4,914 research outputs found

    Secret Key Agreement from Correlated Gaussian Sources by Rate Limited Public Communication

    Full text link
    We investigate the secret key agreement from correlated Gaussian sources in which the legitimate parties can use the public communication with limited rate. For the class of protocols with the one-way public communication, we show a closed form expression of the optimal trade-off between the rate of key generation and the rate of the public communication. Our results clarify an essential difference between the key agreement from discrete sources and that from continuous sources.Comment: 9 pages, no figure, Version 2 is a published version. The results are not changed from version 1. Explanations are polishe

    INFORMATION THEORETIC SECRET KEY GENERATION: STRUCTURED CODES AND TREE PACKING

    Get PDF
    This dissertation deals with a multiterminal source model for secret key generation by multiple network terminals with prior and privileged access to a set of correlated signals complemented by public discussion among themselves. Emphasis is placed on a characterization of secret key capacity, i.e., the largest rate of an achievable secret key, and on algorithms for key construction. Various information theoretic security requirements of increasing stringency: weak, strong and perfect secrecy, as well as different types of sources: finite-valued and continuous, are studied. Specifically, three different models are investigated. First, we consider strong secrecy generation for a discrete multiterminal source model. We discover a connection between secret key capacity and a new source coding concept of ``minimum information rate for signal dissemination,'' that is of independent interest in multiterminal data compression. Our main contribution is to show for this discrete model that structured linear codes suffice to generate a strong secret key of the best rate. Second, strong secrecy generation is considered for models with continuous observations, in particular jointly Gaussian signals. In the absence of suitable analogs of source coding notions for the previous discrete model, new techniques are required for a characterization of secret key capacity as well as for the design of algorithms for secret key generation. Our proof of the secret key capacity result, in particular the converse proof, as well as our capacity-achieving algorithms for secret key construction based on structured codes and quantization for a model with two terminals, constitute the two main contributions for this second model. Last, we turn our attention to perfect secrecy generation for fixed signal observation lengths as well as for their asymptotic limits. In contrast with the analysis of the previous two models that relies on probabilistic techniques, perfect secret key generation bears the essence of ``zero-error information theory,'' and accordingly, we rely on mathematical techniques of a combinatorial nature. The model under consideration is the ``Pairwise Independent Network'' (PIN) model in which every pair of terminals share a random binary string, with the strings shared by distinct pairs of terminals being mutually independent. This model, which is motivated by practical aspects of a wireless communication network in which terminals communicate on the same frequency, results in three main contributions. First, the concept of perfect omniscience in data compression leads to a single-letter formula for the perfect secret key capacity of the PIN model; moreover, this capacity is shown to be achieved by linear noninteractive public communication, and coincides with strong secret key capacity. Second, taking advantage of a multigraph representation of the PIN model, we put forth an efficient algorithm for perfect secret key generation based on a combinatorial concept of maximal packing of Steiner trees of the multigraph. When all the terminals seek to share perfect secrecy, the algorithm is shown to achieve capacity. When only a subset of terminals wish to share perfect secrecy, the algorithm is shown to achieve at least half of it. Additionally, we obtain nonasymptotic and asymptotic bounds on the size and rate of the best perfect secret key generated by the algorithm. These bounds are of independent interest from a purely graph theoretic viewpoint as they constitute new estimates for the maximum size and rate of Steiner tree packing of a given multigraph. Third, a particular configuration of the PIN model arises when a lone ``helper'' terminal aids all the other ``user'' terminals generate perfect secrecy. This model has special features that enable us to obtain necessary and sufficient conditions for Steiner tree packing to achieve perfect secret key capacity

    A Lattice Coding Scheme for Secret Key Generation from Gaussian Markov Tree Sources

    Full text link
    In this article, we study the problem of secret key generation in the multiterminal source model, where the terminals have access to correlated Gaussian sources. We assume that the sources form a Markov chain on a tree. We give a nested lattice-based key generation scheme whose computational complexity is polynomial in the number, N , of independent and identically distributed samples observed by each source. We also compute the achievable secret key rate and give a class of examples where our scheme is optimal in the fine quantization limit. However, we also give examples that show that our scheme is not always optimal in the limit of fine quantization.Comment: 10 pages, 3 figures. A 5-page version of this article has been submitted to the 2016 IEEE International Symposium on Information Theory (ISIT

    Secret key generation from Gaussian sources using lattice hashing

    Full text link
    We propose a simple yet complete lattice-based scheme for secret key generation from Gaussian sources in the presence of an eavesdropper, and show that it achieves strong secret key rates up to 1/2 nat from the optimal in the case of "degraded" source models. The novel ingredient of our scheme is a lattice-hashing technique, based on the notions of flatness factor and channel intrinsic randomness. The proposed scheme does not require dithering.Comment: 5 pages, Conference (ISIT 2013

    Key Capacity with Limited One-Way Communication for Product Sources

    Full text link
    We show that for product sources, rate splitting is optimal for secret key agreement using limited one-way communication at two terminals. This yields an alternative proof of the tensorization property of a strong data processing inequality originally studied by Erkip and Cover and amended recently by Anantharam et al. We derive a `water-filling' solution of the communication-rate--key-rate tradeoff for two arbitrarily correlated vector Gaussian sources, for the case with an eavesdropper, and for stationary Gaussian processes.Comment: 5 pages, ISIT 201

    Compressed Secret Key Agreement: Maximizing Multivariate Mutual Information Per Bit

    Full text link
    The multiterminal secret key agreement problem by public discussion is formulated with an additional source compression step where, prior to the public discussion phase, users independently compress their private sources to filter out strongly correlated components for generating a common secret key. The objective is to maximize the achievable key rate as a function of the joint entropy of the compressed sources. Since the maximum achievable key rate captures the total amount of information mutual to the compressed sources, an optimal compression scheme essentially maximizes the multivariate mutual information per bit of randomness of the private sources, and can therefore be viewed more generally as a dimension reduction technique. Single-letter lower and upper bounds on the maximum achievable key rate are derived for the general source model, and an explicit polynomial-time computable formula is obtained for the pairwise independent network model. In particular, the converse results and the upper bounds are obtained from those of the related secret key agreement problem with rate-limited discussion. A precise duality is shown for the two-user case with one-way discussion, and such duality is extended to obtain the desired converse results in the multi-user case. In addition to posing new challenges in information processing and dimension reduction, the compressed secret key agreement problem helps shed new light on resolving the difficult problem of secret key agreement with rate-limited discussion, by offering a more structured achieving scheme and some simpler conjectures to prove
    corecore