13,483 research outputs found

    A new class of three-weight linear codes from weakly regular plateaued functions

    Full text link
    Linear codes with few weights have many applications in secret sharing schemes, authentication codes, communication and strongly regular graphs. In this paper, we consider linear codes with three weights in arbitrary characteristic. To do this, we generalize the recent contribution of Mesnager given in [Cryptography and Communications 9(1), 71-84, 2017]. We first present a new class of binary linear codes with three weights from plateaued Boolean functions and their weight distributions. We next introduce the notion of (weakly) regular plateaued functions in odd characteristic pp and give concrete examples of these functions. Moreover, we construct a new class of three-weight linear pp-ary codes from weakly regular plateaued functions and determine their weight distributions. We finally analyse the constructed linear codes for secret sharing schemes.Comment: The Extended Abstract of this work was submitted to WCC-2017 (the Tenth International Workshop on Coding and Cryptography

    Minimal linear codes from characteristic functions

    Full text link
    Minimal linear codes have interesting applications in secret sharing schemes and secure two-party computation. This paper uses characteristic functions of some subsets of Fq\mathbb{F}_q to construct minimal linear codes. By properties of characteristic functions, we can obtain more minimal binary linear codes from known minimal binary linear codes, which generalizes results of Ding et al. [IEEE Trans. Inf. Theory, vol. 64, no. 10, pp. 6536-6545, 2018]. By characteristic functions corresponding to some subspaces of Fq\mathbb{F}_q, we obtain many minimal linear codes, which generalizes results of [IEEE Trans. Inf. Theory, vol. 64, no. 10, pp. 6536-6545, 2018] and [IEEE Trans. Inf. Theory, vol. 65, no. 11, pp. 7067-7078, 2019]. Finally, we use characteristic functions to present a characterization of minimal linear codes from the defining set method and present a class of minimal linear codes

    A Novel Application of Boolean Functions with High Algebraic Immunity in Minimal Codes

    Full text link
    Boolean functions with high algebraic immunity are important cryptographic primitives in some stream ciphers. In this paper, two methodologies for constructing binary minimal codes from sets, Boolean functions and vectorial Boolean functions with high algebraic immunity are proposed. More precisely, a general construction of new minimal codes using minimal codes contained in Reed-Muller codes and sets without nonzero low degree annihilators is presented. The other construction allows us to yield minimal codes from certain subcodes of Reed-Muller codes and vectorial Boolean functions with high algebraic immunity. Via these general constructions, infinite families of minimal binary linear codes of dimension mm and length less than or equal to m(m+1)/2m(m+1)/2 are obtained. In addition, a lower bound on the minimum distance of the proposed minimal linear codes is established. Conjectures and open problems are also presented. The results of this paper show that Boolean functions with high algebraic immunity have nice applications in several fields such as symmetric cryptography, coding theory and secret sharing schemes
    • …
    corecore