71 research outputs found

    Secrecy-Optimized Resource Allocation for Device-to-Device Communication Undelaying Cellular Networks

    Get PDF
    L’objectif principal de l’introduction de la communication de périphérique-à-périphérique «device-to-device» (D2D) sous-jacente aux systèmes de communication sans fil de cinquième génération (5G), est d’augmenter l’efficacité spectrale (ES). Cependant, la communication D2D sous-jacente aux réseaux cellulaires peut entraîner une dégradation des performances causée par des co-interférences de canal sévères entre les liaisons cellulaires et D2D. De plus, en raison de la complexité du contrôle et de la gestion, les connexions directes entre les appareils à proximité sont vulnérables. En conséquence, la communication D2D n’est pas robuste contre les menaces de sécurité et l’écoute clandestine. Pourtant, les co-interférences de canal peuvent être adoptées pour aider les utilisateurs cellulaires (UC) et les paires D2D afin d’empêcher l’écoute clandestine. Dans cette thèse, nous étudions différents scénarios de problèmes d’allocation de ressources en utilisant le concept de sécurité de couche physique «physical layer security» (PLS) pour la communication D2D sous-jacente aux réseaux cellulaires, tout en satisfaisant les exigences minimales de qualité de service (QoS) des liaisons cellulaires et D2D. Dans le cas où PLS est pris en compte, l’interférence peut aider à réduire l’écoute clandestine. Premièrement, nous formulons un scénario d’allocation de ressources dans lequel chaque bloc de ressources (RB) temps-fréquence de multiplexage par répartition orthogonale en fréquence (OFDM) peut être partagé par une seule CU et une paire D2D dans un réseau unicellulaire. Le problème formulé est réduit au problème de correspondance tridimensionnelle, qui est généralement NP-difficile, et la solution optimale peut être obtenue par des méthodes compliquées, telles que la recherche par force brute et/ou l’algorithme de branchement et de liaison qui ont une complexité de calcul exponentielle. Nous proposons donc une méta-heuristique basée sur l’algorithme de recherche tabou «Tabu Search» (TS) avec une complexité de calcul réduite pour trouver globalement la solution d’allocation de ressources radio quasi-optimale.----------ABSTRACT: The primary goal of introducing device-to-device (D2D) communication underlying fifthgeneration (5G) wireless communication systems is to increase spectral efficiency (ES). However, D2D communication underlying cellular networks can lead to performance degradation caused by severe co-channel interference between cellular and D2D links. In addition, due to the complexity of control and management, direct connections between nearby devices are vulnerable. Thus, D2D communication is not robust against security threats and eavesdropping. On the other hand, the co-channel interference can be adopted to help cellular users (CUs) and D2D pairs to prevent eavesdropping. In this thesis, we investigate different resource allocation problem scenarios using the physical layer security (PLS) concept for the D2D communication underlying cellular networks, while satisfying the minimum quality of service (QoS) requirements of cellular and D2D link. If the PLS is taken into account, the interference can help reduce eavesdropping. First, we formulate a resource allocation scenario in which each orthogonal frequency-division multiplexing (OFDM) time-frequency resource block (RB) can be shared by one single CU and one D2D pair in a single-cell network. The formulated problem is reduced to the threedimensional matching problem, which is generally NP-hard, and the optimal solution can be obtained through the complicated methods, such as brute-force search and/or branch-andbound algorithm that have exponential computational complexity. We, therefore, propose a meta-heuristic based on Tabu Search (TS) algorithm with a reduced computational complexity to globally find the near-optimal radio resource allocation solution

    Resource Allocation for Device-to-Device Communications Underlaying Heterogeneous Cellular Networks Using Coalitional Games

    Full text link
    Heterogeneous cellular networks (HCNs) with millimeter wave (mmWave) communications included are emerging as a promising candidate for the fifth generation mobile network. With highly directional antenna arrays, mmWave links are able to provide several-Gbps transmission rate. However, mmWave links are easily blocked without line of sight. On the other hand, D2D communications have been proposed to support many content based applications, and need to share resources with users in HCNs to improve spectral reuse and enhance system capacity. Consequently, an efficient resource allocation scheme for D2D pairs among both mmWave and the cellular carrier band is needed. In this paper, we first formulate the problem of the resource allocation among mmWave and the cellular band for multiple D2D pairs from the view point of game theory. Then, with the characteristics of cellular and mmWave communications considered, we propose a coalition formation game to maximize the system sum rate in statistical average sense. We also theoretically prove that our proposed game converges to a Nash-stable equilibrium and further reaches the near-optimal solution with fast convergence rate. Through extensive simulations under various system parameters, we demonstrate the superior performance of our scheme in terms of the system sum rate compared with several other practical schemes.Comment: 13 pages, 12 figure

    Vehicle Communication using Secrecy Capacity

    Full text link
    We address secure vehicle communication using secrecy capacity. In particular, we research the relationship between secrecy capacity and various types of parameters that determine secrecy capacity in the vehicular wireless network. For example, we examine the relationship between vehicle speed and secrecy capacity, the relationship between the response time and secrecy capacity of an autonomous vehicle, and the relationship between transmission power and secrecy capacity. In particular, the autonomous vehicle has set the system modeling on the assumption that the speed of the vehicle is related to the safety distance. We propose new vehicle communication to maintain a certain level of secrecy capacity according to various parameters. As a result, we can expect safer communication security of autonomous vehicles in 5G communications.Comment: 17 Pages, 12 Figure

    Limited Feedback Scheme for Device to Device Communications in 5G cellular networks with Reliability and Cellular Secrecy Outage Constraints

    Get PDF
    In this paper, we propose a device to device (D2D) communication scenario underlaying a cellular network where both D2D and cellular users (CUs) are discrete power-rate systems with limited feedback from the receivers. It is assumed that there exists an adversary which wants to eavesdrop on the information transmission from the base station (BS) to CUs. Since D2D communication shares the same spectrum with cellular network, cross interference must be considered. However, when secrecy capacity is considered, the interference caused by D2D communication can help to improve the secrecy communications by confusing the eavesdroppers. Since both systems share the same spectrum, cross interference must be considered. We formulate the proposed resource allocation into an optimization problem whose objective is to maximize the average transmission rate of D2D pair in the presence of the cellular communications under average transmission power constraint. For the cellular network, we require a minimum average achievable secrecy rate in the absence of D2D communication as well as a maximum secrecy outage probability in the presence of D2D communication which should be satisfied. Due to high complexity convex optimization methods, to solve the proposed optimization problem, we apply Particle Swarm Optimization (PSO) which is an evolutionary approach. Moreover, we model and study the error in the feedback channel and the imperfectness of channel distribution information (CDI) using parametric and nonparametric methods. Finally, the impact of different system parameters on the performance of the proposed scheme is investigated through simulations. The performance of the proposed scheme is evaluated using numerical results for different scenarios.Comment: IEEE Transactions on Vehicular Technology, 201

    Resource Allocation for Secure Gaussian Parallel Relay Channels with Finite-Length Coding and Discrete Constellations

    Full text link
    We investigate the transmission of a secret message from Alice to Bob in the presence of an eavesdropper (Eve) and many of decode-and-forward relay nodes. Each link comprises a set of parallel channels, modeling for example an orthogonal frequency division multiplexing transmission. We consider the impact of discrete constellations and finite-length coding, defining an achievable secrecy rate under a constraint on the equivocation rate at Eve. Then we propose a power and channel allocation algorithm that maximizes the achievable secrecy rate by resorting to two coupled Gale-Shapley algorithms for stable matching problem. We consider the scenarios of both full and partial channel state information at Alice. In the latter case, we only guarantee an outage secrecy rate, i.e., the rate of a message that remains secret with a given probability. Numerical results are provided for Rayleigh fading channels in terms of average outage secrecy rate, showing that practical schemes achieve a performance quite close to that of ideal ones

    An Extensive Game-Based Resource Allocation for Securing D2D Underlay Communications

    Get PDF
    Device-to-device (D2D) communication has been increasingly attractive due to its great potential to improve cellular communication performance. While resource allocation optimization for improving the spectrum efficiency is of interest in the D2D-related work, communication security, as a key issue in the system design, has not been well investigated yet. Recently, a few studies have shown that D2D users can actually serve as friendly jammers to help enhance the security of cellular user communication against eavesdropping attacks. However, only a few studies considered the security of D2D communications. In this paper, we consider the secure resource allocation problem, particularly, how to assign resources to cellular and the D2D users to maximize the system security. To solve this problem, we propose an extensive game-based algorithm aiming at strengthening the security of both cellular and the D2D communications via system resource allocation. Finally, the simulation results show that the proposed method is able to efficiently improve the overall system security when compared to existing studies
    • …
    corecore