c e s s or f a i l u r e , from the sender ’ s po int o f view .

245



∗/

package p ro t o c o l s . j o i n ;

public class JoinRequest extends p ro t o c o l s . Message
{

public int min , max , port ;
public JoinRequest ( int min , int max , int port )
{

ve r s i on =1;
this . min=min ;
this .max=max ;
this . port=port ;

}
}

/∗∗
∗ This c l a s s r ep r e s en t a g ene r i c p ro to co l message that i n d i c a t e s
∗ su c c e s s or f a i l u r e , from the sender ’ s po int o f view .
∗/

package p ro t o c o l s . j o i n ;

public class JoinReply extends p ro t o c o l s . Message
{

public boolean su c c e s s ;
public java . u t i l . Vector userRecords ;
public St r ing errorMessage ;
public int groupSize ;
public p ro t o c o l s . IpAndPort ipap ;

public JoinReply (boolean succes s , S t r ing errorMessage , java . u t i l . Vector
userRecords , int groupSize , p r o t o c o l s . IpAndPort ipap )

{
ve r s i on =1;
this . s u c c e s s=suc c e s s ;
this . e r rorMessage=errorMessage ;
this . userRecords=userRecords ;
this . g roupSize=groupSize ;
this . ipap=ipap ;

}
}

/∗∗
∗ This c l a s s r ep r e s en t p ro to co l message 1 o f the r e g i s t e r p ro to co l .
∗ I t i s s ent from a Group Manager to a Discovery Server . I t s purpose
∗ i s f o r the Discovery Server to l i s t the Group Manager in h i s d i r e c t o r y .
∗/

package p ro t o c o l s . r e g i s t e r ;

public class Regi s terRequest extends p ro t o c o l s . Message
{

public int groupSize ;
public int port ;

public Regi s terRequest ( int groupSize , int port )
{

ve r s i on =1;
this . g roupSize=groupSize ;
this . port=port ;

}
}

246



B.2 Plain Member

This section provides the client source code, i.e. the implementation of the Plain group

Member (PM) role.

/∗
Copyright (C) 2003 Andreas Pa sha l i d i s

This l i b r a r y i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or
modify i t under the terms o f the GNU Lesse r General Publ ic
L i cense as pub l i shed by the Free Software Foundation ; e i t h e r
v e r s i on 2 .1 o f the License , or ( at your opt ion ) any l a t e r v e r s i on .

This l i b r a r y i s d i s t r i b u t e d in the hope that i t w i l l be use fu l ,
but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesse r General Publ ic L i cense f o r more d e t a i l s .

You should have r e c e i v ed a copy o f the GNU Lesse r General Publ ic
L i cense along with t h i s l i b r a r y ; i f not , wr i t e to the Free Software
Foundation , Inc . , 59 Temple Place , Su i t e 330 , Boston , MA 02111−1307 USA

∗/

package c l i e n t ;

import java . net . ∗ ;
import java . i o . ∗ ;
import p ro t o c o l s . IpAndPort ;
import javax . swing . event . EventL i s t ene rL i s t ;
import javax . swing . event . ChangeListener ;
import javax . swing . event . ChangeEvent ;

/∗∗
∗ This c l a s s implements the f u n c t i o n a l i t y o f the Group Manager daemon .
∗
∗ @author Andreas Pa sha l i d i s
∗/

public f ina l class Cl i en t extends Thread implements pinger . PingingDaemon
{

protected stat ic f ina l St r ing NAME=” Cl i en t Daemon v . 0 . 2 ” ;
private stat ic f ina l St r ing CONSOLENOTICE=”\n ClientDaemon − wr i t t en by

Andreas Pa sha l i d i s \n −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\nThis
so f tware i s provided \” as i s \” without warranty o f any kind .\nNo

r e s p o n s i b i l i t y w i l l be accepted f o r any negat ive e f f e c t s the \ nso f tware may
cause . You use i t on your own r i s k .\n( ”+NAME+” ) \n” ;

private stat ic f ina l java . t ex t . DateFormat df = java . t ex t . DateFormat .
getDateTimeInstance (3 , 2 ) ;

private EventL i s t ene rL i s t l i s t e n e r s ;
private volat i le java . u t i l . Vector p tL i s t ;
private boolean pingingEnabled ;
private GMConnectionManager gmcm;
private IpAndPort myIpap ;

private PrintWriter l og ;
private ServerSocket s s ; // c l i e n t s e r v e r
private boolean i sAc t i v e ;

/∗∗ Creates a C l i en t that w i l l l og messages to the standard output . ∗/
public Cl i en t ( int port ) throws Exception

247



{
this ( port , new PrintWriter ( System . out , true ) ) ;

}

/∗∗
∗ This i s the f u l l c on s t ruc to r that prov ide s the maximum f l e x i b i l i t y and

f u n c t i o n a l i t y . I t c r e a t e s a C l i en t
∗ that w i l l l og messages to the s p e c i f i e d {@link Pr intWriter } .
∗
∗ @param i n i t the i n i t i a l i z a t i o n ob j e c t f o r t h i s Group Manager i n s t anc e
∗ @param log the {@link Pr intWriter } l og messages s h a l l be sent to
∗/

public Cl i en t ( int port , Pr intWriter l og ) throws Exception
{

i f ( port <1 | | port >65535) throw new I l l ega lArgumentExcept ion ( ”Not a va l i d
port number : ”+port ) ;

l i s t e n e r s=new EventL i s t ene rL i s t ( ) ;
p tL i s t=new java . u t i l . Vector ( ) ;
System . out . p r i n t l n (CONSOLENOTICE) ;
i f ( l og==null ) throw new Nul lPo interExcept ion ( ”Logger i s nu l l ! ” ) ;
this . l og=log ;
setDaemon ( true ) ;
pingingEnabled=fa l se ;
myIpap=null ;
l og ( ”Attempting to s t a r t ”+NAME+” on port ”+port+” . . . ” ) ;
s s=new ServerSocket ( port ) ;
l og (NAME+” i s ready . ” ) ;

}

public void r e g i s t e r ( int min , int max , IpAndPort GMAddr) throws Exception
{

l og ( ” Reg i s t e r i ng at GroupManager . . . ” ) ;
Socket gmSocket=new Socket ( ) ;
gmSocket . setTcpNoDelay ( true ) ;
gmSocket . setSoTimeout (10000) ;
gmSocket . connect (new InetSocketAddress (GMAddr. getAddr ( ) ,GMAddr. getPort ( ) )

,10000) ;
ObjectOutputStream oos=new ObjectOutputStream ( gmSocket . getOutputStream ( ) ) ;
ObjectInputStream o i s = new ObjectInputStream ( gmSocket . getInputStream ( ) ) ;
p r o t o c o l s . Message msg=new p ro t o c o l s . j o i n . JoinRequest (min ,max , getPort ( ) ) ;
oos . wr i teObject (msg) ;
oos . f l u s h ( ) ;
msg = ( p r o t o c o l s . Message ) o i s . readObject ( ) ;
i f ( ! ( msg instanceof p ro t o c o l s . j o i n . JoinReply ) )
{

throw new RuntimeException ( ”Group Manager did not respond proper ly . ” ) ;
}
p ro t o c o l s . j o i n . JoinReply j r =(p r o t o c o l s . j o i n . JoinReply )msg ;
i f ( ! ( j r . s u c c e s s ) )
{

throw new RuntimeException ( j r . errorMessage ) ;
}
l og ( ” Joined the Group ! ” ) ;
gmSocket . c l o s e ( ) ;
// f i r e Joined Group Event !
ChangeEvent e ;
e=new JoinedGroupEvent ( this , j r . groupSize ) ;
f i reChangeEvent ( e ) ;
myIpap=j r . ipap ;
java . u t i l . Enumeration enum=j r . userRecords . e lements ( ) ;
while (enum . hasMoreElements ( ) ) addMember ( ( groupmanager . Cl ientRecord )enum .

nextElement ( ) ) ;
i f (gmcm!=null ) gmcm. shutdown ( ) ;
gmcm=new GMConnectionManager ( this ,GMAddr) ;
gmcm. s t a r t ( ) ;

248



}

public void l e ave ( IpAndPort GMAddr) throws Exception
{

l og ( ”Leaving Group . . . ” ) ;
Socket gmSocket=new Socket ( ) ;
gmSocket . setTcpNoDelay ( true ) ;
gmSocket . setSoTimeout (10000) ;
gmSocket . connect (new InetSocketAddress (GMAddr. getAddr ( ) ,GMAddr. getPort ( ) )

,10000) ;
ObjectOutputStream oos=new ObjectOutputStream ( gmSocket . getOutputStream ( ) ) ;
p r o t o c o l s . Message msg=new p ro t o c o l s . j o i n . LeaveRequest ( getPort ( ) ) ;
oos . wr i teObject (msg) ;
oos . f l u s h ( ) ;
gmSocket . c l o s e ( ) ;
l og ( ” Le f t the Group . ” ) ;

}

private void addMember( groupmanager . Cl ientRecord cr )
{

int index=getPtLi s t Index ( cr . ipap ) ;
i f ( index !=−1) return ;
p inger . PingerThread pt=new p inger . PingerThread ( this , c r . ipap ) ;
p tL i s t . addElement ( pt ) ;
i f ( pingingEnabled ) pt . setSuspended ( fa l se ) ;
ChangeEvent e=new UpdateEvent ( this , cr , true , ” Joined the group . ” ) ;
f i reChangeEvent ( e ) ;
l og ( cr . ipap+” jo in ed the group ! ” ) ;

}

private void removeMember ( groupmanager . Cl ientRecord cr , S t r ing reason )
{

int index=getPtLi s t Index ( cr . ipap ) ;
i f ( index==−1) return ;
p inger . PingerThread pt=(p inger . PingerThread ) p tL i s t . elementAt ( index ) ;
p tL i s t . removeElement ( pt ) ;
ChangeEvent e=new UpdateEvent ( this , cr , false , reason ) ;
f i reChangeEvent ( e ) ;
pt . shutdown ( ) ;
l og ( pt . getIpAndPort ( )+” l e f t the group ! ( ”+reason+” ) ” ) ;

}

protected void updateMembers ( java . u t i l . Vector c l i en tReco rd s )
{

java . u t i l . Enumeration enum=c l i en tReco rd s . e lements ( ) ;
groupmanager . Cl ientRecord cr ;
IpAndPort ipap ;
int index ;
while (enum . hasMoreElements ( ) )
{

cr =((groupmanager . Cl ientRecord )enum . nextElement ( ) ) ;
index=getPtLi s t Index ( cr . ipap ) ;
i f ( index==−1)
{

addMember( cr ) ;
}

}

enum=ptL i s t . e lements ( ) ;
while (enum . hasMoreElements ( ) )
{

ipap=(( p inger . PingerThread )enum . nextElement ( ) ) . getIpAndPort ( ) ;
index=getCl ientRecordIndex ( c l i en tRecords , ipap ) ;
i f ( index==−1)
{

249



removeMember (new groupmanager . Cl ientRecord ( ipap , 0 , 0 ) , ”not inc luded in
update . ” ) ;

}
}

// check f o r dup l i c a t e s now
enum=ptL i s t . e lements ( ) ;
while (enum . hasMoreElements ( ) )
{

ipap=(( p inger . PingerThread )enum . nextElement ( ) ) . getIpAndPort ( ) ;
index=countOccurences ( ipap ) ;
i f ( index >1) removeMember (new groupmanager . Cl ientRecord ( ipap , 0 , 0 ) , ”

dup l i c a t e . ” ) ;
}

try
{

i f ( getPtL i s t Index (myIpap )==−1)
{

l og ( ”Fata l Error : Could not f i nd myse l f ( ”+myIpap+” ) in the group . ” ) ;
shutdown ( ) ;
return ;

}
} catch ( Exception e )
{

l og ( ”Error during i n t e r n a l update : ”+e . getMessage ( ) ) ;
}
enum=ptL i s t . e lements ( ) ;
while (enum . hasMoreElements ( ) )
{

ipap=(( p inger . PingerThread )enum . nextElement ( ) ) . getIpAndPort ( ) ;
System . out . p r i n t l n ( ” a f t e r updt : ”+ipap ) ;

}
System . out . p r i n t l n ( ”−−−” ) ;

}

private int countOccurences ( IpAndPort ipap )
{

java . u t i l . Enumeration enum=ptL i s t . e lements ( ) ;
int i =0;
while (enum . hasMoreElements ( ) )
{

i f ( ( ( p inger . PingerThread )enum . nextElement ( ) ) . getIpAndPort ( ) . t oS t r i ng ( ) .
equa l s ( ipap . t oS t r i ng ( ) ) ) i++;

}
return i ;

}

private int getCl ientRecordIndex ( java . u t i l . Vector c l i en tRecords , IpAndPort ipap )
{

java . u t i l . Enumeration enum=c l i en tReco rd s . e lements ( ) ;
int i =0;
while (enum . hasMoreElements ( ) )
{

i f ( ( ( groupmanager . Cl ientRecord )enum . nextElement ( ) ) . ipap . t oS t r i ng ( ) .
equa l s ( ipap . t oS t r i ng ( ) ) ) return i ;

i++;
}
return −1;

}

private int getPtL i s t Index ( IpAndPort ipap )
{

250



java . u t i l . Enumeration enum=ptL i s t . e lements ( ) ;
int i =0;
while (enum . hasMoreElements ( ) )
{

i f ( ( ( p inger . PingerThread )enum . nextElement ( ) ) . getIpAndPort ( ) . t oS t r i ng ( ) .
equa l s ( ipap . t oS t r i ng ( ) ) ) return i ;

i++;
}
return −1;

}

/∗∗ This method i s c a l l e d from the Servant in order f o r the C l i en t Daemon to
obta in the c r e d e n t i a l

through the GM. Due to bugs ( s t r eamcor ruptedexcept ions ) we need to pass the
r e f e r e n c e s o f the

ob j e c t ( in /out ) put streams as we l l . ∗/
protected void obta inCredent i a l ( Socket gmSocket , ObjectOutputStream oos )
{

try
{

i f (gmcm!=null ) gmcm. shutdown ( ) ;
l og ( ” g i v ing p o s i t i v e r ep ly to group manager . . . ” ) ;
p r o t o c o l s . Message msg=new p ro t o c o l s . MessageBinary ( true , null ) ;
oos . wr i teObject (msg) ;
oos . f l u s h ( ) ;

// now Group Manager should have forwarded t h i s socket to I s s u e r
// so we need to wr i t e again the objectoutputstream header
l og ( ” ask ing f o r c r e d e n t i a l . . . ” ) ;

oos=new ObjectOutputStream ( gmSocket . getOutputStream ( ) ) ; // t h i s wr i t e s
header to socke t !

msg=new p ro t o c o l s . i s s u i n g . I s sueRequest ( ) ;
oos . wr i teObject (msg) ;
oos . f l u s h ( ) ;

// read response from I s s u e r

ObjectInputStream o i s=new ObjectInputStream ( gmSocket . getInputStream ( ) ) ;
msg = ( p r o t o c o l s . Message ) o i s . readObject ( ) ;

i f (msg instanceof p ro t o c o l s . i s s u i n g . I s sueReply )
{

p ro t o c o l s . i s s u i n g . I s sueReply i r =(p r o t o c o l s . i s s u i n g . I s sueReply )msg ;
} else
{

throw new RuntimeException ( ”Unrecognised message from ”+gmSocket .
get InetAddress ( ) . getHostAddress ( )+” : ”+gmSocket . getPort ( ) ) ;

}
l og ( ”Job Fin i shed ( todo : obta in r e c e i p t ! ) ” ) ;
gmSocket . c l o s e ( ) ;

} catch ( Exception e )
{

e . pr intStackTrace ( ) ;
l og ( ”Error whi l e obta in ing c r e d e n t i a l : ”+e . getMessage ( ) ) ;

}
shutdown ( ) ;

}

/∗∗
∗ This method has to be c a l l e d in order f o r the C l i en t Daemon to s t a r t .

251



∗/

public f ina l void run ( )
{

i sAc t i v e=true ;

l og (NAME+” i s running . ” ) ;
while ( i sAc t i v e )
{

try
{

new Servant ( this , s s . accept ( ) ) ; // t h i s should accept p ing ing
reques t s , (maybe a l s o r eque s t s from the s e r v e r ?) .

} catch ( Exception e )
{

e . pr intStackTrace ( ) ;
l og ( ” C l i en t except ion : ”+e . getMessage ( ) ) ;

}
}

}

/∗∗
∗ As the stop method in {@link Thread} i s deprecated , t h i s method should be

c a l l e d in order
∗ to proper ly stop a running Discovery Server .
∗/

public f ina l void shutdown ( )
{

i f ( ! i sAc t i v e ) return ;
i sAc t i v e=fa l se ;
l og ( ”Attempting to stop ”+NAME+” . . . ” ) ;
i f (gmcm!=null ) gmcm. shutdown ( ) ;
java . u t i l . Enumeration enum=ptL i s t . e lements ( ) ;
while (enum . hasMoreElements ( ) )
{

p inger . PingerThread pt=(p inger . PingerThread )enum . nextElement ( ) ;
pt . shutdown ( ) ;

}
try
{

s s . c l o s e ( ) ;
j o i n ( ) ;

} catch ( Exception e )
{

l og ( ”Error whi l e c l o s i n g : ”+e . getMessage ( ) ) ;
}
l og (NAME+” stopped . ” ) ;

}

public void stateChanged ( p inger . PingerThread pt , boolean f a t a l )
{

ChangeEvent e=new ClientConnectionChangeEvent ( this , pt . getIpAndPort ( ) , pt .
getCurrentState ( ) , f a t a l ) ;

f i reChangeEvent ( e ) ;
}

public void stateChanged (boolean j o i n ing , S t r ing errorMessage , groupmanager .
Cl ientRecord cr )

{
i f ( j o i n i n g )
{

addMember( cr ) ;
} else
{

252



removeMember ( cr , errorMessage ) ;
}

}

public f ina l void l og ( S t r ing s ) { l og . p r i n t l n ( ” [ ”+df . format (new java . u t i l . Date ( ) )+”
/”+getTime ( )+” ] ”+s ) ; l og . f l u s h ( ) ;}

protected f ina l stat ic St r ing readInputStream ( InputStream i s ) throws IOException
{

byte [ ] r ep ly = new byte [ 6 5 5 3 6 ] ;
int s i z e=i s . read ( r ep ly ) ;
i f ( s i z e >0) return new St r ing ( reply , 0 , s i z e ) ; else return null ;

}

public void addChangeListener ( ChangeListener l )
{

l i s t e n e r s . add ( ChangeListener . class , l ) ;
}

public void removeChangeListener ( ChangeListener l )
{

l i s t e n e r s . remove ( ChangeListener . class , l ) ;
}

public void setPingingEnabled (boolean s e t )
{

pingingEnabled=se t ;
java . u t i l . Enumeration enum=ptL i s t . e lements ( ) ;
while (enum . hasMoreElements ( ) )
{

p inger . PingerThread pd=(p inger . PingerThread )enum . nextElement ( ) ;
pd . setSuspended ( ! s e t ) ;

}
}

public boolean getPingingEnabled ( )
{

return pingingEnabled ;
}
protected void f i reChangeEvent ( ChangeEvent e )
{

Object [ ] array = l i s t e n e r s . g e tL i s t e n e rL i s t ( ) ;
for ( int i = array . length −2; i >=0; i−=2)
{

i f ( array [ i ]==ChangeListener . class )
{

( ( ChangeListener ) array [ i +1]) . stateChanged ( e ) ;
}

}
}

public int getPort ( )
{

return s s . getLoca lPort ( ) ;
}

public long getTime ( )
{

return new java . u t i l . Date ( ) . getTime ( ) ;
}

}

253



/∗
Copyright (C) 2003 Andreas Pa sha l i d i s

This l i b r a r y i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or
modify i t under the terms o f the GNU Lesse r General Publ ic
L i cense as pub l i shed by the Free Software Foundation ; e i t h e r
v e r s i on 2 .1 o f the License , or ( at your opt ion ) any l a t e r v e r s i on .

This l i b r a r y i s d i s t r i b u t e d in the hope that i t w i l l be use fu l ,
but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesse r General Publ ic L i cense f o r more d e t a i l s .

You should have r e c e i v ed a copy o f the GNU Lesse r General Publ ic
L i cense along with t h i s l i b r a r y ; i f not , wr i t e to the Free Software
Foundation , Inc . , 59 Temple Place , Su i t e 330 , Boston , MA 02111−1307 USA

∗/

package c l i e n t ;

import p ro t o c o l s . IpAndPort ;

/∗∗
∗ This c l a s s i s implements an event that a l l ows the C l i en t GUI to update i t s e l f .
∗
∗ @author Andreas Pa sha l i d i s
∗/

public class ClientConnectionChangeEvent extends javax . swing . event . ChangeEvent
{

private boolean f a t a l ;
private IpAndPort c l i e n t ;
private St r ing s t a t e ;

protected ClientConnectionChangeEvent ( Object source , IpAndPort c l i e n t , S t r ing
s tate , boolean f a t a l )

{
super ( source ) ;
this . c l i e n t=c l i e n t ;
this . f a t a l=f a t a l ;
this . s t a t e=s t a t e ;

}

public boolean i s F a t a l ( )
{

return f a t a l ;
}

public IpAndPort ge tC l i en t Ipap ( )
{

return c l i e n t ;
}

public St r ing ge tSta t e ( )
{

return s t a t e ;
}

}

/∗
Copyright (C) 2003 Andreas Pa sha l i d i s

This l i b r a r y i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or
modify i t under the terms o f the GNU Lesse r General Publ ic

254



License as pub l i shed by the Free Software Foundation ; e i t h e r
v e r s i on 2 .1 o f the License , or ( at your opt ion ) any l a t e r v e r s i on .

This l i b r a r y i s d i s t r i b u t e d in the hope that i t w i l l be use fu l ,
but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesse r General Publ ic L i cense f o r more d e t a i l s .

You should have r e c e i v ed a copy o f the GNU Lesse r General Publ ic
L i cense along with t h i s l i b r a r y ; i f not , wr i t e to the Free Software
Foundation , Inc . , 59 Temple Place , Su i t e 330 , Boston , MA 02111−1307 USA

∗/

package c l i e n t ;

/∗∗
∗ This c l a s s i s implements an event that r e l a t e s to a Group Manager .
∗
∗ @author Andreas Pa sha l i d i s
∗/

public class FatalEvent extends javax . swing . event . ChangeEvent
{

private int index ;
private St r ing s t a t e ;
private boolean f a t a l ;

protected FatalEvent ( Object source , int index , S t r ing s tate , boolean f a t a l )
{

super ( source ) ;
this . index=index ;
this . s t a t e=s t a t e ;
this . f a t a l=f a t a l ;

}

protected void se t Index ( int index )
{

this . index=index ;
}

public int getIndex ( )
{

return index ;
}

public St r ing ge tSta t e ( )
{

return s t a t e ;
}

public boolean getFata l ( )
{

return f a t a l ;
}

}

/∗
Copyright (C) 2003 Andreas Pa sha l i d i s

This l i b r a r y i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or
modify i t under the terms o f the GNU Lesse r General Publ ic
L i cense as pub l i shed by the Free Software Foundation ; e i t h e r
v e r s i on 2 .1 o f the License , or ( at your opt ion ) any l a t e r v e r s i on .

This l i b r a r y i s d i s t r i b u t e d in the hope that i t w i l l be use fu l ,

255



but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesse r General Publ ic L i cense f o r more d e t a i l s .

You should have r e c e i v ed a copy o f the GNU Lesse r General Publ ic
L i cense along with t h i s l i b r a r y ; i f not , wr i t e to the Free Software
Foundation , Inc . , 59 Temple Place , Su i t e 330 , Boston , MA 02111−1307 USA

∗/

package c l i e n t ;

import java . net . ∗ ;
import java . i o . ∗ ;
import p ro t o c o l s . IpAndPort ;
import javax . swing . event . EventL i s t ene rL i s t ;
import javax . swing . event . ChangeListener ;
import javax . swing . event . ChangeEvent ;

/∗∗
∗ This c l a s s implements enab l e s a user to ping another one , a l l the time .
∗ I t r e g i s t e r s the Group Manager with the Discovery Server , i t mainta ins the

connect ion , and i t
∗ d e r e g i s t e r s when appropr ia te .
∗ @author Andreas Pa sha l i d i s
∗/

public class GMConnectionManager extends Thread
{

public Cl i en t c l ;
public IpAndPort ipap ;
public volat i le boolean i sAc t i v e ;

public GMConnectionManager ( C l i en t c l , IpAndPort GMAddr)
{

this . c l=c l ;
this . ipap=GMAddr;
i sAc t i v e=fa l se ;

}

public void run ( )
{

i sAc t i v e=true ;
while ( i sAc t i v e )
{

try
{

s l e e p (20000) ;
Socket memberSocket=new Socket ( ) ;
memberSocket . setKeepAl ive ( true ) ;
memberSocket . setTcpNoDelay ( true ) ;
memberSocket . setSoTimeout (25000) ;
memberSocket . connect (new InetSocketAddress ( ipap . getAddr ( ) , ipap .

getPort ( ) ) ,10000) ;
ObjectOutputStream oos=new ObjectOutputStream ( memberSocket .

getOutputStream ( ) ) ;
ObjectInputStream o i s = new ObjectInputStream ( memberSocket .

getInputStream ( ) ) ;
p r o t o c o l s . Message msg=new p ro t o c o l s . update . UpdateRequest ( ) ;
oos . wr i teObject (msg) ;
oos . f l u s h ( ) ;
msg = ( p r o t o c o l s . Message ) o i s . readObject ( ) ;
i f ( ! ( msg instanceof p ro t o c o l s . update . UpdateReply ) )
{

throw new RuntimeException ( ” response not r e cogn i s ed . ” ) ;

256



}
c l . updateMembers ( ( ( p r o t o c o l s . update . UpdateReply )msg) . c l i en tReco rd s ) ;
memberSocket . c l o s e ( ) ;

} catch ( Exception ex )
{

ex . pr intStackTrace ( ) ;
c l . l og ( ”Error occurred whi l e r eque s t i ng group update : ”+ex . getMessage

( ) ) ;
}

}
}

public f ina l void shutdown ( )
{

i sAc t i v e=fa l se ;
c l . l og ( ”Stopping p e r i o d i c update s e r v i c e . . . ” ) ;

}
}

/∗
Copyright (C) 2003 Andreas Pa sha l i d i s

This l i b r a r y i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or
modify i t under the terms o f the GNU Lesse r General Publ ic
L i cense as pub l i shed by the Free Software Foundation ; e i t h e r
v e r s i on 2 .1 o f the License , or ( at your opt ion ) any l a t e r v e r s i on .

This l i b r a r y i s d i s t r i b u t e d in the hope that i t w i l l be use fu l ,
but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesse r General Publ ic L i cense f o r more d e t a i l s .

You should have r e c e i v ed a copy o f the GNU Lesse r General Publ ic
L i cense along with t h i s l i b r a r y ; i f not , wr i t e to the Free Software
Foundation , Inc . , 59 Temple Place , Su i t e 330 , Boston , MA 02111−1307 USA

∗/

package c l i e n t ;

/∗∗
∗ This c l a s s i s implements an event that a l l ows the C l i en t GUI to update i t s e l f .
∗
∗ @author Andreas Pa sha l i d i s
∗/

public class JoinedGroupEvent extends javax . swing . event . ChangeEvent
{

private int groupSize ;

protected JoinedGroupEvent ( Object source , int groupSize )
{

super ( source ) ;
this . g roupSize=groupSize ;

}

public int getGroupSize ( )
{

return groupSize ;
}

}

/∗
This c l a s s implements the Servant thread f o r a Discovery Server ; i t i s a Thread

Copyright (C) 2003 Andreas Pa sha l i d i s

257



This l i b r a r y i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or
modify i t under the terms o f the GNU Lesse r General Publ ic
L i cense as pub l i shed by the Free Software Foundation ; e i t h e r
v e r s i on 2 .1 o f the License , or ( at your opt ion ) any l a t e r v e r s i on .

This l i b r a r y i s d i s t r i b u t e d in the hope that i t w i l l be use fu l ,
but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesse r General Publ ic L i cense f o r more d e t a i l s .

You should have r e c e i v ed a copy o f the GNU Lesse r General Publ ic
L i cense along with t h i s l i b r a r y ; i f not , wr i t e to the Free Software
Foundation , Inc . , 59 Temple Place , Su i t e 330 , Boston , MA 02111−1307 USA

∗/

package c l i e n t ;

import java . net . ∗ ;
import java . i o . ∗ ;
import java . u t i l . Vector ;
import p ro t o c o l s . Message ;
import p ro t o c o l s . r e g i s t e r . ∗ ;

f ina l class Servant extends Thread
{

private stat ic long t o t a l =0;
private long id ;
private Socket peer ;
private Cl i en t c l ;

protected Servant ( C l i en t c l , Socket peer )
{

this . c l=c l ;
this . peer=peer ;
t o t a l++;
id=t o t a l ;
s t a r t ( ) ;

}

public void run ( )
{

St r ing pee rS t r i ng=peer . get InetAddress ( ) . getHostName ( )+” : ”+peer . getPort ( ) ;
try
{

ObjectOutputStream oos=new ObjectOutputStream ( peer . getOutputStream ( ) ) ;
ObjectInputStream o i s = new ObjectInputStream ( peer . getInputStream ( ) ) ;
p r o t o c o l s . Message msg = ( p r o t o c o l s . Message ) o i s . readObject ( ) ;
i f (msg instanceof p ro t o c o l s . echo . MessageEcho )
{

i f ( ( ( p r o t o c o l s . echo . MessageEcho )msg) . echo )
{

throw new RuntimeException ( ” echo reque s t from ”+pee rS t r i ng+”
without echo b i t s e t . ” ) ;

}
// log (” s e rv ing echo reque s t from ”+pee rS t r i ng ) ;

( ( p r o t o c o l s . echo . MessageEcho )msg) . echo=true ;
oos . wr i teObject (msg) ;
oos . f l u s h ( ) ;

} else
i f (msg instanceof p ro t o c o l s . update . SingleUpdate )
{

p ro t o c o l s . update . SingleUpdate su=(p r o t o c o l s . update . SingleUpdate )msg ;
i f ( su . j o i n i n g )
{

c l . l og ( ”Update r e c e i v ed : ”+su . cr . ipap+” jo in ed ! ” ) ;

258



} else
{

c l . l og ( ”Update r e c e i v ed : ”+su . cr . ipap+” l e f t . ” ) ;
}
c l . stateChanged ( su . j o i n ing , su . errorMessage , su . c r ) ;

} else
i f (msg instanceof p ro t o c o l s . run . RunRequest )
{

c l . l og ( ” Serv ing i s t r u c t i o n to obta in c r e d e n t i a l . . . ” ) ;
c l . ob ta inCredent i a l ( peer , oos ) ;
return ;

} else
{

throw new RuntimeException ( ” unrecogn i sed reque s t from ”+pee rS t r i ng ) ;
}
peer . c l o s e ( ) ;

} catch ( Exception e )
{

e . pr intStackTrace ( ) ;
l og ( ” Serv ing Error : ”+pee rS t r i ng+” ”+e . getMessage ( )+” ( ”+id+” ) . ” ) ;

}
}

private void l og ( S t r ing s ) { c l . l og ( id+” − ”+s ) ;}

}

/∗
Copyright (C) 2003 Andreas Pa sha l i d i s

This l i b r a r y i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or
modify i t under the terms o f the GNU Lesse r General Publ ic
L i cense as pub l i shed by the Free Software Foundation ; e i t h e r
v e r s i on 2 .1 o f the License , or ( at your opt ion ) any l a t e r v e r s i on .

This l i b r a r y i s d i s t r i b u t e d in the hope that i t w i l l be use fu l ,
but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesse r General Publ ic L i cense f o r more d e t a i l s .

You should have r e c e i v ed a copy o f the GNU Lesse r General Publ ic
L i cense along with t h i s l i b r a r y ; i f not , wr i t e to the Free Software
Foundation , Inc . , 59 Temple Place , Su i t e 330 , Boston , MA 02111−1307 USA

∗/

package c l i e n t ;

/∗∗
∗ This c l a s s i s implements an event that a l l ows the C l i en t GUI to update i t s e l f .
∗
∗ @author Andreas Pa sha l i d i s
∗/

public class UpdateEvent extends javax . swing . event . ChangeEvent
{

private groupmanager . Cl ientRecord cr ;
private boolean i sP r e s en t ;
private St r ing comment ;

protected UpdateEvent ( Object source , groupmanager . Cl ientRecord cr , boolean
i sPre s ent , S t r ing comment)

{
super ( source ) ;

259



this . c r=cr ;
this . i sP r e s en t=i sP r e s en t ;
this . comment=comment ;

}

public groupmanager . Cl ientRecord getCl i entRecord ( )
{

return cr ;
}

public boolean pre sent ( )
{

return i sP r e s en t ;
}
public St r ing getMessage ( )
{

return comment ;
}

}

B.3 Discovery Server

This section provides the discovery server source code.

/∗
Copyright (C) 2003 Andreas Pa sha l i d i s

This l i b r a r y i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or
modify i t under the terms o f the GNU Lesse r General Publ ic
L i cense as pub l i shed by the Free Software Foundation ; e i t h e r
v e r s i on 2 .1 o f the License , or ( at your opt ion ) any l a t e r v e r s i on .

This l i b r a r y i s d i s t r i b u t e d in the hope that i t w i l l be use fu l ,
but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesse r General Publ ic L i cense f o r more d e t a i l s .

You should have r e c e i v ed a copy o f the GNU Lesse r General Publ ic
L i cense along with t h i s l i b r a r y ; i f not , wr i t e to the Free Software
Foundation , Inc . , 59 Temple Place , Su i t e 330 , Boston , MA 02111−1307 USA

∗/

package d i s c ov e r y s e r v e r ;

import java . net . ∗ ;
import java . i o . ∗ ;
import p ro t o c o l s . IpAndPort ;

/∗∗
∗ This c l a s s implements a s imple HTTP proxy daemon with S ing l e Sign−On

f un c t i o n a l i t y in to webs i t e s . I f i t
∗ bla bla bla
∗ the daemon , the <code>shutdown</code> method should be used .
∗
∗ @author Andreas Pa sha l i d i s
∗/

public f ina l class DiscoveryServer extends Thread
{

260



protected stat ic f ina l St r ing NAME=”Discovery Server v . 0 . 2 ” ;
private stat ic f ina l St r ing CONSOLENOTICE=”\n Discovery Server −

wr i t t en by Andreas Pa sha l i d i s \n
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\nThis so f tware i s provided \” as i s \”
without warranty o f any kind .\nNo r e s p o n s i b i l i t y w i l l be accepted f o r any
negat ive e f f e c t s the \ nso f tware may cause . You use i t on your own r i s k .\n( ”+
NAME+” ) \n” ;

private stat ic f ina l java . t ex t . DateFormat df = java . t ex t . DateFormat .
getDateTimeInstance (3 , 2 ) ;

private PrintWriter l og ;
private ServerSocket s s ;
private boolean i sAc t i v e ;
private java . u t i l . Vector GMRecords ;

/∗∗ Creates a Disvocery Server that w i l l run on port 8080 . Log messages w i l l be
sent to standard output . ∗/

public DiscoveryServer ( ) throws Exception
{

this (8080 , new PrintWriter ( System . out , true ) ) ;
}

/∗∗ Creates a Discovery Server that w i l l run on the s p e c i f i e d port . Log messages
w i l l be sent to standard output . ∗/

public DiscoveryServer ( int port ) throws Exception
{

this ( port , new PrintWriter ( System . out , true ) ) ;
}

/∗∗
∗ This i s the f u l l c on s t ruc to r that prov ide s the maximum f l e x i b i l i t y and

f u n c t i o n a l i t y . I t c r e a t e s a Discovery Server
∗ that w i l l run on the s p e c i f i e d port and sent l og messages to the s p e c i f i e d

{@link Pr intWriter } .
∗
∗ @param port the port the Impostor proxy s h a l l run on
∗ @param log the {@link Pr intWriter } l og messages s h a l l be sent to
∗/

public DiscoveryServer ( int port , Pr intWriter l og ) throws Exception
{

System . out . p r i n t l n (CONSOLENOTICE) ;
i f ( port <1 | | port >65535) throw new I l l ega lArgumentExcept ion ( ”Not a va l i d

port number : ”+port ) ;
i f ( l og==null ) throw new Nul lPo interExcept ion ( ”Logger i s nu l l ! ” ) ;
this . l og=log ;
setDaemon ( true ) ;
l og ( ”Attempting to s t a r t ”+NAME+” on port ”+port+” . . . ” ) ;
s s=new ServerSocket ( port ) ;
i sAc t i v e=fa l se ;
GMRecords=new java . u t i l . Vector ( ) ;
l og (NAME+” i s ready . . . ” ) ;

}

/∗∗
∗ This method has to be c a l l e d in order f o r the Discovery Server to s t a r t .
∗/

public f ina l void run ( )
{

i sAc t i v e=true ;
l og (NAME+” i s running . ” ) ;
while ( i sAc t i v e )
{

try
{

261



new Servant ( this , s s . accept ( ) ) ;
} catch ( IOException e )
{

e . pr intStackTrace ( ) ;
l og ( ”Fata l I /O Exception : ”+e . getMessage ( ) ) ;

}
}

}

/∗∗
∗ As the stop method in {@link Thread} i s deprecated , t h i s method should be

c a l l e d in order
∗ to proper ly stop a running Discovery Server .
∗/

public f ina l void shutdown ( ) throws Exception
{

i f ( ! i sAc t i v e ) return ;
l og ( ”Attempting to stop ”+NAME+” . . . ” ) ;
s s . c l o s e ( ) ;
i sAc t i v e=fa l se ;
j o i n ( ) ;
l og (NAME+” stopped . ” ) ;

}

protected boolean addGMRecord(GMRecord gmr)
{

java . u t i l . Enumeration enum=GMRecords . e lements ( ) ;
S t r ing addr ;
while (enum . hasMoreElements ( ) )
{

addr =(((GMRecord)enum . nextElement ( ) ) . getIpAndPort ( ) ) . getAddr ( ) .
getHostAddress ( ) ;

// i f ( addr . equa l s (gmr . getIpAndPort ( ) . getAddr ( ) . getHostAddress ( ) ) ) r e turn
f a l s e ;

}
GMRecords . addElement (gmr) ;
return true ;

}

protected java . u t i l . Vector getGMRecords ( int low , int high )
{

java . u t i l . Vector r e s u l t s=new java . u t i l . Vector ( ) ;
for ( int i =0; i<GMRecords . s i z e ( ) ; i++)
{

i f ( ( (GMRecord)GMRecords . elementAt ( i ) ) . i sCompat ib le ( low , high ) ) r e s u l t s .
addElement (GMRecords . elementAt ( i ) ) ;

}
return r e s u l t s ;

}
protected f ina l void l og ( S t r ing s ) { l og . p r i n t l n ( ” [ ”+df . format (new java . u t i l . Date ( )

)+”/”+getTime ( )+” ] ”+s ) ; l og . f l u s h ( ) ;}

protected f ina l stat ic St r ing readInputStream ( InputStream i s ) throws IOException
{

byte [ ] r ep ly = new byte [ 6 5 5 3 6 ] ;
int s i z e=i s . read ( r ep ly ) ;
i f ( s i z e >0) return new St r ing ( reply , 0 , s i z e ) ; else return null ;

}

protected long getTime ( )
{

return new java . u t i l . Date ( ) . getTime ( ) ;
}

}

262



/∗
This c l a s s implements the Servant thread f o r a Discovery Server ; i t i s a Thread

Copyright (C) 2003 Andreas Pa sha l i d i s

This l i b r a r y i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or
modify i t under the terms o f the GNU Lesse r General Publ ic
L i cense as pub l i shed by the Free Software Foundation ; e i t h e r
v e r s i on 2 .1 o f the License , or ( at your opt ion ) any l a t e r v e r s i on .

This l i b r a r y i s d i s t r i b u t e d in the hope that i t w i l l be use fu l ,
but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesse r General Publ ic L i cense f o r more d e t a i l s .

You should have r e c e i v ed a copy o f the GNU Lesse r General Publ ic
L i cense along with t h i s l i b r a r y ; i f not , wr i t e to the Free Software
Foundation , Inc . , 59 Temple Place , Su i t e 330 , Boston , MA 02111−1307 USA

∗/

package d i s c ov e r y s e r v e r ;

import p ro t o c o l s . IpAndPort ;

public f ina l class GMRecord implements java . i o . S e r i a l i z a b l e
{

private IpAndPort ipap ;
private int groupSize ;

protected GMRecord( IpAndPort ipap , int groupSize )
{

this . ipap=ipap ;
this . g roupSize=groupSize ;

}

protected boolean i sCompat ib le ( int low , int high )
{

i f ( groupSize<low ) return fa l se ;
i f ( groupSize>high ) return fa l se ;
return true ;

}

public IpAndPort getIpAndPort ( )
{

return ipap ;
}
public int getGroupSize ( )
{

return groupSize ;
}

}

/∗
This c l a s s implements the Servant thread f o r a Discovery Server ; i t i s a Thread

Copyright (C) 2003 Andreas Pa sha l i d i s

This l i b r a r y i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or
modify i t under the terms o f the GNU Lesse r General Publ ic
L i cense as pub l i shed by the Free Software Foundation ; e i t h e r
v e r s i on 2 .1 o f the License , or ( at your opt ion ) any l a t e r v e r s i on .

This l i b r a r y i s d i s t r i b u t e d in the hope that i t w i l l be use fu l ,
but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesse r General Publ ic L i cense f o r more d e t a i l s .

263



You should have r e c e i v ed a copy o f the GNU Lesse r General Publ ic
L i cense along with t h i s l i b r a r y ; i f not , wr i t e to the Free Software
Foundation , Inc . , 59 Temple Place , Su i t e 330 , Boston , MA 02111−1307 USA

∗/

package d i s c ov e r y s e r v e r ;

import java . net . ∗ ;
import java . i o . ∗ ;
import java . u t i l . Vector ;
import p ro t o c o l s . Message ;
import p ro t o c o l s . r e g i s t e r . ∗ ;

f ina l class Servant extends Thread
{

private stat ic long t o t a l =0;
private long id ;
private Socket c l i e n t ;
private DiscoveryServer ds ;
private boolean i sAc t i v e ;

protected Servant ( DiscoveryServer ds , Socket c l i e n t )
{

this . ds=ds ;
this . c l i e n t=c l i e n t ;
t o t a l++;
id=t o t a l ;
s t a r t ( ) ;

}

public void run ( )
{

i sAc t i v e=true ;
S t r ing c l i e n t S t r i n g=c l i e n t . get InetAddress ( ) . getHostName ( )+” : ”+c l i e n t . getPort

( ) ;
try
{

// get the c l i e n t socke t ’ s streams
ObjectInputStream o i s = new ObjectInputStream ( c l i e n t . getInputStream ( ) ) ;
ObjectOutputStream oos=new ObjectOutputStream ( c l i e n t . getOutputStream ( ) ) ;
p r o t o c o l s . Message msg = ( p r o t o c o l s . Message ) o i s . readObject ( ) ;

// we are expect ing e i t h e r a group manager to r e g i s t e r with the d i s cove ry
s e r v i c e

// or
// a user to i s s u e a d i s cove ry r eque s t .

i f (msg instanceof p ro t o c o l s . d i s c ov e r . DiscoveryRequest ) // i t i s a user
{

int low=(( p r o t o c o l s . d i s c ove r . DiscoveryRequest )msg) . low ;
int high=(( p r o t o c o l s . d i s c ove r . DiscoveryRequest )msg) . high ;
l og ( ” Serv ing Discovery Request from ”+c l i e n t S t r i n g+” f o r Group S i z e ”

+low+”−”+high+” . ” ) ;
Vector GMRecords=ds . getGMRecords ( low , high ) ;
msg=new p ro t o c o l s . d i s c ove r . DiscoveryReply (GMRecords ) ;
oos . wr i teObject (msg) ;
oos . f l u s h ( ) ;
c l i e n t . c l o s e ( ) ;
return ;

}
else i f (msg instanceof p ro t o c o l s . r e g i s t e r . Reg i s terRequest ) // i t i s a

group manager
{

l og ( ” Serv ing Reg i s t r a t i on Request from ”+c l i e n t S t r i n g+” f o r Group
S i z e ”+(( p r o t o c o l s . r e g i s t e r . Reg i s terRequest )msg) . groupSize+” . ” ) ;

264



// r e g i s t e r i n g group manager with d icovery s e r v e r daemon
p ro t o c o l s . IpAndPort ipap=new p ro t o c o l s . IpAndPort ( c l i e n t .

get InetAddress ( ) , ( ( p r o t o c o l s . r e g i s t e r . Reg i s te rRequest )msg) . port ) ;
GMRecord gmr=new GMRecord( ipap , ( ( p r o t o c o l s . r e g i s t e r . Reg i s terRequest )

msg) . groupSize ) ;
i f ( ! ( ds . addGMRecord(gmr) ) )

msg=new p ro t o c o l s . MessageBinary ( false , ” r e g i s t r a t i o n r e fu s ed . ” ) ;
else

msg=new p ro t o c o l s . MessageBinary ( true , null ) ;
oos . wr i teObject (msg) ;
oos . f l u s h ( ) ;

}
else i f (msg instanceof p ro t o c o l s . echo . MessageEcho )
{

i f ( ( ( p r o t o c o l s . echo . MessageEcho )msg) . echo )
{

throw new RuntimeException ( ” echo reque s t from ”+c l i e n t S t r i n g+”
without echo b i t s e t . ” ) ;

}
l og ( ” Serv ing Echo Request from ”+c l i e n t S t r i n g ) ;
( ( p r o t o c o l s . echo . MessageEcho )msg) . echo=true ;
oos . wr i teObject (msg) ;
oos . f l u s h ( ) ;

} else
{

throw new Exception ( ”Unrecognised message from ”+c l i e n t S t r i n g ) ;
}
c l i e n t . c l o s e ( ) ;

} catch ( Exception e )
{

e . pr intStackTrace ( ) ;
l og ( ”Exception : ”+c l i e n t S t r i n g+” ”+e . getMessage ( )+” ( ”+id+” ) . ” ) ;
return ;

}
}

private void l og ( S t r ing s ) {ds . l og ( id+” − ”+s ) ;}

}

B.4 Group Manager

This section provides the discovery server source code.

/∗
Copyright (C) 2003 Andreas Pa sha l i d i s

This l i b r a r y i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or
modify i t under the terms o f the GNU Lesse r General Publ ic
L i cense as pub l i shed by the Free Software Foundation ; e i t h e r
v e r s i on 2 .1 o f the License , or ( at your opt ion ) any l a t e r v e r s i on .

This l i b r a r y i s d i s t r i b u t e d in the hope that i t w i l l be use fu l ,
but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesse r General Publ ic L i cense f o r more d e t a i l s .

You should have r e c e i v ed a copy o f the GNU Lesse r General Publ ic

265



License along with t h i s l i b r a r y ; i f not , wr i t e to the Free Software
Foundation , Inc . , 59 Temple Place , Su i t e 330 , Boston , MA 02111−1307 USA

∗/

package groupmanager ;

import p ro t o c o l s . IpAndPort ;

/∗∗
∗ This c l a s s i s implements an event that a l l ows the C l i en t GUI to update i t s e l f .
∗
∗ @author Andreas Pa sha l i d i s
∗/

public class ClientConnectionChangeEvent extends javax . swing . event . ChangeEvent
{

private boolean f a t a l ;
private IpAndPort c l i e n t ;
private St r ing s t a t e ;

protected ClientConnectionChangeEvent ( Object source , IpAndPort c l i e n t , S t r ing
s tate , boolean f a t a l )

{
super ( source ) ;
this . c l i e n t=c l i e n t ;
this . f a t a l=f a t a l ;
this . s t a t e=s t a t e ;

}

public boolean i s F a t a l ( )
{

return f a t a l ;
}

public IpAndPort ge tC l i en t Ipap ( )
{

return c l i e n t ;
}

public St r ing ge tSta t e ( )
{

return s t a t e ;
}

}

/∗
This c l a s s implements the Servant thread f o r a Discovery Server ; i t i s a Thread

Copyright (C) 2003 Andreas Pa sha l i d i s

This l i b r a r y i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or
modify i t under the terms o f the GNU Lesse r General Publ ic
L i cense as pub l i shed by the Free Software Foundation ; e i t h e r
v e r s i on 2 .1 o f the License , or ( at your opt ion ) any l a t e r v e r s i on .

This l i b r a r y i s d i s t r i b u t e d in the hope that i t w i l l be use fu l ,
but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesse r General Publ ic L i cense f o r more d e t a i l s .

You should have r e c e i v ed a copy o f the GNU Lesse r General Publ ic
L i cense along with t h i s l i b r a r y ; i f not , wr i t e to the Free Software
Foundation , Inc . , 59 Temple Place , Su i t e 330 , Boston , MA 02111−1307 USA

∗/

266



package groupmanager ;

import java . u t i l . Vector ;
import p ro t o c o l s . IpAndPort ;

public f ina l class ClientRecord implements java . i o . S e r i a l i z a b l e
{

public IpAndPort ipap ;
public int min , max ;

public ClientRecord ( IpAndPort ipap , int min , int max)
{

this . ipap=ipap ;
this . min=min ;
this .max=max ;

}
}

/∗
This c l a s s implements the Servant thread f o r a Discovery Server ; i t i s a Thread

Copyright (C) 2003 Andreas Pa sha l i d i s

This l i b r a r y i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or
modify i t under the terms o f the GNU Lesse r General Publ ic
L i cense as pub l i shed by the Free Software Foundation ; e i t h e r
v e r s i on 2 .1 o f the License , or ( at your opt ion ) any l a t e r v e r s i on .

This l i b r a r y i s d i s t r i b u t e d in the hope that i t w i l l be use fu l ,
but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesse r General Publ ic L i cense f o r more d e t a i l s .

You should have r e c e i v ed a copy o f the GNU Lesse r General Publ ic
L i cense along with t h i s l i b r a r y ; i f not , wr i t e to the Free Software
Foundation , Inc . , 59 Temple Place , Su i t e 330 , Boston , MA 02111−1307 USA

∗/

package groupmanager ;

import java . net . ∗ ;
import java . i o . ∗ ;
import java . u t i l . Vector ;
import p ro t o c o l s . ∗ ;

f ina l class Credent ia l I s sueProxy extends Thread
{

private stat ic long t o t a l =0;
private long id ;

private GroupManager gm;
IpAndPort ipap ;

protected Credent ia l I s sueProxy (GroupManager gm, IpAndPort ipap )
{

this . gm=gm;
this . ipap=ipap ;
t o t a l++;
id=t o t a l ;

}

public void run ( )
{

try
{

267



Socket memberSocket=new Socket ( ) ;
memberSocket . setKeepAl ive ( true ) ;
memberSocket . setTcpNoDelay ( true ) ;
memberSocket . setSoTimeout (25000) ;
memberSocket . connect (new InetSocketAddress ( ipap . getAddr ( ) , ipap . getPort ( ) )

,10000) ;
ObjectOutputStream oos=new ObjectOutputStream ( memberSocket .

getOutputStream ( ) ) ;
p r o t o c o l s . Message msg=new p ro t o c o l s . run . RunRequest ( ) ;
oos . wr i teObject (msg) ;
oos . f l u s h ( ) ;

ObjectInputStream o i s = new ObjectInputStream ( memberSocket . getInputStream
( ) ) ;

msg = ( p r o t o c o l s . Message ) o i s . readObject ( ) ;
i f ( ! ( msg instanceof p ro t o c o l s . MessageBinary ) )
{

throw new RuntimeException ( ” Credent i a l I s s u e Proxy : Unrecognized
r ep ly from ”+ipap ) ;

}
p ro t o c o l s . MessageBinary mb=(p ro t o c o l s . MessageBinary )msg ;
i f ( ! (mb. su c c e s s ) )
{

throw new RuntimeException ( ” Credent i a l I s s u e Proxy : ”+mb. errorMessage
) ;

}
Socket i s s u e rSo ck e t=new Socket ( ) ;
i s s u e rSo ck e t . connect (new InetSocketAddress ( ” 134 . 219 . 23 . 130 ” ,1863) ,10000) ;

TcpForwarder c l i e n tTo I s s u e r=new TcpForwarder (gm, memberSocket ,
i s s u e rSo ck e t ) ;

TcpForwarder i s su e rToC l i en t=new TcpForwarder (gm, i s sue rSocke t ,
memberSocket ) ;

gm. l og ( ”Acting as proxy f o r ”+ipap ) ;
c l i e n tTo I s s u e r . s t a r t ( ) ;
i s su e rToC l i en t . s t a r t ( ) ;

while ( c l i e n tTo I s s u e r . i sA l i v e ( ) | | i s su e rToC l i en t . i sA l i v e ( ) )
{

s l e e p (350) ;
}

i s s u e rSo ck e t . c l o s e ( ) ;
memberSocket . c l o s e ( ) ;

} catch ( Exception e )
{

e . pr intStackTrace ( ) ;
gm. l og ( ”Error whi l e ac t ing as proxy f o r ”+ipap+” : ”+e . getMessage ( )+” ( ”+

id+” ) ” ) ;
}
gm. log ( ” Clos ing down . . . ” ) ;
try
{

gm. shutdown ( ) ;
} catch ( Exception e )
{

gm. log ( ”Error whi l e shut t ing down Group Manager : ”+e . getMessage ( ) ) ;
}

}

}

/∗
Copyright (C) 2003 Andreas Pa sha l i d i s

268



This l i b r a r y i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or
modify i t under the terms o f the GNU Lesse r General Publ ic
L i cense as pub l i shed by the Free Software Foundation ; e i t h e r
v e r s i on 2 .1 o f the License , or ( at your opt ion ) any l a t e r v e r s i on .

This l i b r a r y i s d i s t r i b u t e d in the hope that i t w i l l be use fu l ,
but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesse r General Publ ic L i cense f o r more d e t a i l s .

You should have r e c e i v ed a copy o f the GNU Lesse r General Publ ic
L i cense along with t h i s l i b r a r y ; i f not , wr i t e to the Free Software
Foundation , Inc . , 59 Temple Place , Su i t e 330 , Boston , MA 02111−1307 USA

∗/

package groupmanager ;

import java . net . ∗ ;
import java . i o . ∗ ;
import p ro t o c o l s . IpAndPort ;
import javax . swing . event . EventL i s t ene rL i s t ;
import javax . swing . event . ChangeListener ;
import javax . swing . event . ChangeEvent ;

/∗∗
∗ This c l a s s manages the communication between the Group Manager daemon and one

Discovery Server .
∗ I t r e g i s t e r s the Group Manager with the Discovery Server , i t mainta ins the

connect ion , and i t
∗ d e r e g i s t e r s when appropr ia te .
∗ @author Andreas Pa sha l i d i s
∗/

public f ina l class DSConnectionManager extends pinger . PingerThread
{

protected DSConnectionManager (GroupManager parent , IpAndPort dsAddr )
{

super ( parent , dsAddr ) ;
}

protected void r e g i s t e r ( )
{

try
{

Socket dsSocket=new Socket ( ) ;
dsSocket . setKeepAl ive ( true ) ;
dsSocket . setTcpNoDelay ( true ) ;
dsSocket . setSoTimeout (10000) ;
s t a t e=”Connecting . . . ” ;
pd . l og ( ”Connecting to ”+ipap+” . . . ” ) ;
pd . stateChanged ( this , fa l se ) ;
dsSocket . connect (new InetSocketAddress ( ipap . getAddr ( ) , ipap . getPort ( ) )

,10000) ;
s t a t e=” Reg i s t e r i ng . . . ” ;
pd . l og ( ” Reg i s t e r i ng with ”+ipap+” . . . ” ) ;
pd . stateChanged ( this , fa l se ) ;
p r o t o c o l s . Message msg=new p ro t o c o l s . r e g i s t e r . Reg i s terRequest ( ( (

GroupManager )pd) . getGroupSize ( ) , ( ( GroupManager )pd) . getPort ( ) ) ;
ObjectOutputStream oos=new ObjectOutputStream ( dsSocket . getOutputStream ( ) )

;
oos . wr i teObject (msg) ;
oos . f l u s h ( ) ;

ObjectInputStream o i s = new ObjectInputStream ( dsSocket . getInputStream ( ) ) ;

269



msg = ( p r o t o c o l s . Message ) o i s . readObject ( ) ;
i f ( ! ( msg instanceof p ro t o c o l s . MessageBinary ) )
{

throw new RuntimeException ( ” Server did not respond proper ly . ” ) ;
}
i f ( ! ( ( p r o t o c o l s . MessageBinary )msg) . s u c c e s s )
{

throw new RuntimeException ( ( ( p r o t o c o l s . MessageBinary )msg) .
errorMessage ) ;

}
dsSocket . c l o s e ( ) ;
s t a t e=” Reg i s t e r ed . ” ;
pd . l og ( ” Reg i s t e r ed with ”+ipap+” . . . ” ) ;
pd . stateChanged ( this , fa l se ) ;

} catch ( Exception ex )
{

pd . l og ( ”Exception : ”+ex . getMessage ( ) ) ;
s t a t e=ex . getMessage ( ) ;
pd . stateChanged ( this , true ) ;

}
}

}

/∗
Copyright (C) 2003 Andreas Pa sha l i d i s

This l i b r a r y i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or
modify i t under the terms o f the GNU Lesse r General Publ ic
L i cense as pub l i shed by the Free Software Foundation ; e i t h e r
v e r s i on 2 .1 o f the License , or ( at your opt ion ) any l a t e r v e r s i on .

This l i b r a r y i s d i s t r i b u t e d in the hope that i t w i l l be use fu l ,
but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesse r General Publ ic L i cense f o r more d e t a i l s .

You should have r e c e i v ed a copy o f the GNU Lesse r General Publ ic
L i cense along with t h i s l i b r a r y ; i f not , wr i t e to the Free Software
Foundation , Inc . , 59 Temple Place , Su i t e 330 , Boston , MA 02111−1307 USA

∗/

package groupmanager ;

/∗∗
∗ This c l a s s i s implements an event that r e l a t e s to a Discovery Server .
∗
∗ @author Andreas Pa sha l i d i s
∗/

public class DSEvent extends javax . swing . event . ChangeEvent
{

private int index ;
private St r ing s t a t e ;
private boolean f a t a l ;

protected DSEvent ( Object source , int index , S t r ing s tate , boolean f a t a l )
{

super ( source ) ;
this . index=index ;
this . s t a t e=s t a t e ;
this . f a t a l=f a t a l ;

}

270



protected void se t Index ( int index )
{

this . index=index ;
}

public int getIndex ( )
{

return index ;
}

public St r ing ge tSta t e ( )
{

return s t a t e ;
}

public boolean getFata l ( )
{

return f a t a l ;
}

}

/∗
Copyright (C) 2003 Andreas Pa sha l i d i s

This l i b r a r y i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or
modify i t under the terms o f the GNU Lesse r General Publ ic
L i cense as pub l i shed by the Free Software Foundation ; e i t h e r
v e r s i on 2 .1 o f the License , or ( at your opt ion ) any l a t e r v e r s i on .

This l i b r a r y i s d i s t r i b u t e d in the hope that i t w i l l be use fu l ,
but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesse r General Publ ic L i cense f o r more d e t a i l s .

You should have r e c e i v ed a copy o f the GNU Lesse r General Publ ic
L i cense along with t h i s l i b r a r y ; i f not , wr i t e to the Free Software
Foundation , Inc . , 59 Temple Place , Su i t e 330 , Boston , MA 02111−1307 USA

∗/

package groupmanager ;

import java . net . ∗ ;
import java . i o . ∗ ;
import p ro t o c o l s . IpAndPort ;
import javax . swing . event . EventL i s t ene rL i s t ;
import javax . swing . event . ChangeListener ;
import javax . swing . event . ChangeEvent ;

/∗∗
∗ This c l a s s implements the f u n c t i o n a l i t y o f the Group Manager daemon .
∗
∗ @author Andreas Pa sha l i d i s
∗/

public f ina l class GroupManager extends Thread implements pinger . PingingDaemon
{

protected stat ic f ina l St r ing NAME=”Group Manager v . 0 . 2 ” ;
private stat ic f ina l St r ing CONSOLENOTICE=”\n Group Manager − wr i t t en

by Andreas Pa sha l i d i s \n −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\
nThis so f tware i s provided \” as i s \” without warranty o f any kind .\nNo
r e s p o n s i b i l i t y w i l l be accepted f o r any negat ive e f f e c t s the \ nso f tware may
cause . You use i t on your own r i s k .\n( ”+NAME+” ) \n” ;

private stat ic f ina l java . t ex t . DateFormat df = java . t ex t . DateFormat .
getDateTimeInstance (3 , 2 ) ;

private EventL i s t ene rL i s t l i s t e n e r s ;

271



private PrintWriter l og ;
private ServerSocket s s ;
private int groupSize ;
private volat i le java . u t i l . Vector dsLi s t , dscmList , c l i en tRecords , c l i e n tP i n g e r s ;
private volat i le boolean i sAct ive , acceptMoreMembers ;

/∗∗ Creates a Group Manager that w i l l l og messages to the standard output . ∗/
public GroupManager ( I n i t i n i t ) throws Exception
{

this ( i n i t , new PrintWriter ( System . out , true ) ) ;
}

/∗∗
∗ This i s the f u l l c on s t ruc to r that prov ide s the maximum f l e x i b i l i t y and

f u n c t i o n a l i t y . I t c r e a t e s a Group Manager
∗ that w i l l l og messages to the s p e c i f i e d {@link Pr intWriter } .
∗
∗ @param i n i t the i n i t i a l i z a t i o n ob j e c t f o r t h i s Group Manager i n s t anc e
∗ @param log the {@link Pr intWriter } l og messages s h a l l be sent to
∗/

public GroupManager ( I n i t i n i t , Pr intWriter l og ) throws Exception
{

l i s t e n e r s=new EventL i s t ene rL i s t ( ) ;
c l i en tReco rd s=new java . u t i l . Vector ( ) ;
c l i e n tP i n g e r s=new java . u t i l . Vector ( ) ;
System . out . p r i n t l n (CONSOLENOTICE) ;
i f ( i n i t . getPort ( )<1 | | i n i t . getPort ( ) >65535) throw new

I l l ega lArgumentExcept ion ( ”Not a va l i d port number : ”+i n i t . getPort ( ) ) ;
i f ( l og==null ) throw new Nul lPo interExcept ion ( ”Logger i s nu l l ! ” ) ;
this . l og=log ;
this . d sL i s t=i n i t . getDSList ( ) ;
i f ( this . d sL i s t . s i z e ( ) <1) throw new I l l ega lArgumentExcept ion ( ”No Discovery

Se rve r s Found in I n i t a l i z a t i o n Object ! ” ) ;
this . g roupSize=i n i t . getGroupSize ( ) ;
i f ( this . groupSize <2) throw new I l l ega lArgumentExcept ion ( ”Not a va l i d group

s i z e : ”+this . g roupSize ) ;

acceptMoreMembers=true ;
setDaemon ( true ) ;
l og ( ”Attempting to s t a r t ”+NAME+” on port ”+i n i t . getPort ( )+” . . . ” ) ;
s s=new ServerSocket ( i n i t . getPort ( ) ) ;
l og (NAME+” i s ready . ” ) ;

}

/∗∗
∗ This method has to be c a l l e d in order f o r the Discovery Server to s t a r t .
∗/

public f ina l void run ( )
{

i sAc t i v e=true ;
dscmList=new java . u t i l . Vector ( ) ;
java . u t i l . Enumeration enum=dsL i s t . e lements ( ) ;
l og ( ” Reg i s t e r i ng at Discovery Server ( s ) . . . ” ) ;
while (enum . hasMoreElements ( ) )
{

DSConnectionManager dscm=new DSConnectionManager ( this , ( IpAndPort )enum .
nextElement ( ) ) ;

dscmList . addElement (dscm) ;
dscm . r e g i s t e r ( ) ; // t h i s r e g i s t e r s the GM with the d i s cove ry s e r v e r
dscm . setSuspended ( fa l se ) ; // t h i s s t a r t s p ing ing

}
l og (NAME+” i s running . ” ) ;
while ( i sAc t i v e )

272



{
try
{

new Servant ( this , s s . accept ( ) , acceptMoreMembers ) ;
} catch ( Exception e )
{

e . pr intStackTrace ( ) ;
l og ( ”Exception : ”+e . getMessage ( ) ) ;

}
}

}

/∗∗
∗ As the stop method in {@link Thread} i s deprecated , t h i s method should be

c a l l e d in order
∗ to proper ly stop a running Discovery Server .
∗/

public f ina l void shutdown ( ) throws Exception
{

i f ( ! i sAc t i v e ) return ;
l og ( ”Attempting to stop ”+NAME+” . . . ” ) ;
java . u t i l . Enumeration enum=dsL i s t . e lements ( ) ;
while (enum . hasMoreElements ( ) )
{

( ( DSConnectionManager )enum . nextElement ( ) ) . shutdown ( ) ;
}
s s . c l o s e ( ) ;
i sAc t i v e=fa l se ;
j o i n ( ) ;
l og (NAME+” stopped . ” ) ;

}

public void stateChanged ( p inger . PingerThread pt , boolean f a t a l )
{

// log (”new s t a t e f o r ”+pt . getIpAndPort ( ) +”: ”+pt . ge tS ta t e ( ) ) ;
i f ( pt instanceof DSConnectionManager )
{

int index=dscmList . indexOf ( pt ) ;
ChangeEvent e=new DSEvent ( this , index , pt . getCurrentState ( ) , f a t a l ) ;
f i reChangeEvent ( e ) ;
// connect ion with Discovery Server i s Lost !
// should implement a check here : i f no a l i v e DS s e r v e r s l e f t , a l l

members should be n o t i f i e d !
return ;

}
// pt must be a c l i e n t p inger
i f ( f a t a l ) // we l o s t a member , now we must t e l l a l l remaining members
{

removeMember (new groupmanager . Cl ientRecord ( pt . getIpAndPort ( ) , 0 , 0 ) , pt .
getCurrentState ( ) ) ;

} else
{

ChangeEvent e=new ClientConnectionChangeEvent ( this , pt . getIpAndPort ( ) , pt .
getCurrentState ( ) , fa l se ) ;

f i reChangeEvent ( e ) ;
}

}

protected void removeMember ( groupmanager . Cl ientRecord cr , S t r ing reason )
{

int index=getC l i en t Index ( cr . ipap ) ;
i f ( index==−1) return ;

273



// f i r s t remove the ( ex−)member
p inger . PingerThread pt=(p inger . PingerThread ) c l i e n tP i n g e r s . elementAt ( index ) ;
c l i e n tP i n g e r s . removeElementAt ( index ) ;
c l i en tReco rd s . removeElementAt ( index ) ;
l og ( ”Removing ”+pt . getIpAndPort ( )+” from the group ! ( ”+reason+” ) ” ) ;
ChangeEvent e=new UpdateEvent ( this , cr , false , reason ) ;
f i reChangeEvent ( e ) ;
// then update remaining members
updateMembers ( false , reason , c r ) ;
pt . shutdown ( ) ;

}

protected boolean addMember( Cl ientRecord cr )
{

int index=getC l i en t Index ( cr . ipap ) ;
i f ( index !=−1) return fa l se ;
// new member i s about to j o i n t h i s group −− we must t e l l a l l e x i s t i n g

members !
updateMembers ( true , null , c r ) ;
// now ac tua l l y add the c l i e n t . . .
l og ( ”Adding ”+cr . ipap+” ( ”+cr . min+” , ”+cr .max+” ) to the group . ” ) ;
ChangeEvent e=new UpdateEvent ( this , cr , true , ” Just j o i n ed ! ” ) ;
f i reChangeEvent ( e ) ;
p inger . PingerThread pt=new p inger . PingerThread ( this , c r . ipap ) ;
c l i en tReco rd s . addElement ( cr ) ;
c l i e n tP i n g e r s . addElement ( pt ) ;
pt . setSuspended ( fa l se ) ;
i f ( c l i en tReco rd s . s i z e ( )==groupSize ) i n i t i a t eP r o c edu r e ( ) ;
return true ;

}

private void i n i t i a t eP r o c edu r e ( )
{

int [ ] s o r t ed=new int [ g roupSize ] ;
long [ ] de lay=new long [ g roupSize ] ;
int t , j , i =0;
java . u t i l . Enumeration enum=c l i e n tP i n g e r s . e lements ( ) ;
while (enum . hasMoreElements ( ) )
{

so r t ed [ i ]= i ;
de lay [ i ++]=(( p inger . PingerThread ) (enum . nextElement ( ) ) ) . getAverage ( ) ;

}

for ( i =0; i<groupSize ; i++)
System . out . p r i n t l n ( ”BEFORE . . . ”+i+” : ”+delay [ i ]+” rank : ”+sor t ed [ i ] ) ;

long temp ;
for ( i =0; i<groupSize −1; i++)
{

for ( j =0; j<groupSize−1− i ; j++)
{

i f ( de lay [ j+1]<delay [ j ] )
{

temp=delay [ j ] ;
de lay [ j ]=delay [ j +1] ;
de lay [ j+1]=temp ;
t=sor t ed [ j ] ;
s o r t ed [ j ]= so r t ed [ j +1] ;
s o r t ed [ j+1]=t ;

}
}

}

for ( i =0; i<groupSize ; i++)
System . out . p r i n t l n ( ”AFTER . . . ”+i+” : ”+delay [ i ]+” rank : ”+sor t ed [ i ] ) ;

274



IpAndPort ipap ;
for ( i =0; i<groupSize ; i++)
{

ipap=(( Cl ientRecord ) c l i en tReco rd s . elementAt ( so r t ed [ i ] ) ) . ipap ;
l og ( ” S ta r t i ng proxy f o r ”+ipap ) ;
Credent ia l I s sueProxy c ip=new Credent ia l I s sueProxy ( this , ipap ) ;
c ip . s t a r t ( ) ;

}
}

private int ge tC l i en t Index ( IpAndPort ipap )
{

java . u t i l . Enumeration enum=c l i e n tP i n g e r s . e lements ( ) ;
int i =0;
while (enum . hasMoreElements ( ) )
{

i f ( ( ( p inger . PingerThread )enum . nextElement ( ) ) . ipap . t oS t r i ng ( ) . equa l s ( ipap
. t oS t r i ng ( ) ) ) return i ;

i++;
}
return −1;

}

private void updateMembers (boolean j o i n ing , S t r ing errorMessage , Cl ientRecord cr )
{

java . u t i l . Enumeration enum=c l i en tReco rd s . e lements ( ) ;
IpAndPort ipap ;
while (enum . hasMoreElements ( ) )
{

ipap=(( Cl ientRecord )enum . nextElement ( ) ) . ipap ;
MemberUpdater mu=new MemberUpdater ( this , ipap , j o i n ing , errorMessage , c r ) ;

}
}

protected java . u t i l . Vector getCl i entRecords ( )
{

return c l i en tReco rd s ;
}

public int getGroupSize ( )
{

return groupSize ;
}

public int getPort ( )
{

return s s . getLoca lPort ( ) ;
}

public long getTime ( )
{

return new java . u t i l . Date ( ) . getTime ( ) ;
}

public void addChangeListener ( ChangeListener l )
{

l i s t e n e r s . add ( ChangeListener . class , l ) ;
}

public void removeChangeListener ( ChangeListener l )
{

l i s t e n e r s . remove ( ChangeListener . class , l ) ;

275



}

protected void f i reChangeEvent ( ChangeEvent e )
{

Object [ ] array = l i s t e n e r s . g e tL i s t e n e rL i s t ( ) ;
for ( int i = array . length −2; i >=0; i−=2)
{

i f ( array [ i ]==ChangeListener . class )
{

( ( ChangeListener ) array [ i +1]) . stateChanged ( e ) ;
}

}
}
public f ina l void l og ( S t r ing s ) { l og . p r i n t l n ( ” [ ”+df . format (new java . u t i l . Date ( ) )+”

/”+getTime ( )+” ] ”+s ) ; l og . f l u s h ( ) ;}

}

/∗
Copyright (C) 2003 Andreas Pa sha l i d i s

This l i b r a r y i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or
modify i t under the terms o f the GNU Lesse r General Publ ic
L i cense as pub l i shed by the Free Software Foundation ; e i t h e r
v e r s i on 2 .1 o f the License , or ( at your opt ion ) any l a t e r v e r s i on .

This l i b r a r y i s d i s t r i b u t e d in the hope that i t w i l l be use fu l ,
but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesse r General Publ ic L i cense f o r more d e t a i l s .

You should have r e c e i v ed a copy o f the GNU Lesse r General Publ ic
L i cense along with t h i s l i b r a r y ; i f not , wr i t e to the Free Software
Foundation , Inc . , 59 Temple Place , Su i t e 330 , Boston , MA 02111−1307 USA

∗/

package groupmanager ;

import java . u t i l . Vector ;
import p ro t o c o l s . IpAndPort ;

/∗∗
∗ This c l a s s implements an I n i t i a l i s a t i o n Object f o r the Group Manager . I t

conta in s a l l the in fo rmat ion to boots t rap a Group Manager deamon .
∗
∗ @author Andreas Pa sha l i d i s
∗/

public f ina l class I n i t
{

private int port , groupSize ;
private Vector dsVector ;

public I n i t ( int port , int groupSize )
{

this . port=port ;
this . g roupSize=groupSize ;
dsVector=new java . u t i l . Vector ( ) ;

}

public void addDS( IpAndPort addr )
{

dsVector . addElement ( addr ) ;
}

276



protected Vector getDSList ( )
{

return dsVector ;
}

protected int getPort ( )
{

return port ;
}

protected int getGroupSize ( )
{

return groupSize ;
}

}

/∗
This c l a s s implements the Servant thread f o r a Discovery Server ; i t i s a Thread

Copyright (C) 2003 Andreas Pa sha l i d i s

This l i b r a r y i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or
modify i t under the terms o f the GNU Lesse r General Publ ic
L i cense as pub l i shed by the Free Software Foundation ; e i t h e r
v e r s i on 2 .1 o f the License , or ( at your opt ion ) any l a t e r v e r s i on .

This l i b r a r y i s d i s t r i b u t e d in the hope that i t w i l l be use fu l ,
but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesse r General Publ ic L i cense f o r more d e t a i l s .

You should have r e c e i v ed a copy o f the GNU Lesse r General Publ ic
L i cense along with t h i s l i b r a r y ; i f not , wr i t e to the Free Software
Foundation , Inc . , 59 Temple Place , Su i t e 330 , Boston , MA 02111−1307 USA

∗/

package groupmanager ;

import java . net . ∗ ;
import java . i o . ∗ ;
import java . u t i l . Vector ;
import p ro t o c o l s . ∗ ;

f ina l class MemberUpdater extends Thread
{

private GroupManager gm;
private boolean j o i n i n g ;
private St r ing errorMessage ;
IpAndPort ipap ;
private ClientRecord cr ;

protected MemberUpdater (GroupManager gm, IpAndPort ipap , boolean j o i n ing , S t r ing
errorMessage , Cl ientRecord cr )

{
this . gm=gm;
this . ipap=ipap ;
this . j o i n i n g=j o i n i n g ;
this . e r rorMessage=errorMessage ;
this . c r=cr ;
s t a r t ( ) ;

}

public void run ( )
{

277



p ro t o c o l s . Message msg=new p ro t o c o l s . update . SingleUpdate ( j o in ing , errorMessage ,
c r ) ;

try
{

Socket memberSocket=new Socket ( ) ;
memberSocket . setKeepAl ive ( true ) ;
memberSocket . setTcpNoDelay ( true ) ;
memberSocket . setSoTimeout (50000) ;
memberSocket . connect (new InetSocketAddress ( ipap . getAddr ( ) , ipap . getPort ( ) )

,10000) ;
ObjectOutputStream oos=new ObjectOutputStream ( memberSocket .

getOutputStream ( ) ) ;
ObjectInputStream o i s = new ObjectInputStream ( memberSocket . getInputStream

( ) ) ;
oos . wr i teObject (msg) ;
oos . f l u s h ( ) ;
memberSocket . c l o s e ( ) ;

} catch ( Exception e )
{

// e . pr intStackTrace ( ) ;
gm. l og ( ”Error whi l e t ry ing to send update to ”+ipap+” : ”+e . getMessage ( ) ) ;

}
}

}

/∗
This c l a s s implements the Servant thread f o r a Discovery Server ; i t i s a Thread

Copyright (C) 2003 Andreas Pa sha l i d i s

This l i b r a r y i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or
modify i t under the terms o f the GNU Lesse r General Publ ic
L i cense as pub l i shed by the Free Software Foundation ; e i t h e r
v e r s i on 2 .1 o f the License , or ( at your opt ion ) any l a t e r v e r s i on .

This l i b r a r y i s d i s t r i b u t e d in the hope that i t w i l l be use fu l ,
but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesse r General Publ ic L i cense f o r more d e t a i l s .

You should have r e c e i v ed a copy o f the GNU Lesse r General Publ ic
L i cense along with t h i s l i b r a r y ; i f not , wr i t e to the Free Software
Foundation , Inc . , 59 Temple Place , Su i t e 330 , Boston , MA 02111−1307 USA

∗/

package groupmanager ;

import java . net . ∗ ;
import java . i o . ∗ ;
import java . u t i l . Vector ;
import p ro t o c o l s . ∗ ;

f ina l class Servant extends Thread
{

private stat ic long t o t a l =0;
private long id ;
private Socket c l i e n t ;
private GroupManager gm;
private boolean acceptMoreMembers ;

protected Servant (GroupManager gm, Socket c l i e n t , boolean acceptMoreMembers )
{

this . c l i e n t=c l i e n t ;
this . gm=gm;

278



this . acceptMoreMembers=acceptMoreMembers ;
t o t a l++;
id=t o t a l ;
s t a r t ( ) ;

}

public void run ( )
{

St r ing c l i e n t S t r i n g=c l i e n t . get InetAddress ( ) . getHostName ( )+” : ”+c l i e n t . getPort
( ) ;

try
{

ObjectOutputStream oos=new ObjectOutputStream ( c l i e n t . getOutputStream ( ) ) ;
ObjectInputStream o i s = new ObjectInputStream ( c l i e n t . getInputStream ( ) ) ;
p r o t o c o l s . Message msg = ( p r o t o c o l s . Message ) o i s . readObject ( ) ;
i f (msg instanceof p ro t o c o l s . j o i n . JoinRequest )
{

p ro t o c o l s . j o i n . JoinRequest j r =( p r o t o c o l s . j o i n . JoinRequest )msg ;
int min=j r . min ;
int max=j r .max ;
int port=j r . port ;
l og ( ” Join group reque s t from ”+ c l i e n t S t r i n g+” ( ”+min+” , ”+max+” ) ” ) ;
Cl ientRecord cr=null ;
i f ( ! ( acceptMoreMembers ) )
{

l og ( ”Cannot accept ”+c l i e n t S t r i n g+” ( ”+min+” , ”+max+” ) : group i s
c l o s ed ! ” ) ;

msg=new p ro t o c o l s . j o i n . JoinReply ( false , ”Group c l o s ed . ” , null , gm.
getGroupSize ( ) , c r . ipap ) ;

} else
i f (gm. getGroupSize ( )<min)
{

l og ( c l i e n t S t r i n g+” ( ”+min+” , ”+max+” ) : minimum too low ! ” ) ;
msg=new p ro t o c o l s . j o i n . JoinReply ( false , ”Lower l im i t ”+min+” too

low . ” , null ,gm. getGroupSize ( ) , c r . ipap ) ;
} else
i f (gm. getGroupSize ( )>max)
{

l og ( c l i e n t S t r i n g+” ( ”+min+” , ”+max+” ) : maximum too high ! ” ) ;
msg=new p ro t o c o l s . j o i n . JoinReply ( false , ”Upper l im i t ”+max+” too

high . ” , null ,gm. getGroupSize ( ) , c r . ipap ) ;
} else
{

cr=new ClientRecord (new IpAndPort ( c l i e n t . get InetAddress ( ) , port ) ,
min ,max) ;

i f ( ! ( gm. addMember( cr ) ) )
{

l og ( c l i e n t S t r i n g+” ( ”+min+” , ”+max+” ) : could not j o i n the
group ! ” ) ;

msg=new p ro t o c o l s . j o i n . JoinReply ( false , ”Group j o i n denied . ” ,
null ,gm. getGroupSize ( ) , c r . ipap ) ;

} else
{

msg=new p ro t o c o l s . j o i n . JoinReply ( true , null ,gm.
getCl i entRecords ( ) ,gm. getGroupSize ( ) , c r . ipap ) ;

}
}
oos . wr i teObject (msg) ;
oos . f l u s h ( ) ;

} else i f (msg instanceof p ro t o c o l s . j o i n . LeaveRequest )
{

p ro t o c o l s . j o i n . LeaveRequest l r =( p r o t o c o l s . j o i n . LeaveRequest )msg ;
l og ( ”Leave group reque s t from ”+ c l i e n t S t r i n g ) ;
gm. removeMember (new ClientRecord (new IpAndPort ( c l i e n t . get InetAddress

( ) , l r . port ) , 0 , 0 ) , ” l e ave reques ted ” ) ;
} else i f (msg instanceof p ro t o c o l s . update . UpdateRequest )

279



{
p ro t o c o l s . update . UpdateRequest ur=(p r o t o c o l s . update . UpdateRequest )msg

;
l og ( ”Update r eque s t from ”+ c l i e n t S t r i n g ) ;
msg=new p ro t o c o l s . update . UpdateReply (gm. getCl i entRecords ( ) ) ;
oos . wr i teObject (msg) ;
oos . f l u s h ( ) ;

}
else
{

l og ( ” unrecogn i sed message from ”+c l i e n t S t r i n g ) ;
}
c l i e n t . c l o s e ( ) ;

} catch ( Exception e )
{

// e . pr intStackTrace ( ) ;
l og ( ” Serv ing Error : ”+c l i e n t S t r i n g+” ”+e . getMessage ( )+” ( ”+id+” ) . ” ) ;
return ;

}
}

private void l og ( S t r ing s ) {gm. log ( id+” − ”+s ) ;}

}

/∗
This c l a s s implements the Servant thread f o r a Discovery Server ; i t i s a Thread

Copyright (C) 2003 Andreas Pa sha l i d i s

This l i b r a r y i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or
modify i t under the terms o f the GNU Lesse r General Publ ic
L i cense as pub l i shed by the Free Software Foundation ; e i t h e r
v e r s i on 2 .1 o f the License , or ( at your opt ion ) any l a t e r v e r s i on .

This l i b r a r y i s d i s t r i b u t e d in the hope that i t w i l l be use fu l ,
but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesse r General Publ ic L i cense f o r more d e t a i l s .

You should have r e c e i v ed a copy o f the GNU Lesse r General Publ ic
L i cense along with t h i s l i b r a r y ; i f not , wr i t e to the Free Software
Foundation , Inc . , 59 Temple Place , Su i t e 330 , Boston , MA 02111−1307 USA

∗/

package groupmanager ;

import java . net . ∗ ;
import java . i o . ∗ ;
import java . u t i l . Vector ;
import p ro t o c o l s . ∗ ;

f ina l class TcpForwarder extends Thread
{

private GroupManager gm;
private Socket from , to ;

protected TcpForwarder (GroupManager gm, Socket from , Socket to )
{

this . gm=gm;
this . from=from ;
this . to=to ;

}

280



public void run ( )
{

boolean i sAc t i v e=true ;
byte [ ] b u f f e r=new byte [ 3 2 7 6 8 ] ;

try
{

InputStream i s = from . getInputStream ( ) ;
OutputStream os = to . getOutputStream ( ) ;
int b ;
while ( i sAc t i v e )
{

b=i s . read ( bu f f e r ) ;
i f (b<0)
{

i sAc t i v e=fa l se ;
os . c l o s e ( ) ;

} else
{

os . wr i t e ( bu f f e r , 0 , b ) ;
os . f l u s h ( ) ;

}
}

} catch ( Exception e )
{

e . pr intStackTrace ( ) ;
gm. l og ( ”Error proxying from ”+getIpap ( from )+” to ”+getIpap ( to )+” : ”+e .

getMessage ( ) ) ;
}

}

private stat ic St r ing getIpap ( Socket s )
{

return s . get InetAddress ( ) . getHostAddress ( )+” : ”+s . getPort ( ) ;
}

}

/∗
Copyright (C) 2003 Andreas Pa sha l i d i s

This l i b r a r y i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or
modify i t under the terms o f the GNU Lesse r General Publ ic
L i cense as pub l i shed by the Free Software Foundation ; e i t h e r
v e r s i on 2 .1 o f the License , or ( at your opt ion ) any l a t e r v e r s i on .

This l i b r a r y i s d i s t r i b u t e d in the hope that i t w i l l be use fu l ,
but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesse r General Publ ic L i cense f o r more d e t a i l s .

You should have r e c e i v ed a copy o f the GNU Lesse r General Publ ic
L i cense along with t h i s l i b r a r y ; i f not , wr i t e to the Free Software
Foundation , Inc . , 59 Temple Place , Su i t e 330 , Boston , MA 02111−1307 USA

∗/

package groupmanager ;

/∗∗
∗ This c l a s s i s implements an event that a l l ows the C l i en t GUI to update i t s e l f .
∗
∗ @author Andreas Pa sha l i d i s
∗/

281



public class UpdateEvent extends javax . swing . event . ChangeEvent
{

private groupmanager . Cl ientRecord cr ;
private boolean i sP r e s en t ;
private St r ing comment ;

protected UpdateEvent ( Object source , groupmanager . Cl ientRecord cr , boolean
i sPre s ent , S t r ing comment)

{
super ( source ) ;
this . c r=cr ;
this . i sP r e s en t=i sP r e s en t ;
this . comment=comment ;

}

public groupmanager . Cl ientRecord getCl i entRecord ( )
{

return cr ;
}

public boolean pre sent ( )
{

return i sP r e s en t ;
}
public St r ing getMessage ( )
{

return comment ;
}

}

B.5 Issuer

This section provides the source code of the dummy issuer that was used to test the system.

/∗
This c l a s s implements the Servant thread f o r a Discovery Server ; i t i s a Thread

Copyright (C) 2003 Andreas Pa sha l i d i s

This l i b r a r y i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or
modify i t under the terms o f the GNU Lesse r General Publ ic
L i cense as pub l i shed by the Free Software Foundation ; e i t h e r
v e r s i on 2 .1 o f the License , or ( at your opt ion ) any l a t e r v e r s i on .

This l i b r a r y i s d i s t r i b u t e d in the hope that i t w i l l be use fu l ,
but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesse r General Publ ic L i cense f o r more d e t a i l s .

You should have r e c e i v ed a copy o f the GNU Lesse r General Publ ic
L i cense along with t h i s l i b r a r y ; i f not , wr i t e to the Free Software
Foundation , Inc . , 59 Temple Place , Su i t e 330 , Boston , MA 02111−1307 USA

∗/

package d i s c ov e r y s e r v e r ;

import p ro t o c o l s . IpAndPort ;

public f ina l class GMRecord implements java . i o . S e r i a l i z a b l e

282



{
private IpAndPort ipap ;
private int groupSize ;

protected GMRecord( IpAndPort ipap , int groupSize )
{

this . ipap=ipap ;
this . g roupSize=groupSize ;

}

protected boolean i sCompat ib le ( int low , int high )
{

i f ( groupSize<low ) return fa l se ;
i f ( groupSize>high ) return fa l se ;
return true ;

}

public IpAndPort getIpAndPort ( )
{

return ipap ;
}
public int getGroupSize ( )
{

return groupSize ;
}

}

/∗
Copyright (C) 2003 Andreas Pa sha l i d i s

This l i b r a r y i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or
modify i t under the terms o f the GNU Lesse r General Publ ic
L i cense as pub l i shed by the Free Software Foundation ; e i t h e r
v e r s i on 2 .1 o f the License , or ( at your opt ion ) any l a t e r v e r s i on .

This l i b r a r y i s d i s t r i b u t e d in the hope that i t w i l l be use fu l ,
but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesse r General Publ ic L i cense f o r more d e t a i l s .

You should have r e c e i v ed a copy o f the GNU Lesse r General Publ ic
L i cense along with t h i s l i b r a r y ; i f not , wr i t e to the Free Software
Foundation , Inc . , 59 Temple Place , Su i t e 330 , Boston , MA 02111−1307 USA

∗/

package i s s u e r ;

import java . net . ∗ ;
import java . i o . ∗ ;
import p ro t o c o l s . IpAndPort ;

/∗∗
∗ This c l a s s implements a s imple HTTP proxy daemon with S ing l e Sign−On

f un c t i o n a l i t y in to webs i t e s . I f i t
∗ bla bla bla
∗ the daemon , the <code>shutdown</code> method should be used .
∗
∗ @author Andreas Pa sha l i d i s
∗/

public f ina l class I s s u e r extends Thread
{

protected stat ic f ina l St r ing NAME=” Credent i a l I s s u i n g Simulator v . 0 . 2 ” ;
private stat ic f ina l St r ing CONSOLENOTICE=”\n Credent i a l I s s u i n g Server

− wr i t t en by Andreas Pa sha l i d i s \n

283



−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\nThis so f tware i s provided \” as i s \”
without warranty o f any kind .\nNo r e s p o n s i b i l i t y w i l l be accepted f o r any
negat ive e f f e c t s the \ nso f tware may cause . You use i t on your own r i s k .\n( ”+
NAME+” ) \n” ;

private stat ic f ina l java . t ex t . DateFormat df = java . t ex t . DateFormat .
getDateTimeInstance (3 , 2 ) ;

private PrintWriter l og ;
private ServerSocket s s ;
private boolean i sAc t i v e ;

/∗∗ Creates a Disvocery Server that w i l l run on port 8080 . Log messages w i l l be
sent to standard output . ∗/

public I s s u e r ( ) throws Exception
{

this (8080 , new PrintWriter ( System . out , true ) ) ;
}

/∗∗ Creates a Credent i a l I s s u i n g Simulator Se rv i c e that w i l l run on the s p e c i f i e d
port . Log messages w i l l be sent to standard output . ∗/

public I s s u e r ( int port ) throws Exception
{

this ( port , new PrintWriter ( System . out , true ) ) ;
}

/∗∗
∗ This i s the f u l l c on s t ruc to r that prov ide s the maximum f l e x i b i l i t y and

f u n c t i o n a l i t y . I t c r e a t e s a Discovery Server
∗ that w i l l run on the s p e c i f i e d port and sent l og messages to the s p e c i f i e d

{@link Pr intWriter } .
∗
∗ @param port the port the Impostor proxy s h a l l run on
∗ @param log the {@link Pr intWriter } l og messages s h a l l be sent to
∗/

public I s s u e r ( int port , Pr intWriter l og ) throws Exception
{

System . out . p r i n t l n (CONSOLENOTICE) ;
i f ( port <1 | | port >65535) throw new I l l ega lArgumentExcept ion ( ”Not a va l i d

port number : ”+port ) ;
i f ( l og==null ) throw new Nul lPo interExcept ion ( ”Logger i s nu l l ! ” ) ;
this . l og=log ;
setDaemon ( true ) ;
l og ( ”Attempting to s t a r t ”+NAME+” on port ”+port+” . . . ” ) ;
s s=new ServerSocket ( port ) ;
i sAc t i v e=fa l se ;
l og (NAME+” i s ready . . . ” ) ;

}

/∗∗
∗ This method has to be c a l l e d in order f o r the Discovery Server to s t a r t .
∗/

public f ina l void run ( )
{

i sAc t i v e=true ;
l og (NAME+” i s running . ” ) ;
while ( i sAc t i v e )
{

try
{

new Servant ( this , s s . accept ( ) ) ;
} catch ( IOException e )
{

e . pr intStackTrace ( ) ;
l og ( ”Fata l I /O Exception : ”+e . getMessage ( ) ) ;

284



}
}

}

/∗∗
∗ As the stop method in {@link Thread} i s deprecated , t h i s method should be

c a l l e d in order
∗ to proper ly stop a running Discovery Server .
∗/

public f ina l void shutdown ( ) throws Exception
{

i f ( ! i sAc t i v e ) return ;
l og ( ”Attempting to stop ”+NAME+” . . . ” ) ;
s s . c l o s e ( ) ;
i sAc t i v e=fa l se ;
j o i n ( ) ;
l og (NAME+” stopped . ” ) ;

}

protected f ina l void l og ( S t r ing s ) { l og . p r i n t l n ( ” [ ”+df . format (new java . u t i l . Date ( )
)+”/”+getTime ( )+” ] ”+s ) ; l og . f l u s h ( ) ;}

protected f ina l stat ic St r ing readInputStream ( InputStream i s ) throws IOException
{

byte [ ] r ep ly = new byte [ 6 5 5 3 6 ] ;
int s i z e=i s . read ( r ep ly ) ;
i f ( s i z e >0) return new St r ing ( reply , 0 , s i z e ) ; else return null ;

}

protected long getTime ( )
{

return new java . u t i l . Date ( ) . getTime ( ) ;
}

}

/∗
This c l a s s implements the Servant thread f o r a Discovery Server ; i t i s a Thread

Copyright (C) 2003 Andreas Pa sha l i d i s

This l i b r a r y i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or
modify i t under the terms o f the GNU Lesse r General Publ ic
L i cense as pub l i shed by the Free Software Foundation ; e i t h e r
v e r s i on 2 .1 o f the License , or ( at your opt ion ) any l a t e r v e r s i on .

This l i b r a r y i s d i s t r i b u t e d in the hope that i t w i l l be use fu l ,
but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesse r General Publ ic L i cense f o r more d e t a i l s .

You should have r e c e i v ed a copy o f the GNU Lesse r General Publ ic
L i cense along with t h i s l i b r a r y ; i f not , wr i t e to the Free Software
Foundation , Inc . , 59 Temple Place , Su i t e 330 , Boston , MA 02111−1307 USA

∗/

package i s s u e r ;

import java . net . ∗ ;
import java . i o . ∗ ;
import java . u t i l . Vector ;
import p ro t o c o l s . Message ;

f ina l class Servant extends Thread
{

private stat ic long t o t a l =0;

285



private long id ;
private Socket c l i e n t ;
private I s s u e r i s s u e r ;
private boolean i sAc t i v e ;

protected Servant ( I s s u e r i s s u e r , Socket c l i e n t )
{

this . i s s u e r=i s s u e r ;
this . c l i e n t=c l i e n t ;
t o t a l++;
id=t o t a l ;
s t a r t ( ) ;

}

public void run ( )
{

i sAc t i v e=true ;
S t r ing c l i e n t S t r i n g=c l i e n t . get InetAddress ( ) . getHostName ( )+” : ”+c l i e n t . getPort

( ) ;
try
{

// get the c l i e n t socke t ’ s streams
// System . out . p r i n t l n (” InputStream ava i l a b l e : ”+c l i e n t . getInputStream ( ) .

a v a i l a b l e ( ) ) ;

ObjectOutputStream oos=new ObjectOutputStream ( c l i e n t . getOutputStream ( ) ) ;
ObjectInputStream o i s = new ObjectInputStream ( c l i e n t . getInputStream ( ) ) ;
p r o t o c o l s . Message msg = ( p r o t o c o l s . Message ) o i s . readObject ( ) ;

i f (msg instanceof p ro t o c o l s . i s s u i n g . I s sueRequest ) // i t i s a c r e d e n t i a l
i s s u i n g reque s t

{
p ro t o c o l s . i s s u i n g . I s sueRequest i r =( p r o t o c o l s . i s s u i n g . I s sueRequest )msg

;
l og ( ” Serv ing Credent i a l I s s u i n g Request from ”+c l i e n t S t r i n g+” . ” ) ;
msg=new p ro t o c o l s . i s s u i n g . I s sueReply ( ) ;
oos . wr i teObject (msg) ;
oos . f l u s h ( ) ;
l og ( ” Credent i a l I s sued to ”+c l i e n t S t r i n g ) ;

} else
{

throw new Exception ( ”Unrecognised message from ”+c l i e n t S t r i n g ) ;
}
c l i e n t . c l o s e ( ) ;

} catch ( Exception e )
{

e . pr intStackTrace ( ) ;
l og ( ”Exception : ”+c l i e n t S t r i n g+” ”+e . getMessage ( )+” ( ”+id+” ) . ” ) ;
return ;

}
}

private void l og ( S t r ing s ) { i s s u e r . l og ( id+” − ”+s ) ;}

}

286



B.6 Other classes

This section provides the source code of other classes that do not directly belong to any of

the above categories, or that are common to more than one of the above services.

/∗
Copyright (C) 2003 Andreas Pa sha l i d i s

This l i b r a r y i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or
modify i t under the terms o f the GNU Lesse r General Publ ic
L i cense as pub l i shed by the Free Software Foundation ; e i t h e r
v e r s i on 2 .1 o f the License , or ( at your opt ion ) any l a t e r v e r s i on .

This l i b r a r y i s d i s t r i b u t e d in the hope that i t w i l l be use fu l ,
but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesse r General Publ ic L i cense f o r more d e t a i l s .

You should have r e c e i v ed a copy o f the GNU Lesse r General Publ ic
L i cense along with t h i s l i b r a r y ; i f not , wr i t e to the Free Software
Foundation , Inc . , 59 Temple Place , Su i t e 330 , Boston , MA 02111−1307 USA

∗/

package p inger ;

import java . net . ∗ ;
import java . i o . ∗ ;
import p ro t o c o l s . IpAndPort ;
import javax . swing . event . EventL i s t ene rL i s t ;
import javax . swing . event . ChangeListener ;
import javax . swing . event . ChangeEvent ;

/∗∗
∗ This c l a s s implements enab l e s a user to ping another one , a l l the time .
∗ I t r e g i s t e r s the Group Manager with the Discovery Server , i t mainta ins the

connect ion , and i t
∗ d e r e g i s t e r s when appropr ia te .
∗ @author Andreas Pa sha l i d i s
∗/

public class PingerThread extends Thread
{

public PingingDaemon pd ;
public IpAndPort ipap ;
private volat i le boolean i sAct ive , i sSuspended ;
public St r ing s t a t e=”Not I n i t i a l i z e d . ” ;
private long r e p e t i t i o n s , average ;

public St r ing getCurrentState ( )
{

return s t a t e ;
}

public long getAverage ( )
{

return average ;
}

public PingerThread (PingingDaemon pd , IpAndPort memberAddr)
{

this . pd=pd ;
this . ipap=memberAddr ;

287



i sAc t i v e=fa l se ;
i sSuspended=true ;
r e p e t i t i o n s =0;
average =0;
s t a r t ( ) ;

}

public void run ( )
{

i sAc t i v e=true ;
while ( i sAc t i v e )
{

try
{

while ( i sSuspended && i sAc t i v e )
{

s l e e p (350) ;
}
i f ( ! i sSuspended )
{

// pd . l og ( ” . . . p ing ing peer ”+ipap ) ;
Socket memberSocket=new Socket ( ) ;
memberSocket . setKeepAl ive ( true ) ;
memberSocket . setTcpNoDelay ( true ) ;
memberSocket . setSoTimeout (25000) ;
memberSocket . connect (new InetSocketAddress ( ipap . getAddr ( ) , ipap .

getPort ( ) ) ,10000) ;
ObjectOutputStream oos=new ObjectOutputStream ( memberSocket .

getOutputStream ( ) ) ;
ObjectInputStream o i s = new ObjectInputStream ( memberSocket .

getInputStream ( ) ) ;
p r o t o c o l s . Message msg=new p ro t o c o l s . echo . MessageEcho ( false , pd .

getTime ( ) ) ;
oos . wr i teObject (msg) ;
oos . f l u s h ( ) ;
msg = ( p r o t o c o l s . Message ) o i s . readObject ( ) ;
i f ( ! ( msg instanceof p ro t o c o l s . echo . MessageEcho ) )
{

throw new RuntimeException ( ” response not r e cogn i s ed . ” ) ;
}
i f ( ! ( ( ( p r o t o c o l s . echo . MessageEcho )msg) . echo ) )
{

throw new RuntimeException ( ” echo b i t not s e t . ” ) ;
}
long l a t ency=pd . getTime ( ) −(( p r o t o c o l s . echo . MessageEcho )msg) . time ;
r e p e t i t i o n s++;
i f ( r e p e t i t i o n s==1)
{

average=la t ency ;
} else
{

average=(long ) ( ( average ∗ . 2 )+( l a t ency ∗ . 8 ) ) ;
}
s t a t e=” la t ency (msec ) : ”+r e p e t i t i o n s+”/”+la t ency+”/”+average ;
pd . stateChanged ( this , fa l se ) ;
memberSocket . c l o s e ( ) ;
s l e e p (5000) ;

}
} catch ( Exception ex )
{

// ex . pr intStackTrace ( ) ;
pd . l og ( ”Pinger except ion : ”+ex . getMessage ( ) ) ;
s t a t e=ex . getMessage ( ) ;
pd . stateChanged ( this , true ) ;
i sSuspended=true ;

288



}
}

}

public f ina l void shutdown ( )
{

i sAc t i v e=fa l se ;
try
{

j o i n ( ) ;
} catch ( Exception e )
{

pd . l og ( ”Error whi l e s topping p inger f o r ”+ipap+” : ”+e . getMessage ( ) ) ;
}
pd . l og ( ”Stopped p inger f o r peer ”+ipap+” . . . ” ) ;

}

public f ina l void setSuspended (boolean suspend )
{

i f ( ( suspend )&&(! isSuspended ) )
{

s t a t e=” l a s t l a t ency (msec ) : ”+r e p e t i t i o n s+”/”+average ;
pd . stateChanged ( this , fa l se ) ;

}
i sSuspended=suspend ;

}

public IpAndPort getIpAndPort ( )
{

return ipap ;
}

}

/∗
Copyright (C) 2003 Andreas Pa sha l i d i s

This l i b r a r y i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or
modify i t under the terms o f the GNU Lesse r General Publ ic
L i cense as pub l i shed by the Free Software Foundation ; e i t h e r
v e r s i on 2 .1 o f the License , or ( at your opt ion ) any l a t e r v e r s i on .

This l i b r a r y i s d i s t r i b u t e d in the hope that i t w i l l be use fu l ,
but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesse r General Publ ic L i cense f o r more d e t a i l s .

You should have r e c e i v ed a copy o f the GNU Lesse r General Publ ic
L i cense along with t h i s l i b r a r y ; i f not , wr i t e to the Free Software
Foundation , Inc . , 59 Temple Place , Su i t e 330 , Boston , MA 02111−1307 USA

∗/

package p inger ;

public interface PingingDaemon
{

public void stateChanged ( PingerThread pt , boolean f a t a l ) ;
public long getTime ( ) ;
public void l og ( S t r ing s ) ;

}

/∗
Copyright (C) 2003 Andreas Pa sha l i d i s

289



This l i b r a r y i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or
modify i t under the terms o f the GNU Lesse r General Publ ic
L i cense as pub l i shed by the Free Software Foundation ; e i t h e r
v e r s i on 2 .1 o f the License , or ( at your opt ion ) any l a t e r v e r s i on .

This l i b r a r y i s d i s t r i b u t e d in the hope that i t w i l l be use fu l ,
but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesse r General Publ ic L i cense f o r more d e t a i l s .

You should have r e c e i v ed a copy o f the GNU Lesse r General Publ ic
L i cense along with t h i s l i b r a r y ; i f not , wr i t e to the Free Software
Foundation , Inc . , 59 Temple Place , Su i t e 330 , Boston , MA 02111−1307 USA

∗/

import javax . swing . ∗ ;
import java . awt . event . ∗ ;
import java . i o . ∗ ;
import java . net . ∗ ;
import java . u t i l . Vector ;
import java . awt . Font ;
import p ro t o c o l s . IpAndPort ;

/∗∗
∗ This c l a s s i s a program that o f f e r s a user−f r i e n d l y i n t e r f a c e that c on t r o l s a {

@link groupmanager . GroupManager} daemon ;
∗/

public class SimpleCl i ent implements WindowListener , KeyListener , MouseListener ,
Act ionLi s tener , javax . swing . event . ChangeListener

{
private JFrame configFrame , workingFrame , currentFrame ;
private JTextFie ld portF ie ld , minField , maxField , dsFie ld , dsPortF ie ld ; // f o r

configFrame
private JProgressBar progressBar ; // f o r workingFrame
private Vector c l i en tRecords , c l i e n t S t a t i , c l i en tBoxe s ; // f o r working frame (

c l i en tReco rd s f o r housekeeping )
Box c l i entPane lBox ; // f o r workingFrame
private JButton okButton ;
private JToggleButton pingButton ;
private c l i e n t . C l i en t c l ;
private IpAndPort GMAddr;

public SimpleCl i ent ( )
{

c l i e n t S t a t i=new Vector ( ) ;
c l i en tReco rd s=new Vector ( ) ;
c l i en tBoxe s=new Vector ( ) ;
// adopt to look−and− f e e l
try
{

UIManager . setLookAndFeel (UIManager . getSystemLookAndFeelClassName ( ) ) ;
} catch ( Exception e )
{

e . pr intStackTrace ( ) ;
}
makeConfigFrame ( ) ;
makeWorkingFrame ( ) ;
currentFrame=configFrame ;
configFrame . pack ( ) ;
configFrame . show ( ) ;

}

290



public stat ic void main ( St r ing [ ] argv )
{

System . out . p r i n t l n ( ”Welcome to S impleCl i ent . ” ) ;
new SimpleCl i ent ( ) ;

}

public void windowActivated (WindowEvent e ) {}
public void windowClosed (WindowEvent e ) {}
public void windowDeactivated (WindowEvent e ) {}
public void windowDeiconi f ied (WindowEvent e ) {}
public void windowIcon i f i ed (WindowEvent e ) {}
public void windowOpened (WindowEvent e ) {}
public void windowClosing (WindowEvent e )
{

i f ( e . getSource ( )==workingFrame )
{

try
{

c l . l e ave (GMAddr) ;
c l . shutdown ( ) ;

} catch ( Exception ex )
{

System . out . p r i n t l n ( ”Error whi l e c l o s i n g : ”+ex . getMessage ( ) ) ;
}

}
System . out . p r i n t l n ( ” S impleCl i ent c l o s ed . ” ) ; System . e x i t (0 ) ;

}

public void mouseReleased (MouseEvent e ) {}
public void mouseEntered (MouseEvent e ) {}
public void mouseExited (MouseEvent e ) {}
public void mousePressed (MouseEvent e ) {}
public void mouseClicked (MouseEvent e ) {}

private java . net . InetAddress getIP ( St r ing host ) throws java . net .
UnknownHostException

{
return java . net . InetAddress . getByName( host ) ;

}

public void keyTyped (KeyEvent e ) {}
public void keyPressed (KeyEvent e ) {}

public void keyReleased (KeyEvent e )
{

i f ( e . getKeyCode ( )==e .VK ENTER) act ionPerformed (new ActionEvent ( okButton
,1001 , ” f i r e d programmatica l ly . ” ) ) ;

}

public void act ionPerformed ( ActionEvent e )
{

Object source=e . getSource ( ) ;
i f ( source==okButton )
{

okButton . setEnabled ( fa l se ) ;
int port =0;
int dsPort=0;
int min=0;
int max=0;
currentFrame=configFrame ;

291



try
{

try
{

port = In t eg e r . pa r s e In t ( po r tF i e ld . getText ( ) ) ;
} catch ( NumberFormatException ex )
{

throw new RuntimeException ( ” Inva l i d TCP port number : ”+por tF i e l d .
getText ( ) ) ;

}
i f ( port <10 | | port >65535)

throw new RuntimeException ( ” Inva l i d TCP port number : ”+port ) ;
try
{

dsPort = In t eg e r . pa r s e In t ( dsPortF ie ld . getText ( ) ) ;
} catch ( NumberFormatException ex )
{

throw new RuntimeException ( ” Inva l i d TCP port number : ”+
dsPortF ie ld . getText ( ) ) ;

}
i f ( dsPort <10 | | dsPort >65535)

throw new RuntimeException ( ” Inva l i d TCP port number : ”+dsPort ) ;

try
{

min = In t eg e r . pa r s e In t ( minField . getText ( ) ) ;
} catch ( NumberFormatException ex )
{

throw new RuntimeException ( ” Inva l i d Minimum : ”+minField . getText ( )
) ;

}
i f (min<2 | | min>10000)

throw new RuntimeException ( ” Inva l i d Minumum: ”+min ) ;

try
{

max = In t eg e r . pa r s e In t ( maxField . getText ( ) ) ;
} catch ( NumberFormatException ex )
{

throw new RuntimeException ( ” Inva l i d Maximum: ”+maxField . getText ( )
) ;

}
i f (max<2 | | max>10000)

throw new RuntimeException ( ” Inva l i d Maxumum: ”+max) ;

i f (max<min)
throw new RuntimeException ( ”Minimum l e s s than Maximum. ” ) ;

configFrame . hide ( ) ;
System . out . p r i n t l n ( ”Connecting to Discovery Server . . . ” ) ;
Socket dsSocket=new Socket ( ) ;
dsSocket . setKeepAl ive ( true ) ;
dsSocket . setTcpNoDelay ( true ) ;
dsSocket . setSoTimeout (10000) ;
dsSocket . connect (new InetSocketAddress ( getIP ( dsF i e ld . getText ( ) ) ,

dsPort ) ,10000) ;
ObjectOutputStream oos=new ObjectOutputStream ( dsSocket .

getOutputStream ( ) ) ;
ObjectInputStream o i s = new ObjectInputStream ( dsSocket . getInputStream

( ) ) ;
System . out . p r i n t l n ( ”Request ing Group o f S i z e ”+min+” − ”+max+” . ” ) ;
p r o t o c o l s . Message msg=new p ro t o c o l s . d i s c ove r . DiscoveryRequest (min ,max

) ;
oos . wr i teObject (msg) ;
oos . f l u s h ( ) ;
msg = ( p r o t o c o l s . Message ) o i s . readObject ( ) ;

292



i f ( ! ( msg instanceof p ro t o c o l s . d i s c ov e r . DiscoveryReply ) )
{

throw new RuntimeException ( ”Bad response from Discovery Server . ” )
;

}
java . u t i l . Vector GMRecords=(( p r o t o c o l s . d i s c ove r . DiscoveryReply )msg) .

GMRecords ;
dsSocket . c l o s e ( ) ;
i f (GMRecords . s i z e ( ) <1)
{

throw new RuntimeException ( ”No s u i t a b l e groups found . Try running
Group Manager . ” ) ;

}
System . out . p r i n t l n ( ”Found ”+GMRecords . s i z e ( )+” s u i t a b l e Groups .

Choosing the f i r s t . . . ” ) ;
d i s c ov e r y s e r v e r .GMRecord gmr=(d i s c ov e r y s e r v e r .GMRecord)GMRecords .

elementAt (0 ) ;
GMAddr=gmr . getIpAndPort ( ) ;

System . out . p r i n t l n ( ”Reported group s i z e : ”+gmr . getGroupSize ( )+” at ”+
GMAddr+” . . . ” ) ;

c l = new c l i e n t . C l i en t ( port ) ;
makeWorkingFrame ( ) ;
workingFrame . pack ( ) ;
workingFrame . show ( ) ;
currentFrame=workingFrame ;
c l . addChangeListener ( this ) ;
c l . s t a r t ( ) ;
c l . r e g i s t e r (min ,max ,GMAddr) ;

} catch ( Exception ex )
{

ex . pr intStackTrace ( ) ;
S t r ing msg=”Error !\n”+ex . getMessage ( ) ;
JOptionPane . showMessageDialog ( currentFrame , msg , ”Error ” , JOptionPane

.ERROR MESSAGE) ;
okButton . setEnabled ( true ) ;
return ;

}
} else i f ( source==pingButton )
{

i f ( c l . getPingingEnabled ( ) )
{

pingButton . setText ( ” Switch Pinging On ” ) ;
pingButton . s e t S e l e c t e d ( fa l se ) ;
c l . setPingingEnabled ( fa l se ) ;

} else
{

pingButton . setText ( ” Switch Pinging Off ” ) ;
pingButton . s e t S e l e c t e d ( true ) ;
c l . setPingingEnabled ( true ) ;

}
}

}

private void makeConfigFrame ( )
{

configFrame=new JFrame ( ” Credent i a l Obtaining C l i en t ” ) ;
configFrame . addWindowListener ( this ) ;
Font bigFont = new Font ( ”monospaced” , Font .BOLD, 18) ;
Font smallFont = new Font ( ”monospaced” , Font .PLAIN, 14) ;

// put min/max g roup s i z e s in a Box

293



Box minMaxBox = new Box(BoxLayout . X AXIS) ;
JLabel portLabe l = new JLabel ( ”TCP port : ” ) ;
portLabe l . setFont ( smallFont ) ;
portLabe l . setMaximumSize ( portLabe l . g e tP r e f e r r e dS i z e ( ) ) ;
po r tF i e ld=new JTextFie ld ( ) ;
po r tF i e ld . setFont ( smallFont ) ;
po r tF i e ld . setColumns (5 ) ;
po r tF i e ld . setMaximumSize ( po r tF i e ld . g e tP r e f e r r e dS i z e ( ) ) ;
JLabel minLabel = new JLabel ( ”minimum : ” ) ;
minLabel . setFont ( smallFont ) ;
minLabel . setMaximumSize ( minLabel . g e tP r e f e r r e dS i z e ( ) ) ;
minField=new JTextFie ld ( ) ;
minField . setFont ( smallFont ) ;
minField . setColumns (5 ) ;
minField . setMaximumSize ( minField . g e tP r e f e r r e dS i z e ( ) ) ;
JLabel maxLabel = new JLabel ( ”maximum: ” ) ;
maxLabel . setFont ( smallFont ) ;
maxLabel . setMaximumSize (maxLabel . g e tP r e f e r r e dS i z e ( ) ) ;
maxField=new JTextFie ld ( ) ;
maxField . setFont ( smallFont ) ;
maxField . setColumns (5 ) ;
maxField . setMaximumSize ( maxField . g e tP r e f e r r e dS i z e ( ) ) ;
minMaxBox . add (minMaxBox . c r ea t eHor i zonta lG lue ( ) ) ;
minMaxBox . add ( portLabe l ) ;
minMaxBox . add (minMaxBox . c r e a t eHo r i z on t a l S t ru t (10) ) ;
minMaxBox . add ( po r tF i e ld ) ;
minMaxBox . add (minMaxBox . c r e a t eHo r i z on t a l S t ru t (20) ) ;
minMaxBox . add ( minLabel ) ;
minMaxBox . add (minMaxBox . c r e a t eHo r i z on t a l S t ru t (10) ) ;
minMaxBox . add ( minField ) ;
minMaxBox . add (minMaxBox . c r e a t eHo r i z on t a l S t ru t (20) ) ;
minMaxBox . add (maxLabel ) ;
minMaxBox . add (minMaxBox . c r e a t eHo r i z on t a l S t ru t (10) ) ;
minMaxBox . add ( maxField ) ;
minMaxBox . add (minMaxBox . c r ea t eHor i zonta lG lue ( ) ) ;

// put minMax box in a Panel
JPanel minMaxPanel=new JPanel ( ) ;
minMaxPanel . add (minMaxBox) ;
minMaxPanel . setBorder ( BorderFactory . c r ea t eT i t l edBorde r ( ”Des i red Group S i z e

Bounds” ) ) ;

// put d i s cove ry s e r v e r f i e l d s in a box
Box dsBox = new Box(BoxLayout . X AXIS) ;
JLabel dsLabel=new JLabel ( ”Address : ” ) ;
dsLabel . setFont ( smallFont ) ;
d sF i e ld=new JTextFie ld ( ) ;
d sF i e ld . setFont ( smallFont ) ;
d sF i e ld . setColumns (30) ;
d sF i e ld . setMaximumSize ( dsF i e ld . g e tP r e f e r r e dS i z e ( ) ) ;
d sF i e ld . addKeyListener ( this ) ;
JLabel dsPortLabel=new JLabel ( ”dsPort : ” ) ;
dsPortLabel . setFont ( smallFont ) ;
dsPortF ie ld=new JTextFie ld ( ”2004” ) ;
dsPortF ie ld . setFont ( smallFont ) ;
dsPortF ie ld . setColumns (10) ;
dsPortF ie ld . setMaximumSize ( dsPortF ie ld . g e tP r e f e r r e dS i z e ( ) ) ;
dsPortF ie ld . addKeyListener ( this ) ;
dsBox . add ( dsBox . c r ea t eHor i zonta lG lue ( ) ) ;
dsBox . add ( dsLabel ) ;
dsBox . add ( dsBox . c r e a t eHo r i z on t a l S t ru t (10) ) ;
dsBox . add ( dsF i e ld ) ;
dsBox . add ( dsBox . c r ea t eHor i zonta lG lue ( ) ) ;
dsBox . add ( dsBox . c r e a t eHo r i z on t a l S t ru t (10) ) ;
dsBox . add ( dsBox . c r ea t eHor i zonta lG lue ( ) ) ;

294



dsBox . add ( dsPortLabel ) ;
dsBox . add ( dsBox . c r e a t eHo r i z on t a l S t ru t (10) ) ;
dsBox . add ( dsPortF ie ld ) ;
dsBox . add ( dsBox . c r ea t eHor i zonta lG lue ( ) ) ;

// put d i s cove ry s e r v e r box in the dsPanel
JPanel dsPanel=new JPanel ( ) ;
dsPanel . add ( dsBox ) ;
dsPanel . setBorder ( BorderFactory . c r ea t eT i t l edBorde r ( ”Discovery Serves ” ) ) ;

// put ok button in a box
Box okBox = new Box(BoxLayout . X AXIS) ;
okButton=new JButton ( ” OK ” ) ;
okButton . setFont ( bigFont ) ;
okButton . addAct ionLis tener ( this ) ;
okButton . se tDefau l tCapable ( fa l se ) ;
okBox . add ( okBox . c r ea teHor i zonta lG lue ( ) ) ;
okBox . add ( okButton ) ;
okBox . add ( okBox . c r e a t eHo r i z on t a l S t ru t (10) ) ;

// put everyth ing in the main box
Box mainBox = new Box(BoxLayout . Y AXIS) ;
mainBox . add (mainBox . c r e a t eVe r t i c a lG lue ( ) ) ;
mainBox . add (minMaxPanel ) ;
mainBox . add (mainBox . c r e a t eVe r t i c a lG lue ( ) ) ;
mainBox . add (mainBox . c r e a t eVe r t i c a l S t r u t (10) ) ;
mainBox . add (mainBox . c r e a t eVe r t i c a lG lue ( ) ) ;
mainBox . add ( dsPanel ) ;
mainBox . add (mainBox . c r e a t eVe r t i c a lG lue ( ) ) ;
mainBox . add ( okBox ) ;

//add the main box to t h i s Frame
configFrame . getContentPane ( ) . add (mainBox ) ;

}

private void updateProgressBar ( )
{

progressBar . setValue ( c l i en tReco rd s . s i z e ( ) ) ;
progressBar . s e t S t r i n g ( progressBar . getValue ( )+”/”+progressBar . getMaximum()+” :

wa i t ing f o r another ”+(progressBar . getMaximum()−progressBar . getValue ( ) )+”
use r s . ” ) ;

i f ( c l i en tReco rd s . s i z e ( )==progressBar . getMaximum( ) ) progressBar . s e t S t r i n g ( ”
Group f u l l . Ready to obta in c r e d e n t i a l . ” ) ;

}

private void addPeer ( groupmanager . Cl ientRecord cr , S t r ing message )
{

int index=getC l i en t Index ( cr . ipap ) ;
i f ( index !=−1) return ;
Box c l i entBox = new Box(BoxLayout . X AXIS) ;
JLabel c l i e n tLab e l=new JLabel ( c r . ipap . t oS t r i ng ( ) ) ;
Font smallFont = new Font ( ”monospaced” , Font .PLAIN, 14) ;
c l i e n tLab e l . setFont ( smallFont ) ;
JLabel clientComment=new JLabel ( message ) ;
clientComment . setFont ( smallFont ) ;
c l i e n t S t a t i . addElement ( clientComment ) ;
c l i entBox . add ( c l i entBox . c r ea t eHor i zonta lG lue ( ) ) ;
c l i entBox . add ( c l i e n tLab e l ) ;
c l i entBox . add ( c l i entBox . c r e a t eHo r i z on t a l S t ru t (10) ) ;
c l i entBox . add ( clientComment ) ;
c l i entBox . add ( c l i entBox . c r ea t eHor i zonta lG lue ( ) ) ;
c l i en tBoxe s . add ( c l i entBox ) ;
c l i entPane lBox . add ( c l i entBox ) ;
c l i entPane lBox . add ( c l i entPane lBox . c r e a t eVe r t i c a l S t r u t (10) ) ;

295



c l i en tReco rd s . addElement ( cr ) ;
updateProgressBar ( ) ;

}

private void removePeer ( groupmanager . Cl ientRecord cr , S t r ing message )
{

int index=getC l i en t Index ( cr . ipap ) ;
i f ( index==−1) return ;
c l i entPane lBox . remove ( ( JComponent ) c l i en tBoxe s . elementAt ( index ) ) ;
c l i en tBoxe s . removeElementAt ( index ) ;
c l i e n t S t a t i . removeElementAt ( index ) ;
c l i en tReco rd s . removeElementAt ( index ) ;
updateProgressBar ( ) ;

}

public void stateChanged ( javax . swing . event . ChangeEvent e )
{

i f ( e instanceof c l i e n t . JoinedGroupEvent )
{

c l i e n t . JoinedGroupEvent j g e=( c l i e n t . JoinedGroupEvent ) e ;
progressBar . setMaximum( jg e . getGroupSize ( ) ) ;
progressBar . s e t S t r i n g ( ” Joined Group o f S i z e ”+jge . getGroupSize ( ) ) ;

} else i f ( e instanceof c l i e n t . UpdateEvent )
{

c l i e n t . UpdateEvent ue=( c l i e n t . UpdateEvent ) e ;
i f ( ue . p re sent ( ) )
{

addPeer ( ue . getCl i entRecord ( ) , ue . getMessage ( ) ) ;

} else
{

removePeer ( ue . getCl i entRecord ( ) , ue . getMessage ( ) ) ;
}

} else i f ( e instanceof c l i e n t . ClientConnectionChangeEvent )
{

c l i e n t . ClientConnectionChangeEvent ccce=( c l i e n t .
ClientConnectionChangeEvent ) e ;

IpAndPort ipap=ccce . ge tC l i en t Ipap ( ) ;
int index=getC l i en t Index ( ipap ) ;
i f ( index==−1) return ;
i f ( ccce . i sF a t a l ( ) )
{

( ( JLabel ) c l i e n t S t a t i . elementAt ( index ) ) . setForeground ( java . awt . Color .
RED) ;

} else
{

( ( JLabel ) c l i e n t S t a t i . elementAt ( index ) ) . setForeground ( java . awt . Color .
BLACK) ;

}
( ( JLabel ) c l i e n t S t a t i . elementAt ( index ) ) . setText ( ccce . g e tS ta t e ( ) ) ;

}
workingFrame . pack ( ) ;
workingFrame . v a l i d a t e ( ) ;

}

private int ge tC l i en t Index ( IpAndPort ipap )
{

java . u t i l . Enumeration enum=c l i en tReco rd s . e lements ( ) ;
int i =0;
while (enum . hasMoreElements ( ) )
{

i f ( ( ( groupmanager . Cl ientRecord )enum . nextElement ( ) ) . ipap . t oS t r i ng ( ) .
equa l s ( ipap . t oS t r i ng ( ) ) ) return i ;

i++;
}

296



return −1;
}

private void makeWorkingFrame ( )
{

workingFrame=new JFrame ( ”Group Overview” ) ;
workingFrame . addWindowListener ( this ) ;
Font smallFont = new Font ( ”monospaced” , Font .BOLD, 14) ;
// put prog re s sba r in a box
Box t i t l eBox = new Box(BoxLayout . X AXIS) ;
progressBar=new JProgressBar (0 , 2 ) ;
progressBar . s e tS t r i ngPa in t ed ( true ) ;
progressBar . s e t S t r i n g ( ” Reg i s t e r i ng . . . ” ) ;

t i t l eBox . add ( t i t l eBox . c r ea teHor i zonta lG lue ( ) ) ;
t i t l eBox . add ( t i t l eBox . c r e a t eHo r i z on t a l S t ru t (10) ) ;
t i t l eBox . add ( progressBar ) ;
t i t l eBox . add ( t i t l eBox . c r e a t eHo r i z on t a l S t ru t (10) ) ;
t i t l eBox . add ( t i t l eBox . c r ea teHor i zonta lG lue ( ) ) ;

// prepare a v e r t i c a l box f o r c l i e n t s and put i t in a panel
c l i entPane lBox=new Box(BoxLayout . Y AXIS) ;
c l i entPane lBox . add ( c l i entPane lBox . c r e a t eVe r t i c a l S t r u t (10) ) ;
JPanel c l i e n tPane l=new JPanel ( ) ;
c l i e n tPane l . setBorder ( BorderFactory . c r ea t eT i t l edBorde r ( ”Group Members” ) ) ;
c l i e n tPane l . add ( c l i entPane lBox ) ;

// put ping button in a box
Box pingBox = new Box(BoxLayout . X AXIS) ;
pingButton=new JToggleButton ( ” Switch Pinging On ” ) ;
pingButton . setFont ( smallFont ) ;
pingButton . addAct ionLis tener ( this ) ;

// pingButton . se tDefau l tCapable ( f a l s e ) ;
pingBox . add ( pingBox . c r ea t eHor i zonta lG lue ( ) ) ;
pingBox . add ( pingButton ) ;
pingBox . add ( pingBox . c r e a t eHo r i z on t a l S t ru t (10) ) ;

// put everyth ing in the main box
Box mainBox = new Box(BoxLayout . Y AXIS) ;
mainBox . add (mainBox . c r e a t eVe r t i c a lG lue ( ) ) ;
mainBox . add (mainBox . c r e a t eVe r t i c a l S t r u t (10) ) ;
mainBox . add ( t i t l eBox ) ;
mainBox . add (mainBox . c r e a t eVe r t i c a l S t r u t (10) ) ;
mainBox . add (mainBox . c r e a t eVe r t i c a lG lue ( ) ) ;
mainBox . add (mainBox . c r e a t eVe r t i c a l S t r u t (10) ) ;
mainBox . add ( c l i e n tPane l ) ;
mainBox . add (mainBox . c r e a t eVe r t i c a lG lue ( ) ) ;
mainBox . add (mainBox . c r e a t eVe r t i c a l S t r u t (10) ) ;
mainBox . add ( pingBox ) ;
mainBox . add (mainBox . c r e a t eVe r t i c a lG lue ( ) ) ;

//add the main box to t h i s Frame
workingFrame . getContentPane ( ) . add (mainBox ) ;

}

}

/∗
Copyright (C) 2003 Andreas Pa sha l i d i s

This l i b r a r y i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or
modify i t under the terms o f the GNU Lesse r General Publ ic

297



License as pub l i shed by the Free Software Foundation ; e i t h e r
v e r s i on 2 .1 o f the License , or ( at your opt ion ) any l a t e r v e r s i on .

This l i b r a r y i s d i s t r i b u t e d in the hope that i t w i l l be use fu l ,
but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesse r General Publ ic L i cense f o r more d e t a i l s .

You should have r e c e i v ed a copy o f the GNU Lesse r General Publ ic
L i cense along with t h i s l i b r a r y ; i f not , wr i t e to the Free Software
Foundation , Inc . , 59 Temple Place , Su i t e 330 , Boston , MA 02111−1307 USA

∗/

import java . i o . ∗ ;
import java . u t i l . Vector ;
import d i s c ov e r y s e r v e r . Di scoveryServer ;

/∗∗
∗ This c l a s s i s a r e l a t i v e l y s imple program that s t a r t s a {@link DiscoveryServer .

Di scoveryServer } daemon ;
∗/

public class SimpleDS
{

private SimpleDS ( int port , Pr intWriter l og )
{

try
{

System . out . p r i n t l n ( ”Welcome to SimpleDS . ” ) ;
BufferedReader br=new BufferedReader (new InputStreamReader ( System . in ) ) ;
Di scoveryServer ds=new DiscoveryServer ( port , l og ) ;
ds . s t a r t ( ) ;
System . out . p r i n t l n ( ”Press Enter to stop SimpleDS . ” ) ;
br . readLine ( ) ;
ds . shutdown ( ) ;
System . out . p r i n t l n ( ”Bye ! ” ) ;

} catch ( Exception e )
{

e . pr intStackTrace ( ) ;
System . e x i t (1 ) ;

}
}

public stat ic void main ( St r ing [ ] argv )
{

int port =0;
Pr intWriter l og=new PrintWriter ( System . out , true ) ;
i f ( argv . l ength !=1 && argv . l ength !=2)
{

System . out . p r i n t l n ( ”Usage : java SimpleDS portnumber [ l o g f i l e ] ” ) ;
System . e x i t (1 ) ;

}
try
{

port=In t eg e r . pa r s e In t ( argv [ 0 ] ) ;
i f ( port <1 | | port >65535)
{

System . out . p r i n t l n ( ”Error : ”+port+” i s not a va l i d port number . ” ) ;
System . e x i t (1 ) ;

}
} catch ( NumberFormatException e )
{

System . out . p r i n t l n ( ”Error : \””+argv [0 ]+ ”\” does not appear to be a port
number . ” ) ;

298



System . e x i t (1 ) ;
}
i f ( argv . l ength==2)
{

try
{

l og=new PrintWriter (new FileOutputStream ( argv [ 1 ] , true ) ) ;

} catch ( IOException e )
{

e . pr intStackTrace ( ) ;
System . out . p r i n t l n ( ”\nError opening ”+argv [ 1 ] ) ;
System . e x i t (1 ) ;

}
}
new SimpleDS ( port , l og ) ;

}
}

/∗
Copyright (C) 2003 Andreas Pa sha l i d i s

This l i b r a r y i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or
modify i t under the terms o f the GNU Lesse r General Publ ic
L i cense as pub l i shed by the Free Software Foundation ; e i t h e r
v e r s i on 2 .1 o f the License , or ( at your opt ion ) any l a t e r v e r s i on .

This l i b r a r y i s d i s t r i b u t e d in the hope that i t w i l l be use fu l ,
but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesse r General Publ ic L i cense f o r more d e t a i l s .

You should have r e c e i v ed a copy o f the GNU Lesse r General Publ ic
L i cense along with t h i s l i b r a r y ; i f not , wr i t e to the Free Software
Foundation , Inc . , 59 Temple Place , Su i t e 330 , Boston , MA 02111−1307 USA

∗/

import javax . swing . ∗ ;
import java . awt . event . ∗ ;
import java . i o . ∗ ;
import java . u t i l . Vector ;
import java . awt . Font ;
import p ro t o c o l s . IpAndPort ;

/∗∗
∗ This c l a s s i s a program that o f f e r s a user−f r i e n d l y i n t e r f a c e that c on t r o l s a {

@link groupmanager . GroupManager} daemon ;
∗/

public class SimpleGM implements WindowListener , KeyListener , MouseListener ,
Act ionLi s tener , javax . swing . event . ChangeListener

{
private JFrame configFrame , workingFrame , currentFrame ;
private JTextFie ld tcpPortFie ld , groupS izeF ie ld , dsFie ld , po r tF i e ld ;
private JLabel [ ] dsStatusLabe l ;
private JProgressBar progressBar ;
private DefaultListModel dsListModel ;
private JL i s t d sL i s t ;
private JButton okButton ;

private Vector c l i en tRecords , c l i e n t S t a t i , c l i en tBoxe s ; // f o r working frame (
c l i en tReco rd s f o r housekeeping )

Box c l i entPane lBox ; // f o r workingFrame

public SimpleGM()

299



{
c l i e n t S t a t i=new Vector ( ) ;
c l i en tReco rd s=new Vector ( ) ;
c l i en tBoxe s=new Vector ( ) ;
configFrame=new JFrame ( ”Group Management Console ” ) ;
dsListModel=new DefaultListModel ( ) ;
configFrame . addWindowListener ( this ) ;
// adopt to look−and− f e e l
try
{

UIManager . setLookAndFeel (UIManager . getSystemLookAndFeelClassName ( ) ) ;
} catch ( Exception e )
{

e . pr intStackTrace ( ) ;
}

makeConfigFrame ( ) ;
currentFrame=configFrame ;
configFrame . pack ( ) ;
configFrame . show ( ) ;

}

private void makeConfigFrame ( )
{

Font bigFont = new Font ( ”monospaced” , Font .BOLD, 18) ;
Font smallFont = new Font ( ”monospaced” , Font .PLAIN, 14) ;
// put tcp port and group s i z e in a panel
JPanel groupManagementPanel=new JPanel ( ) ;

// put TCP port in a box
Box tcpPortBox = new Box(BoxLayout . X AXIS) ;
JLabel t cpPor t l abe l = new JLabel ( ”TCP port : ” ) ;
t cpPor t l abe l . setFont ( smallFont ) ;
t cpPor t l abe l . setMaximumSize ( t cpPor t l abe l . g e tP r e f e r r e dS i z e ( ) ) ;
t cpPortF ie ld=new JTextFie ld ( ) ;
t cpPortF ie ld . setFont ( smallFont ) ;
t cpPortF ie ld . setColumns (5 ) ;
t cpPortF ie ld . setMaximumSize ( tcpPortF ie ld . g e tP r e f e r r e dS i z e ( ) ) ;
tcpPortBox . add ( tcpPortBox . c r ea teHor i zonta lG lue ( ) ) ;
tcpPortBox . add ( t cpPor t l abe l ) ;
tcpPortBox . add ( tcpPortBox . c r e a t eHo r i z on t a l S t ru t (10) ) ;
tcpPortBox . add ( tcpPortF ie ld ) ;
tcpPortBox . add ( tcpPortBox . c r ea teHor i zonta lG lue ( ) ) ;

// put Group S i z e in a box
Box groupSizeBox = new Box(BoxLayout . X AXIS) ;
JLabel g r oupS i z e l ab e l = new JLabel ( ”Group S i z e : ” ) ;
g r oupS i z e l ab e l . setFont ( smallFont ) ;
g r oupS i z e l ab e l . setMaximumSize ( g r oupS i z e l ab e l . g e tP r e f e r r e dS i z e ( ) ) ;
g roupS i z eF i e ld=new JTextFie ld ( ) ;
g roupS i z eF i e ld . setFont ( smallFont ) ;
g roupS i z eF i e ld . setColumns (5 ) ;
g roupS i z eF i e ld . setMaximumSize ( g roupS i z eF i e ld . g e tP r e f e r r e dS i z e ( ) ) ;
groupSizeBox . add ( groupSizeBox . c r ea teHor i zonta lG lue ( ) ) ;
groupSizeBox . add ( g r oupS i z e l ab e l ) ;
groupSizeBox . add ( groupSizeBox . c r e a t eHo r i z on t a l S t ru t (10) ) ;
groupSizeBox . add ( g roupS i z eF i e ld ) ;
groupSizeBox . add ( groupSizeBox . c r ea teHor i zonta lG lue ( ) ) ;

groupManagementPanel . add ( tcpPortBox ) ;
groupManagementPanel . add ( groupSizeBox ) ;
groupManagementPanel . setBorder ( BorderFactory . c r ea t eT i t l edBorde r ( ”Group

Manager Control Panel ” ) ) ;

// put d i s cove ry s e r v e r f i e l d s in a box

300



Box dsBox = new Box(BoxLayout . X AXIS) ;
JLabel dsLabel=new JLabel ( ”Address : ” ) ;
dsLabel . setFont ( smallFont ) ;
d sF i e ld=new JTextFie ld ( ) ;
d sF i e ld . setFont ( smallFont ) ;
d sF i e ld . setColumns (30) ;
d sF i e ld . setMaximumSize ( dsF i e ld . g e tP r e f e r r e dS i z e ( ) ) ;
d sF i e ld . addKeyListener ( this ) ;
JLabel portLabe l=new JLabel ( ” port : ” ) ;
portLabe l . setFont ( smallFont ) ;
po r tF i e ld=new JTextFie ld ( ”2004” ) ;
po r tF i e ld . setFont ( smallFont ) ;
po r tF i e ld . setColumns (10) ;
po r tF i e ld . setMaximumSize ( po r tF i e ld . g e tP r e f e r r e dS i z e ( ) ) ;
po r tF i e ld . addKeyListener ( this ) ;
dsBox . add ( dsBox . c r ea t eHor i zonta lG lue ( ) ) ;
dsBox . add ( dsLabel ) ;
dsBox . add ( dsBox . c r e a t eHo r i z on t a l S t ru t (10) ) ;
dsBox . add ( dsF i e ld ) ;
dsBox . add ( dsBox . c r ea t eHor i zonta lG lue ( ) ) ;
dsBox . add ( dsBox . c r e a t eHo r i z on t a l S t ru t (10) ) ;
dsBox . add ( dsBox . c r ea t eHor i zonta lG lue ( ) ) ;
dsBox . add ( portLabe l ) ;
dsBox . add ( dsBox . c r e a t eHo r i z on t a l S t ru t (10) ) ;
dsBox . add ( po r tF i e ld ) ;
dsBox . add ( dsBox . c r ea t eHor i zonta lG lue ( ) ) ;

// ac tua l l i s t box
Box l i s tBox = new Box(BoxLayout . X AXIS) ;
d sL i s t=new JL i s t ( dsListModel ) ;
d sL i s t . s e tCe l lRendere r (new Defau l tL i s tCe l lRende r e r ( ) ) ;
d sL i s t . s e tSe l ect ionMode (0 ) ;
d sL i s t . addKeyListener ( this ) ;
d sL i s t . addMouseListener ( this ) ;
d sL i s t . setFont ( smallFont ) ;
JScro l lPane sP = new JScro l lPane ( ) ;
sP . getViewport ( ) . setView ( d sL i s t ) ;
sP . s e tV e r t i c a l S c r o l lB a rPo l i c y ( JScro l lPane .VERTICAL SCROLLBAR AS NEEDED) ;
sP . setViewportBorder ( BorderFactory . c r ea t eT i t l edBorde r ( ” to r e g i s t e r with” ) ) ;
l i s tBox . add ( l i s tBox . c r ea t eHor i zonta lG lue ( ) ) ;
l i s tBox . add ( sP ) ;
l i s tBox . add ( l i s tBox . c r ea t eHor i zonta lG lue ( ) ) ;

// put d i s cove ry se rver−r e l a t e d boxes in the dsPanel
JPanel dsPanel=new JPanel ( ) ;
Box dsMainBox = new Box(BoxLayout . Y AXIS) ;
dsMainBox . add ( dsBox ) ;
dsMainBox . add ( dsMainBox . c r e a t eVe r t i c a lG lue ( ) ) ;
dsMainBox . add ( dsMainBox . c r e a t eVe r t i c a l S t r u t (20) ) ;
dsMainBox . add ( dsMainBox . c r e a t eVe r t i c a lG lue ( ) ) ;
dsMainBox . add ( l i s tBox ) ;
dsMainBox . add ( dsMainBox . c r e a t eVe r t i c a lG lue ( ) ) ;
dsPanel . add ( dsMainBox ) ;
dsPanel . setBorder ( BorderFactory . c r ea t eT i t l edBorde r ( ”Discovery Se rve r s ” ) ) ;

// put ok button in a box
Box okBox = new Box(BoxLayout . X AXIS) ;
okButton=new JButton ( ” OK ” ) ;
okButton . setFont ( bigFont ) ;
okButton . addAct ionLis tener ( this ) ;
okButton . se tDefau l tCapable ( fa l se ) ;
okBox . add ( okBox . c r ea teHor i zonta lG lue ( ) ) ;
okBox . add ( okButton ) ;
okBox . add ( okBox . c r e a t eHo r i z on t a l S t ru t (10) ) ;

// put everyth ing in the main box

301



Box mainBox = new Box(BoxLayout . Y AXIS) ;
mainBox . add (mainBox . c r e a t eVe r t i c a lG lue ( ) ) ;
mainBox . add ( groupManagementPanel ) ;
mainBox . add (mainBox . c r e a t eVe r t i c a lG lue ( ) ) ;
mainBox . add (mainBox . c r e a t eVe r t i c a l S t r u t (10) ) ;
mainBox . add (mainBox . c r e a t eVe r t i c a lG lue ( ) ) ;
mainBox . add ( dsPanel ) ;
mainBox . add (mainBox . c r e a t eVe r t i c a lG lue ( ) ) ;
mainBox . add ( okBox ) ;

//add the main box to t h i s Frame
configFrame . getContentPane ( ) . add (mainBox ) ;

}

public stat ic void main ( St r ing [ ] argv )
{

System . out . p r i n t l n ( ”Welcome to SimpleGroupManager . ” ) ;
new SimpleGM() ;

}

public void windowActivated (WindowEvent e ) {}
public void windowClosed (WindowEvent e ) {}
public void windowDeactivated (WindowEvent e ) {}
public void windowDeiconi f ied (WindowEvent e ) {}
public void windowIcon i f i ed (WindowEvent e ) {}
public void windowOpened (WindowEvent e ) {}
public void windowClosing (WindowEvent e ) {System . out . p r i n t l n ( ”SimpleGroupManager

c l o s ed . ” ) ; System . e x i t (0 ) ;}

public void mouseReleased (MouseEvent e ) {}
public void mouseEntered (MouseEvent e ) {}
public void mouseExited (MouseEvent e ) {}
public void mousePressed (MouseEvent e ) {}
public void mouseClicked (MouseEvent e )
{

Object source=e . getSource ( ) ;
i f ( source==dsL i s t )
{

i f ( e . getCl ickCount ( ) >1)
{

int idx=dsL i s t . g e tSe l e c t ed Index ( ) ;
i f ( ! ( idx <0) ) dsListModel . removeElementAt ( idx ) ;

}
return ;

}
}

private void addDiscoveryServer ( )
{

try
{

int port =0;
try
{

port = In t eg e r . pa r s e In t ( po r tF i e ld . getText ( ) ) ;
} catch ( NumberFormatException e )
{

throw new RuntimeException ( ” Inva l i d port number : ”+por tF i e ld . getText
( ) ) ;

}
i f ( port <10 | | port >65535)

throw new RuntimeException ( ” Inva l i d port number : ”+port ) ;
i f ( d sF i e ld . getText ( ) . l ength ( )==0)

throw new RuntimeException ( ”No Address Given ! ” ) ;

302



IpAndPort addr=new IpAndPort ( getIP ( dsF i e ld . getText ( ) ) , port ) ;
for ( int i =0; i<dsListModel . s i z e ( ) ; i++)

i f ( ( ( IpAndPort ) dsListModel . get ( i ) ) . equa l s ( addr ) )
throw new RuntimeException ( ”Discovery Server a l r eady e x i s t s in

the L i s t ! ” ) ;
dsListModel . addElement ( addr ) ;
d sF i e ld . setText ( ”” ) ;

} catch ( Exception ex )
{

dsF i e ld . setText ( ”” ) ;
S t r ing msg=”Could not add Discovery Server to L i s t !\n”+ex . getMessage ( ) ;
JOptionPane . showMessageDialog ( currentFrame , msg , ”Error ” , JOptionPane .

ERROR MESSAGE) ;
}

}

private java . net . InetAddress getIP ( St r ing host ) throws java . net .
UnknownHostException

{
return java . net . InetAddress . getByName( host ) ;

}

public void keyTyped (KeyEvent e ) {}
public void keyPressed (KeyEvent e ) {}

public void keyReleased (KeyEvent e )
{

Object source=e . getSource ( ) ;
i f ( source==dsF ie ld | | source==por tF i e l d )
{

i f ( e . getKeyCode ( )==e .VK ENTER)
{

addDiscoveryServer ( ) ;
}
return ;

}

i f ( source==dsL i s t )
{

i f ( e . getKeyCode ( )==e .VK DELETE)
{

int idx=dsL i s t . g e tSe l e c t ed Index ( ) ;
i f ( ! ( idx <0) ) dsListModel . removeElementAt ( idx ) ;

}
return ;

}

}

public void act ionPerformed ( ActionEvent e )
{

Object source=e . getSource ( ) ;
i f ( source==okButton )
{

int port =0;
int groupSize =0;
groupmanager . GroupManager gm=null ;
try
{

try
{

port = In t eg e r . pa r s e In t ( tcpPortF ie ld . getText ( ) ) ;

303



} catch ( NumberFormatException ex )
{

throw new RuntimeException ( ” Inva l i d TCP port number : ”+
tcpPortF ie ld . getText ( ) ) ;

}
i f ( port <10 | | port >65535)

throw new RuntimeException ( ” Inva l i d TCP port number : ”+port ) ;
try
{

groupSize = In t eg e r . pa r s e In t ( g roupS i z eF i e ld . getText ( ) ) ;
} catch ( NumberFormatException ex )
{

throw new RuntimeException ( ” Inva l i d Group S i z e : ”+groupS i z eF i e ld .
getText ( ) ) ;

}
i f ( groupSize <2 | | groupSize >10000)

throw new RuntimeException ( ” Inva l i d Group S i z e : ”+groupSize ) ;

i f ( dsListModel . g e tS i z e ( ) <1)
throw new RuntimeException ( ”No Discovery Server Given ! ” ) ;

groupmanager . I n i t i n i t=new groupmanager . I n i t ( port , groupSize ) ;
for ( java . u t i l . Enumeration addre s s e s=dsListModel . e lements ( ) ; addre s s e s

. hasMoreElements ( ) ; i n i t . addDS ( ( IpAndPort ) addre s s e s . nextElement ( ) ) )
;

System . out . p r i n t l n ( ” S ta r t i ng Group Manager Daemon . . . ” ) ;
gm = new groupmanager . GroupManager ( i n i t ) ;

} catch ( Exception ex )
{

// ex . pr intStackTrace ( ) ;
S t r ing msg=”Error !\n”+ex . getMessage ( ) ;
JOptionPane . showMessageDialog ( currentFrame , msg , ”Error ” , JOptionPane

.ERROR MESSAGE) ;
return ;

}

configFrame . hide ( ) ;
makeWorkingFrame (gm) ;
workingFrame . show ( ) ;
workingFrame . pack ( ) ;

gm. addChangeListener ( this ) ;
gm. s t a r t ( ) ;

}
}

private void makeWorkingFrame ( groupmanager . GroupManager gm)
{

workingFrame=new JFrame ( ”Group Manager” ) ;
Font smallFont = new Font ( ”monospaced” , Font .PLAIN, 14) ;
Font bigFont = new Font ( ”monospaced” , Font .BOLD, 18) ;
// put t i t l e in a box
Box t i t l eBox = new Box(BoxLayout . X AXIS) ;
progressBar=new JProgressBar (0 ,gm. getGroupSize ( ) ) ;
progressBar . s e tS t r i ngPa in t ed ( true ) ;
progressBar . s e t S t r i n g ( ”Waiting f o r u s e r s to j o i n . ” ) ;

t i t l eBox . add ( t i t l eBox . c r ea t eHor i zonta lG lue ( ) ) ;
t i t l eBox . add ( progressBar ) ;
t i t l eBox . add ( t i t l eBox . c r ea t eHor i zonta lG lue ( ) ) ;

// put d i s cove ry s e r v e r l i s t in a panel

304



JPanel dsPanel=new JPanel ( ) ;
Box dsPanelBox=new Box(BoxLayout . Y AXIS) ;

// make an array o f boxes , one f o r each DS
dsStatusLabe l=new JLabel [ dsListModel . g e tS i z e ( ) ] ;

for ( int i =0; i<dsListModel . g e tS i z e ( ) ; i++)
{

Box dsBox = new Box(BoxLayout . X AXIS) ;
JLabel dsLabel = new JLabel ( dsListModel . elementAt ( i ) . t oS t r i ng ( ) ) ;
dsLabel . setFont ( smallFont ) ;
dsLabel . setMaximumSize ( dsLabel . g e tP r e f e r r e dS i z e ( ) ) ;
dsStatusLabe l [ i ]=new JLabel ( ” I n i t i a l i z i n g . . . ” ) ;
dsStatusLabe l [ i ] . setFont ( smallFont ) ;
dsStatusLabe l [ i ] . setForeground ( java . awt . Color .BLACK) ;
dsStatusLabe l [ i ] . setMaximumSize ( dsStatusLabe l [ i ] . g e tP r e f e r r e dS i z e ( ) ) ;
dsBox . add ( dsBox . c r e a t eHo r i z on t a l S t ru t (20) ) ;
dsBox . add ( dsLabel ) ;
dsBox . add ( dsBox . c r e a t eHo r i z on t a l S t ru t (10) ) ;
dsBox . add ( dsStatusLabe l [ i ] ) ;
dsBox . add ( dsBox . c r ea t eHor i zonta lG lue ( ) ) ;
dsPanelBox . add ( dsPanelBox . c r e a t eVe r t i c a l S t r u t (10) ) ;
dsPanelBox . add ( dsBox ) ;

}
dsPanel . add ( dsPanelBox ) ;
dsPanel . setBorder ( BorderFactory . c r ea t eT i t l edBorde r ( ”Discovery Server ( s ) ” )

) ;

// prepare a v e r t i c a l box f o r c l i e n t s and put i t in a panel
c l i entPane lBox=new Box(BoxLayout . Y AXIS) ;
c l i entPane lBox . add ( c l i entPane lBox . c r e a t eVe r t i c a l S t r u t (10) ) ;
JPanel c l i e n tPane l=new JPanel ( ) ;
c l i e n tPane l . setBorder ( BorderFactory . c r ea t eT i t l edBorde r ( ”Group Members” ) ) ;
c l i e n tPane l . add ( c l i entPane lBox ) ;

// put everyth ing in the main box
Box mainBox = new Box(BoxLayout . Y AXIS) ;
mainBox . add (mainBox . c r e a t eVe r t i c a lG lue ( ) ) ;
mainBox . add (mainBox . c r e a t eVe r t i c a l S t r u t (10) ) ;
mainBox . add ( t i t l eBox ) ;
mainBox . add (mainBox . c r e a t eVe r t i c a l S t r u t (10) ) ;
mainBox . add (mainBox . c r e a t eVe r t i c a lG lue ( ) ) ;
mainBox . add (mainBox . c r e a t eVe r t i c a l S t r u t (10) ) ;
mainBox . add (mainBox . c r e a t eVe r t i c a lG lue ( ) ) ;
mainBox . add ( dsPanel ) ;
mainBox . add (mainBox . c r e a t eVe r t i c a lG lue ( ) ) ;
mainBox . add (mainBox . c r e a t eVe r t i c a l S t r u t (10) ) ;
mainBox . add (mainBox . c r e a t eVe r t i c a lG lue ( ) ) ;
mainBox . add ( c l i e n tPane l ) ;
mainBox . add (mainBox . c r e a t eVe r t i c a lG lue ( ) ) ;

workingFrame . getContentPane ( ) . add (mainBox ) ;

//add the main box to t h i s Frame
workingFrame . getContentPane ( ) . add (mainBox ) ;

}

private void addCl ient ( groupmanager . Cl ientRecord cr , S t r ing message )
{

int index=getC l i en t Index ( cr . ipap ) ;

305



i f ( index !=−1) return ;
c l i en tReco rd s . addElement ( cr ) ;
Box c l i entBox = new Box(BoxLayout . X AXIS) ;
JLabel c l i e n tLab e l=new JLabel ( c r . ipap . t oS t r i ng ( ) ) ;
Font smallFont = new Font ( ”monospaced” , Font .PLAIN, 14) ;
c l i e n tLab e l . setFont ( smallFont ) ;
JLabel clientComment=new JLabel ( message ) ;
clientComment . setFont ( smallFont ) ;
c l i e n t S t a t i . addElement ( clientComment ) ;
c l i entBox . add ( c l i entBox . c r ea t eHor i zonta lG lue ( ) ) ;
c l i entBox . add ( c l i e n tLab e l ) ;
c l i entBox . add ( c l i entBox . c r e a t eHo r i z on t a l S t ru t (10) ) ;
c l i entBox . add ( clientComment ) ;
c l i entBox . add ( c l i entBox . c r ea t eHor i zonta lG lue ( ) ) ;
c l i en tBoxe s . add ( c l i entBox ) ;
c l i entPane lBox . add ( c l i entBox ) ;
c l i entPane lBox . add ( c l i entPane lBox . c r e a t eVe r t i c a l S t r u t (10) ) ;
updateProgressBar ( ) ;

}

private void removeClient ( groupmanager . Cl ientRecord cr , S t r ing message )
{

int index=getC l i en t Index ( cr . ipap ) ;
i f ( index==−1) return ;
c l i entPane lBox . remove ( ( JComponent ) c l i en tBoxe s . elementAt ( index ) ) ;
c l i en tBoxe s . removeElementAt ( index ) ;
c l i e n t S t a t i . removeElementAt ( index ) ;
c l i en tReco rd s . removeElementAt ( index ) ;
updateProgressBar ( ) ;

}

public void stateChanged ( javax . swing . event . ChangeEvent e )
{

i f ( e instanceof groupmanager . DSEvent )
{

groupmanager . DSEvent dse=(groupmanager . DSEvent ) e ;
dsStatusLabe l [ dse . getIndex ( ) ] . setText ( dse . g e tS ta t e ( ) ) ;
i f ( dse . ge tFata l ( ) )
{

dsStatusLabe l [ dse . getIndex ( ) ] . setForeground ( java . awt . Color .RED) ;
}
workingFrame . pack ( ) ;
workingFrame . v a l i d a t e ( ) ;

} else i f ( e instanceof groupmanager . UpdateEvent )
{

groupmanager . UpdateEvent ue=(groupmanager . UpdateEvent ) e ;
i f ( ue . p re sent ( ) )
{

addCl ient ( ue . getCl i entRecord ( ) , ue . getMessage ( ) ) ;
} else
{

removeClient ( ue . getCl i entRecord ( ) , ue . getMessage ( ) ) ;
}

} else i f ( e instanceof groupmanager . ClientConnectionChangeEvent )
{

groupmanager . ClientConnectionChangeEvent ccce=(groupmanager .
ClientConnectionChangeEvent ) e ;

IpAndPort ipap=ccce . ge tC l i en t Ipap ( ) ;
int index=getC l i en t Index ( ipap ) ;
i f ( index==−1) return ;
i f ( ccce . i sF a t a l ( ) )
{

( ( JLabel ) c l i e n t S t a t i . elementAt ( index ) ) . setForeground ( java . awt . Color .
RED) ;

}

306



( ( JLabel ) c l i e n t S t a t i . elementAt ( index ) ) . setText ( ccce . g e tS ta t e ( ) ) ;
}

}

private void updateProgressBar ( )
{

progressBar . setValue ( c l i en tReco rd s . s i z e ( ) ) ;
progressBar . s e t S t r i n g ( progressBar . getValue ( )+”/”+progressBar . getMaximum()+” :

wa i t ing f o r another ”+(progressBar . getMaximum()−progressBar . getValue ( ) )+”
use r s . ” ) ;

i f ( c l i en tReco rd s . s i z e ( )==progressBar . getMaximum( ) ) progressBar . s e t S t r i n g ( ”
Group f u l l . I n i t i a t i n g procedure . ” ) ;

}

private int ge tC l i en t Index ( IpAndPort ipap )
{

java . u t i l . Enumeration enum=c l i en tReco rd s . e lements ( ) ;
int i =0;
while (enum . hasMoreElements ( ) )
{

i f ( ( ( groupmanager . Cl ientRecord )enum . nextElement ( ) ) . ipap . t oS t r i ng ( ) .
equa l s ( ipap . t oS t r i ng ( ) ) ) return i ;

i++;
}
return −1;

}

}

/∗
Copyright (C) 2003 Andreas Pa sha l i d i s

This l i b r a r y i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or
modify i t under the terms o f the GNU Lesse r General Publ ic
L i cense as pub l i shed by the Free Software Foundation ; e i t h e r
v e r s i on 2 .1 o f the License , or ( at your opt ion ) any l a t e r v e r s i on .

This l i b r a r y i s d i s t r i b u t e d in the hope that i t w i l l be use fu l ,
but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesse r General Publ ic L i cense f o r more d e t a i l s .

You should have r e c e i v ed a copy o f the GNU Lesse r General Publ ic
L i cense along with t h i s l i b r a r y ; i f not , wr i t e to the Free Software
Foundation , Inc . , 59 Temple Place , Su i t e 330 , Boston , MA 02111−1307 USA

∗/

import java . i o . ∗ ;
import java . u t i l . Vector ;
import i s s u e r . I s s u e r ;

/∗∗
∗ This c l a s s i s a r e l a t i v e l y s imple program that s t a r t s a {@link DiscoveryServer .

Di scoveryServer } daemon ;
∗/

public class S imp le I s sue r
{

private S imp le I s sue r ( int port , Pr intWriter l og )
{

try
{

System . out . p r i n t l n ( ”Welcome to S imp l e I s sue r . ” ) ;
BufferedReader br=new BufferedReader (new InputStreamReader ( System . in ) ) ;

307



I s s u e r i s=new I s s u e r ( port , l og ) ;
i s . s t a r t ( ) ;
System . out . p r i n t l n ( ”Press Enter to stop S imp l e I s sue r . ” ) ;
br . readLine ( ) ;
i s . shutdown ( ) ;
System . out . p r i n t l n ( ”Bye ! ” ) ;

} catch ( Exception e )
{

e . pr intStackTrace ( ) ;
System . e x i t (1 ) ;

}
}

public stat ic void main ( St r ing [ ] argv )
{

int port =0;
Pr intWriter l og=new PrintWriter ( System . out , true ) ;
i f ( argv . l ength !=1 && argv . l ength !=2)
{

System . out . p r i n t l n ( ”Usage : java S imp l e I s sue r portnumber [ l o g f i l e ] ” ) ;
System . e x i t (1 ) ;

}
try
{

port=In t eg e r . pa r s e In t ( argv [ 0 ] ) ;
i f ( port <1 | | port >65535)
{

System . out . p r i n t l n ( ”Error : ”+port+” i s not a va l i d port number . ” ) ;
System . e x i t (1 ) ;

}
} catch ( NumberFormatException e )
{

System . out . p r i n t l n ( ”Error : \””+argv [0 ]+ ”\” does not appear to be a port
number . ” ) ;

System . e x i t (1 ) ;
}
i f ( argv . l ength==2)
{

try
{

l og=new PrintWriter (new FileOutputStream ( argv [ 1 ] , true ) ) ;

} catch ( IOException e )
{

e . pr intStackTrace ( ) ;
System . out . p r i n t l n ( ”\nError opening ”+argv [ 1 ] ) ;
System . e x i t (1 ) ;

}
}
new S imp le I s sue r ( port , l og ) ;

}
}

308


