1,021 research outputs found

    Cross-Scale Cost Aggregation for Stereo Matching

    Full text link
    Human beings process stereoscopic correspondence across multiple scales. However, this bio-inspiration is ignored by state-of-the-art cost aggregation methods for dense stereo correspondence. In this paper, a generic cross-scale cost aggregation framework is proposed to allow multi-scale interaction in cost aggregation. We firstly reformulate cost aggregation from a unified optimization perspective and show that different cost aggregation methods essentially differ in the choices of similarity kernels. Then, an inter-scale regularizer is introduced into optimization and solving this new optimization problem leads to the proposed framework. Since the regularization term is independent of the similarity kernel, various cost aggregation methods can be integrated into the proposed general framework. We show that the cross-scale framework is important as it effectively and efficiently expands state-of-the-art cost aggregation methods and leads to significant improvements, when evaluated on Middlebury, KITTI and New Tsukuba datasets.Comment: To Appear in 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2014 (poster, 29.88%

    R3^3SGM: Real-time Raster-Respecting Semi-Global Matching for Power-Constrained Systems

    Full text link
    Stereo depth estimation is used for many computer vision applications. Though many popular methods strive solely for depth quality, for real-time mobile applications (e.g. prosthetic glasses or micro-UAVs), speed and power efficiency are equally, if not more, important. Many real-world systems rely on Semi-Global Matching (SGM) to achieve a good accuracy vs. speed balance, but power efficiency is hard to achieve with conventional hardware, making the use of embedded devices such as FPGAs attractive for low-power applications. However, the full SGM algorithm is ill-suited to deployment on FPGAs, and so most FPGA variants of it are partial, at the expense of accuracy. In a non-FPGA context, the accuracy of SGM has been improved by More Global Matching (MGM), which also helps tackle the streaking artifacts that afflict SGM. In this paper, we propose a novel, resource-efficient method that is inspired by MGM's techniques for improving depth quality, but which can be implemented to run in real time on a low-power FPGA. Through evaluation on multiple datasets (KITTI and Middlebury), we show that in comparison to other real-time capable stereo approaches, we can achieve a state-of-the-art balance between accuracy, power efficiency and speed, making our approach highly desirable for use in real-time systems with limited power.Comment: Accepted in FPT 2018 as Oral presentation, 8 pages, 6 figures, 4 table

    Two-Dimensional Gel Electrophoresis Image Registration Using Block-Matching Techniques and Deformation Models

    Get PDF
    [Abstract] Block-matching techniques have been widely used in the task of estimating displacement in medical images, and they represent the best approach in scenes with deformable structures such as tissues, fluids, and gels. In this article, a new iterative block-matching technique—based on successive deformation, search, fitting, filtering, and interpolation stages—is proposed to measure elastic displacements in two-dimensional polyacrylamide gel electrophoresis (2D–PAGE) images. The proposed technique uses different deformation models in the task of correlating proteins in real 2D electrophoresis gel images, obtaining an accuracy of 96.6% and improving the results obtained with other techniques. This technique represents a general solution, being easy to adapt to different 2D deformable cases and providing an experimental reference for block-matching algorithms.Galicia. Consellería de Economía e Industria; 10MDS014CTGalicia. Consellería de Economía e Industria; 10SIN105004PRInstituto de Salud Carlos III; PI13/0028

    STEREO MATCHING ALGORITHM BASED ON ILLUMINATION CONTROL TO IMPROVE THE ACCURACY

    Full text link

    Rethinking RGB-D Salient Object Detection: Models, Data Sets, and Large-Scale Benchmarks

    Full text link
    The use of RGB-D information for salient object detection has been extensively explored in recent years. However, relatively few efforts have been put towards modeling salient object detection in real-world human activity scenes with RGBD. In this work, we fill the gap by making the following contributions to RGB-D salient object detection. (1) We carefully collect a new SIP (salient person) dataset, which consists of ~1K high-resolution images that cover diverse real-world scenes from various viewpoints, poses, occlusions, illuminations, and backgrounds. (2) We conduct a large-scale (and, so far, the most comprehensive) benchmark comparing contemporary methods, which has long been missing in the field and can serve as a baseline for future research. We systematically summarize 32 popular models and evaluate 18 parts of 32 models on seven datasets containing a total of about 97K images. (3) We propose a simple general architecture, called Deep Depth-Depurator Network (D3Net). It consists of a depth depurator unit (DDU) and a three-stream feature learning module (FLM), which performs low-quality depth map filtering and cross-modal feature learning respectively. These components form a nested structure and are elaborately designed to be learned jointly. D3Net exceeds the performance of any prior contenders across all five metrics under consideration, thus serving as a strong model to advance research in this field. We also demonstrate that D3Net can be used to efficiently extract salient object masks from real scenes, enabling effective background changing application with a speed of 65fps on a single GPU. All the saliency maps, our new SIP dataset, the D3Net model, and the evaluation tools are publicly available at https://github.com/DengPingFan/D3NetBenchmark.Comment: Accepted in TNNLS20. 15 pages, 12 figures. Code: https://github.com/DengPingFan/D3NetBenchmar

    Dense Optical Flow Estimation Using Sparse Regularizers from Reduced Measurements

    Full text link
    Optical flow is the pattern of apparent motion of objects in a scene. The computation of optical flow is a critical component in numerous computer vision tasks such as object detection, visual object tracking, and activity recognition. Despite a lot of research, efficiently managing abrupt changes in motion remains a challenge in motion estimation. This paper proposes novel variational regularization methods to address this problem since they allow combining different mathematical concepts into a joint energy minimization framework. In this work, we incorporate concepts from signal sparsity into variational regularization for motion estimation. The proposed regularization uses a robust l1 norm, which promotes sparsity and handles motion discontinuities. By using this regularization, we promote the sparsity of the optical flow gradient. This sparsity helps recover a signal even with just a few measurements. We explore recovering optical flow from a limited set of linear measurements using this regularizer. Our findings show that leveraging the sparsity of the derivatives of optical flow reduces computational complexity and memory needs.Comment: 12 pages, 9 figures, and 3 table
    corecore