22 research outputs found

    Cryptanalysis of Reduced-Round Whirlwind (Full Version)

    Get PDF
    The \texttt{Whirlwind} hash function, which outputs a 512-bit digest, was designed by Barreto et al.et\ al. and published by \textit{Design, Codes and Cryptography} in 2010. In this paper, we provide a thorough cryptanalysis on \texttt{Whirlwind}. Firstly, we focus on security properties at the hash function level by presenting (second) preimage, collision and distinguishing attacks on reduced-round \texttt{Whirlwind}. In order to launch the preimage attack, we have to slightly tweak the original Meet-in-the-Middle preimage attack framework on \texttt{AES}-like compression functions by partially fixing the values of the state. Based on this slightly tweaked framework, we are able to construct several new and interesting preimage attacks on reduced-round \texttt{Whirlpool} and \texttt{AES} hashing modes as well. Secondly, we investigate security properties of the reduced-round components of \texttt{Whirlwind}, including semi-free-start and free-start (near) collision attacks on the compression function, and a limited-birthday distinguisher on the inner permutation. As far as we know, our results are currently the best cryptanalysis on \texttt{Whirlwind}

    Supporting the Algebra I Curriculum with an Introduction to Computational Thinking Course

    Get PDF
    The Louisiana Workforce Commission predicts a 33.6% increase in computer science and mathematical occupations by 2022 and the Bureau of Labor Statistics foresees a 16% increase in computer scientists from 2018-2028. Despite these opportunities for job and financial security, the number of Louisiana students enrolled in a nationally accredited computing course is less than 1%, compared to national leaders California and Texas which have 3% and 3.8% of students respectively. Furthermore, the international assessments of mathematical literacy, PISA and TIMMS, both report American students continue to fall further behind their international peers in mathematics achievement. This thesis rejects these statistics as definitive and attempts to contribute to an expansion of the mathematical libraries of a computational thinking course that a teacher could use to support a standards-based Algebra I course. The framework presented in this thesis supports the Louisiana State University (LSU) STEM Pathway course entitled Introduction to Computational Thinking (ICT). The course introduces students to a systematic problem-solving approach in which they learn to solve problems computationally, that is, through abstraction, decomposition, and pattern recognition. ICT utilizes the functional programming language Haskell in the educational programming environment “CodeWorld” in order to create pictures and animations. Jean Piaget, the great child cognitive development psychologist, proclaimed “The goal of intellectual education is not to know how to repeat or retain ready-made truths”; rather, one becomes educated by “learning to master the truth by oneself” (Piaget, 1973). Because of the graphical outputs that one can easily code in CodeWorld, students have the ability to explore an algebraic concept with a computer programmed model, alongside the textbook’s given table, equation and graph. This thesis provides additional projects for supporting the Algebra I curriculum through LSU’s ICT course and an overview of the history of computing with an emphasis on highlighting some of the attempts that were undertaken within the past 80 years to use computational thinking and programming to support problem solving across disciplines, including the humanities, math and sciences

    Cryptanalysis of Some AES-based Cryptographic Primitives

    Get PDF
    Current information security systems rely heavily on symmetric key cryptographic primitives as one of their basic building blocks. In order to boost the efficiency of the security systems, designers of the underlying primitives often tend to avoid the use of provably secure designs. In fact, they adopt ad hoc designs with claimed security assumptions in the hope that they resist known cryptanalytic attacks. Accordingly, the security evaluation of such primitives continually remains an open field. In this thesis, we analyze the security of two cryptographic hash functions and one block cipher. We primarily focus on the recent AES-based designs used in the new Russian Federation cryptographic hashing and encryption suite GOST because the majority of our work was carried out during the open research competition run by the Russian standardization body TC26 for the analysis of their new cryptographic hash function Streebog. Although, there exist security proofs for the resistance of AES- based primitives against standard differential and linear attacks, other cryptanalytic techniques such as integral, rebound, and meet-in-the-middle attacks have proven to be effective. The results presented in this thesis can be summarized as follows: Initially, we analyze various security aspects of the Russian cryptographic hash function GOST R 34.11-2012, also known as Streebog or Stribog. In particular, our work investigates five security aspects of Streebog. Firstly, we present a collision analysis of the compression function and its in- ternal cipher in the form of a series of modified rebound attacks. Secondly, we propose an integral distinguisher for the 7- and 8-round compression function. Thirdly, we investigate the one wayness of Streebog with respect to two approaches of the meet-in-the-middle attack, where we present a preimage analysis of the compression function and combine the results with a multicollision attack to generate a preimage of the hash function output. Fourthly, we investigate Streebog in the context of malicious hashing and by utilizing a carefully tailored differential path, we present a backdoored version of the hash function where collisions can be generated with practical complexity. Lastly, we propose a fault analysis attack which retrieves the inputs of the compression function and utilize it to recover the secret key when Streebog is used in the keyed simple prefix and secret-IV MACs, HMAC, or NMAC. All the presented results are on reduced round variants of the function except for our analysis of the malicious version of Streebog and our fault analysis attack where both attacks cover the full round hash function. Next, we examine the preimage resistance of the AES-based Maelstrom-0 hash function which is designed to be a lightweight alternative to the ISO standardized hash function Whirlpool. One of the distinguishing features of the Maelstrom-0 design is the proposal of a new chaining construction called 3CM which is based on the 3C/3C+ family. In our analysis, we employ a 4-stage approach that uses a modified technique to defeat the 3CM chaining construction and generates preimages of the 6-round reduced Maelstrom-0 hash function. Finally, we provide a key recovery attack on the new Russian encryption standard GOST R 34.12- 2015, also known as Kuznyechik. Although Kuznyechik adopts an AES-based design, it exhibits a faster diffusion rate as it employs an optimal diffusion transformation. In our analysis, we propose a meet-in-the-middle attack using the idea of efficient differential enumeration where we construct a three round distinguisher and consequently are able to recover 16-bytes of the master key of the reduced 5-round cipher. We also present partial sequence matching, by which we generate, store, and match parts of the compared parameters while maintaining negligible probability of matching error, thus the overall online time complexity of the attack is reduced

    Automatic Search of Meet-in-the-Middle Preimage Attacks on AES-like Hashing

    Get PDF
    The Meet-in-the-Middle (MITM) preimage attack is highly effective in breaking the preimage resistance of many hash functions, including but not limited to the full MD5, HAVAL, and Tiger, and reduced SHA-0/1/2. It was also shown to be a threat to hash functions built on block ciphers like AES by Sasaki in 2011. Recently, such attacks on AES hashing modes evolved from merely using the freedom of choosing the internal state to also exploiting the freedom of choosing the message state. However, detecting such attacks especially those evolved variants is difficult. In previous works, the search space of the configurations of such attacks is limited, such that manual analysis is practical, which results in sub-optimal solutions. In this paper, we remove artificial limitations in previous works, formulate the essential ideas of the construction of the attack in well-defined ways, and translate the problem of searching for the best attacks into optimization problems under constraints in Mixed-Integer-Linear-Programming (MILP) models. The MILP models capture a large solution space of valid attacks; and the objectives of the MILP models are attack configurations with the minimized computational complexity. With such MILP models and using the off-the-shelf solver, it is efficient to search for the best attacks exhaustively. As a result, we obtain the first attacks against the full (5-round) and an extended (5.5-round) version of Haraka-512 v2, and 8-round AES-128 hashing modes, as well as improved attacks covering more rounds of Haraka-256 v2 and other members of AES and Rijndael hashing modes

    Design and analysis of cryptographic algorithms

    Get PDF

    Exhaustion and Recycling

    Get PDF

    Cryptanalysis, Reverse-Engineering and Design of Symmetric Cryptographic Algorithms

    Get PDF
    In this thesis, I present the research I did with my co-authors on several aspects of symmetric cryptography from May 2013 to December 2016, that is, when I was a PhD student at the university of Luxembourg under the supervision of Alex Biryukov. My research has spanned three different areas of symmetric cryptography. In Part I of this thesis, I present my work on lightweight cryptography. This field of study investigates the cryptographic algorithms that are suitable for very constrained devices with little computing power such as RFID tags and small embedded processors such as those used in sensor networks. Many such algorithms have been proposed recently, as evidenced by the survey I co-authored on this topic. I present this survey along with attacks against three of those algorithms, namely GLUON, PRINCE and TWINE. I also introduce a new lightweight block cipher called SPARX which was designed using a new method to justify its security: the Long Trail Strategy. Part II is devoted to S-Box reverse-engineering, a field of study investigating the methods recovering the hidden structure or the design criteria used to build an S-Box. I co-invented several such methods: a statistical analysis of the differential and linear properties which was applied successfully to the S-Box of the NSA block cipher Skipjack, a structural attack against Feistel networks called the yoyo game and the TU-decomposition. This last technique allowed us to decompose the S-Box of the last Russian standard block cipher and hash function as well as the only known solution to the APN problem, a long-standing open question in mathematics. Finally, Part III presents a unifying view of several fields of symmetric cryptography by interpreting them as purposefully hard. Indeed, several cryptographic algorithms are designed so as to maximize the code size, RAM consumption or time taken by their implementations. By providing a unique framework describing all such design goals, we could design modes of operations for building any symmetric primitive with any form of hardness by combining secure cryptographic building blocks with simple functions with the desired form of hardness called plugs. Alex Biryukov and I also showed that it is possible to build plugs with an asymmetric hardness whereby the knowledge of a secret key allows the privileged user to bypass the hardness of the primitive

    Asymptotics, Geometry, and Soft Matter

    Get PDF
    This dissertation is concerned with two problems that lie at the interface of soft-matter physics, geometry, and asymptotic analysis, but otherwise have no bearing on one another. In the first problem, I consider the equilibrium thermal fluctuations of deformable mechanical frameworks. These frameworks have served as highly idealized representations of mechanical structures that underlie a plethora of soft, few-body systems at the submicron scale such as colloidal clusters and DNA origami. When the holonomic constraints in a framework cease to be linearly independent, singularities can appear in its configuration space, where it becomes energetically softer. Consequently, the framework\u27s free-energy landscape becomes dominated by the neighborhoods of points corresponding to these singularities. In the second problem, I study the localization of elastic waves in thin elastic structures with spatially varying curvature profiles, using a curved rod and a uniaxially-curved shell as concrete examples. Waves propagating on such structures have multiple components owing to the curvature-mediated coupling of the tangential and normal components of the displacement field. Here, using the semiclassical approximation, I show that these waves form localized, bound states around points where the absolute curvature of the structure has a minimum. Both these problems exemplify the subtle interplay between the mechanical properties of soft materials and their geometry, which further sets the stage for many interesting consequences
    corecore