95 research outputs found

    Intelligent-Reflecting-Surface-Assisted UAV Communications for 6G Networks

    Full text link
    In 6th-Generation (6G) mobile networks, Intelligent Reflective Surfaces (IRSs) and Unmanned Aerial Vehicles (UAVs) have emerged as promising technologies to address the coverage difficulties and resource constraints faced by terrestrial networks. UAVs, with their mobility and low costs, offer diverse connectivity options for mobile users and a novel deployment paradigm for 6G networks. However, the limited battery capacity of UAVs, dynamic and unpredictable channel environments, and communication resource constraints result in poor performance of traditional UAV-based networks. IRSs can not only reconstruct the wireless environment in a unique way, but also achieve wireless network relay in a cost-effective manner. Hence, it receives significant attention as a promising solution to solve the above challenges. In this article, we conduct a comprehensive survey on IRS-assisted UAV communications for 6G networks. First, primary issues, key technologies, and application scenarios of IRS-assisted UAV communications for 6G networks are introduced. Then, we put forward specific solutions to the issues of IRS-assisted UAV communications. Finally, we discuss some open issues and future research directions to guide researchers in related fields

    IRS-assisted UAV Communications: A Comprehensive Review

    Full text link
    Intelligent reflecting surface (IRS) can smartly adjust the wavefronts in terms of phase, frequency, amplitude and polarization via passive reflections and without any need of radio frequency (RF) chains. It is envisaged as an emerging technology which can change wireless communication to improve both energy and spectrum efficiencies with low energy consumption and low cost. It can intelligently configure the wireless channels through a massive number of cost effective passive reflecting elements to improve the system performance. Similarly, unmanned aerial vehicle (UAV) communication has gained a viable attention due to flexible deployment, high mobility and ease of integration with several technologies. However, UAV communication is prone to security issues and obstructions in real-time applications. Recently, it is foreseen that UAV and IRS both can integrate together to attain unparalleled capabilities in difficult scenarios. Both technologies can ensure improved performance through proactively altering the wireless propagation using smart signal reflections and maneuver control in three dimensional (3D) space. IRS can be integrated in both aerial and terrene environments to reap the benefits of smart reflections. This study briefly discusses UAV communication, IRS and focuses on IRS-assisted UAC communications. It surveys the existing literature on this emerging research topic and highlights several promising technologies which can be implemented in IRS-assisted UAV communication. This study also presents several application scenarios and open research challenges. This study goes one step further to elaborate research opportunities to design and optimize wireless systems with low energy footprint and at low cost. Finally, we shed some light on future research aspects for IRS-assisted UAV communication

    Trajectory and power design for aerial CRNs with colluding eavesdroppers

    Full text link
    Unmanned aerial vehicles (UAVs) can provide wireless access services to terrestrial users without geographical limitations and will become an essential part of the future communication system. However, the openness of wireless channels and the mobility of UAVs make the security of UAV-based communication systems particularly challenging. This work investigates the security of aerial cognitive radio networks (CRNs) with multiple uncertainties colluding eavesdroppers. A cognitive aerial base station transmits messages to cognitive terrestrial users using the spectrum resource of the primary users. All secondary terrestrial users and illegitimate receivers jointly decode the received message. The average secrecy rate of the aerial CRNs is maximized by jointly optimizing the UAV's trajectory and transmission power. An iterative algorithm based on block coordinate descent and successive convex approximation is proposed to solve the non-convex mixed-variable optimization problem. Numerical results verify the effectiveness of our proposed algorithm and show that our scheme improves the secrecy performance of airborne CRNs.Comment: 10 pages, 7 figures.submitted to the IEEE journal for revie

    Performance analysis of Unmanned Aerial Vehicles-enabled Wireless Networks

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.As an indispensable part of mobile communication systems, Unmanned Aerial Vehicles (UAVs) can be leveraged to complement terrestrial networks by providing coverage to areas where infrastructures are scarce. Equipped with self-navigation and strong automation, UAVs have extensive applications to environmental monitoring, disaster recovery, search and rescue, owing to their excellent agility and autonomy. As a result, an increasing demand arises for ubiquitous connectivity and reliable communication for data exchange between UAVs, and between UAVs and ground stations. Since UAVs operate in three-dimensional (3D) space with strong manoeuvrability, random trajectories and wireless propagation environment can pose significant challenges to the study on coverage and capacity of UAV networks. On the other hand, UAVs are increasingly posing threats to information security. UAVs can be potentially used to eavesdrop and jam wireless transmissions between legitimate terrestrial transceivers. It is of practical interest to understand the robustness of terrestrial wireless communications under exposure to new threats from aerial adversaries. This thesis studies the coverage and capacity, including secure coverage and secrecy capacity, of UAV-enabled wireless networks with UAVs flying under 3D random trajectories based on stochastic geometry and measure convergence theory. The detailed contributions of this thesis are summarised as: • Capacity analysis of UAV networks under random trajectories. We geometrically derive probability distributions of UAV-to-UAV distances and closed-form bounds for the capacity can be obtained by exploiting the Jensen's inequality. We extrapolate the idea to dense UAV networks and analyse the impact of network densification and imperfect channel state information on the capacity. • Connectivity analysis of uncoordinated UAV swarms. New closed-form bounds are derived for the outage probability of individual UAVs, and broadcast connectivity of each UAV which evaluates the reliability of broadcast across the swarm. The qualifying conditions of the bounds on 3D coverage and impact of ground interference on the outage are identified. • Secure connectivity analysis in UAV networks. We propose a trust model based on UAVs’ behaviour and mobility pattern and characteristics of inter-UAV channels. We derive analytical expressions of both physical and secure connectivity probabilities with/without considering Doppler shift. • Secrecy capacity analysis against aerial eavesdroppers. We analyse ergodic and ϵ-outage secrecy capacities of ground link in the presence of cooperative aerial eavesdroppers. The “cut-off” density of eavesdroppers under which the secrecy capacities vanish is identified. By decoupling the analysis of random trajectories from random channel fading, closed-form approximations with almost sure convergence to the secrecy capacities are devised

    Hybrid satellite–terrestrial networks toward 6G : key technologies and open issues

    Get PDF
    Future wireless networks will be required to provide more wireless services at higher data rates and with global coverage. However, existing homogeneous wireless networks, such as cellular and satellite networks, may not be able to meet such requirements individually, especially in remote terrain, including seas and mountains. One possible solution is to use diversified wireless networks that can exploit the inter-connectivity between satellites, aerial base stations (BSs), and terrestrial BSs over inter-connected space, ground, and aerial networks. Hence, enabling wireless communication in one integrated network has attracted both the industry and the research fraternities. In this work, we provide a comprehensive survey of the most recent work on hybrid satellite–terrestrial networks (HSTNs), focusing on system architecture, performance analysis, design optimization, and secure communication schemes for different cooperative and cognitive HSTN network architectures. Different key technologies are compared. Based on this comparison, several open issues for future research are discussed

    Self-Evolving Integrated Vertical Heterogeneous Networks

    Full text link
    6G and beyond networks tend towards fully intelligent and adaptive design in order to provide better operational agility in maintaining universal wireless access and supporting a wide range of services and use cases while dealing with network complexity efficiently. Such enhanced network agility will require developing a self-evolving capability in designing both the network architecture and resource management to intelligently utilize resources, reduce operational costs, and achieve the coveted quality of service (QoS). To enable this capability, the necessity of considering an integrated vertical heterogeneous network (VHetNet) architecture appears to be inevitable due to its high inherent agility. Moreover, employing an intelligent framework is another crucial requirement for self-evolving networks to deal with real-time network optimization problems. Hence, in this work, to provide a better insight on network architecture design in support of self-evolving networks, we highlight the merits of integrated VHetNet architecture while proposing an intelligent framework for self-evolving integrated vertical heterogeneous networks (SEI-VHetNets). The impact of the challenges associated with SEI-VHetNet architecture, on network management is also studied considering a generalized network model. Furthermore, the current literature on network management of integrated VHetNets along with the recent advancements in artificial intelligence (AI)/machine learning (ML) solutions are discussed. Accordingly, the core challenges of integrating AI/ML in SEI-VHetNets are identified. Finally, the potential future research directions for advancing the autonomous and self-evolving capabilities of SEI-VHetNets are discussed.Comment: 25 pages, 5 figures, 2 table

    A Prospective Look: Key Enabling Technologies, Applications and Open Research Topics in 6G Networks

    Get PDF
    The fifth generation (5G) mobile networks are envisaged to enable a plethora of breakthrough advancements in wireless technologies, providing support of a diverse set of services over a single platform. While the deployment of 5G systems is scaling up globally, it is time to look ahead for beyond 5G systems. This is driven by the emerging societal trends, calling for fully automated systems and intelligent services supported by extended reality and haptics communications. To accommodate the stringent requirements of their prospective applications, which are data-driven and defined by extremely low-latency, ultra-reliable, fast and seamless wireless connectivity, research initiatives are currently focusing on a progressive roadmap towards the sixth generation (6G) networks. In this article, we shed light on some of the major enabling technologies for 6G, which are expected to revolutionize the fundamental architectures of cellular networks and provide multiple homogeneous artificial intelligence-empowered services, including distributed communications, control, computing, sensing, and energy, from its core to its end nodes. Particularly, this paper aims to answer several 6G framework related questions: What are the driving forces for the development of 6G? How will the enabling technologies of 6G differ from those in 5G? What kind of applications and interactions will they support which would not be supported by 5G? We address these questions by presenting a profound study of the 6G vision and outlining five of its disruptive technologies, i.e., terahertz communications, programmable metasurfaces, drone-based communications, backscatter communications and tactile internet, as well as their potential applications. Then, by leveraging the state-of-the-art literature surveyed for each technology, we discuss their requirements, key challenges, and open research problems
    • …
    corecore