435 research outputs found

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Secrecy Outage and Diversity Analysis of Cognitive Radio Systems

    Full text link
    In this paper, we investigate the physical-layer security of a multi-user multi-eavesdropper cognitive radio system, which is composed of multiple cognitive users (CUs) transmitting to a common cognitive base station (CBS), while multiple eavesdroppers may collaborate with each other or perform independently in intercepting the CUs-CBS transmissions, which are called the coordinated and uncoordinated eavesdroppers, respectively. Considering multiple CUs available, we propose the round-robin scheduling as well as the optimal and suboptimal user scheduling schemes for improving the security of CUs-CBS transmissions against eavesdropping attacks. Specifically, the optimal user scheduling is designed by assuming that the channel state information (CSI) of all links from CUs to CBS, to primary user (PU) and to eavesdroppers are available. By contrast, the suboptimal user scheduling only requires the CSI of CUs-CBS links without the PU's and eavesdroppers' CSI. We derive closed-form expressions of the secrecy outage probability of these three scheduling schemes in the presence of the coordinated and uncoordinated eavesdroppers. We also carry out the secrecy diversity analysis and show that the round-robin scheduling achieves the diversity order of only one, whereas the optimal and suboptimal scheduling schemes obtain the full secrecy diversity, no matter whether the eavesdroppers collaborate or not. In addition, numerical secrecy outage results demonstrate that for both the coordinated and uncoordinated eavesdroppers, the optimal user scheduling achieves the best security performance and the round-robin scheduling performs the worst. Finally, upon increasing the number of CUs, the secrecy outage probabilities of the optimal and suboptimal user scheduling schemes both improve significantly.Comment: 16 pages, 5 figures, accepted to appear, IEEE Journal on Selected Areas in Communications, 201

    Secrecy outage probability of a NOMA scheme and impact imperfect channel state information in underlay cooperative cognitive networks

    Get PDF
    Security performance and the impact of imperfect channel state information (CSI) in underlay cooperative cognitive networks (UCCN) is investigated in this paper. In the proposed scheme, relay R uses non-orthogonal multiple access (NOMA) technology to transfer messages e1, e2 from the source node S to User 1 (U-1) and User 2 (U-2), respectively. An eavesdropper (E) is also proposed to wiretap the messages of U-1 and U-2. The transmission's security performance in the proposed system was analyzed and performed over Rayleigh fading channels. Through numerical analysis, the results showed that the proposed system's secrecy performance became more efficient when the eavesdropper node E was farther away from the source node S and the intermediate cooperative relay R. The secrecy performance of U-1 was also compared to the secrecy performance of U-2. Finally, the simulation results matched the Monte Carlo simulations well.Web of Science203art. no. 89

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication
    • …
    corecore