245 research outputs found

    MIMO channel modelling and simulation for cellular and mobile-to-mobile

    Get PDF
    Recently, mobile-to-mobile (M2M) communications have received much attention due to several emerging applications, such as wireless mobile ad hoc networks, relay-based cellular networks, and dedicated short range communications (DSRC) for intelligent transportation systems (e.g., IEEE 802.11p standard). Different from conventional fixed-to-mobile (F2M) cellular systems, in M2M systems both the transmitter (Tx) and receiver (Rx) are in motion and often equipped with low elevation antennas. Multiple-input-multiple-output (MIMO) technologies, employing multiple antennas at both the Tx and Rx, have widely been adopted for the third generation (3G) and beyond-3G (B3G) F2M cellular systems due to their potential benefits of improving coverage, link reliability, and overall system capacity. More recently, MIMO has been receiving more and more attention for M2M systems as well. Reliable knowledge of the propagation channel obtained from channel measurements and corresponding channel models serve as the enabling foundation for the design and analysis of MIMO F2M and M2M systems. Furthermore, the development of accurate MIMO F2M and M2M channel simulation models plays a major role in the practical simulation and performance evaluation of these systems. These form the primary motivation behind our research on MIMO channel modelling and simulation for F2M cellular and M2M communication systems. In this thesis, we first propose a new wideband theoretical multiple-ring based MIMO regular-shaped geometry-based stochastic model (RS-GBSM) for non-isotropic scattering F2M macro-cell scenarios and then derive a generic space-time-frequency (STF) correlation function (CF). The proposed theoretical reference wideband model can be reduced to a narrowband one-ring model, a new closed-form STF CF of which is derived as well. Narrowband and wideband sum-of-sinusoids (SoS) simulation models are then developed, demonstrating a good agreement with the corresponding reference models in terms of correlation functions. Secondly, based on a well-known narrowband two-ring single-input single-output (SISO) M2M channel reference model, we propose new deterministic and stochastic SoS simulation models for non-isotropic scattering environments. The proposed deterministic simulator is the first SISO M2M deterministic simulator with good performance, while the proposed stochastic simulator outperforms the existing one in terms of fitting the desired statistical properties of the corresponding reference model. Thirdly, a new adaptive narrowband MIMO M2M RS-GBSM is proposed for nonisotropic scattering environments. To the best of our knowledge, the proposed M2M model is the first RS-GBSM that has the ability to study the impact of the vehicular traffic density on channel statistics. From the proposed theoretical reference model, we comprehensively investigate some important M2M channel statistics including the STF CF, space-Doppler-frequency power spectral density, envelope level crossing rate, and average fade duration. A close agreement between some channel statistics obtained from the proposed reference model and measurement data is observed, confirming the utility of our model. Finally, we extend the above narrowband model to a new wideband MIMO M2M RSGBSM with respect to the frequency-selectivity. The proposed wideband reference model is validated by observing a good match between some statistical properties of the theoretical model and available measurement data. From the wideband reference model, we further design new wideband deterministic and stochastic SoS simulation models. The proposed wideband simulators can be easily reduced to narrowband ones. The utilities of the newly derived narrowband and wideband simulation models are validated by comparing their statistical properties with those of the corresponding reference models. The proposed channel reference models and simulators are expected to be useful for the design, testing, and performance evaluation of future MIMO cellular and M2M communication systems.Scottish Funding Counci

    A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles

    Full text link
    In recent years, there has been a dramatic increase in the use of unmanned aerial vehicles (UAVs), particularly for small UAVs, due to their affordable prices, ease of availability, and ease of operability. Existing and future applications of UAVs include remote surveillance and monitoring, relief operations, package delivery, and communication backhaul infrastructure. Additionally, UAVs are envisioned as an important component of 5G wireless technology and beyond. The unique application scenarios for UAVs necessitate accurate air-to-ground (AG) propagation channel models for designing and evaluating UAV communication links for control/non-payload as well as payload data transmissions. These AG propagation models have not been investigated in detail when compared to terrestrial propagation models. In this paper, a comprehensive survey is provided on available AG channel measurement campaigns, large and small scale fading channel models, their limitations, and future research directions for UAV communication scenarios

    Propagation channel characterisation and modelling for high-speed train communication systems

    Get PDF
    High-mobility scenarios, e.g., High-Speed Train (HST) scenarios, are expected to be typical scenarios for the Fifth Generation (5G) communication systems. With the rapid development of HSTs, an increasing volume of wireless communication data is required to be transferred to train passengers. HST users demand high network capacity and reliable communication services regardless of their locations or speeds, which are beyond the capability of current HST communication systems. The features of HST channels are significantly different from those of low-mobility cellular communication systems. For a proper design and evaluation of future HST wireless communication systems, we need accurate channel models that can mimic the underlying channel characteristics, especially the non-stationarity for different HST scenarios. Inspired by the lack of such accurate HST channel models in the literature, this PhD project is devoted to the modelling and simulation of non-stationary Multiple-Input Multiple-Output (MIMO) channels for HST communication systems. In this thesis, we first give a comprehensive review of the measurement campaigns conducted in different HST scenarios and address the recent advances in HST channel models. We also highlight the key challenges of HST channel measurements and models. Then, we study the characterisation of non-stationary channels and propose a theoretical framework for deriving the statistical properties of these channels. HST wireless communication systems encounter different channel conditions due to the difference of surrounding geographical environments or scenarios. HST channel models in the literature have either considered large-scale parameters only and/or neglected the non-stationarity of HST channels and/or only consider one of the HST scenarios. Therefore, we propose a novel generic non-stationary Geometry-Based Stochastic Model (GBSM) for wideband MIMO HST channels in different HST scenarios, i.e., open space, viaduct, and cutting. The corresponding simulation model is then developed with angular parameters calculated by the Modified Method of Equal Area (MMEA). The system functions and statistical properties of the proposed channel models are thoroughly studied. The proposed generic non-stationary HST channel models are verified by measurements in terms of stationary time for the open space scenario and the Autocorrelation Function (ACF), Level Crossing Rate (LCR), and stationary distance for the viaduct and cutting scenarios. Transmission techniques which are capable of utilising Three-Dimensional (3D) spatial dimensions are significant for the development of future communication systems. Consequently, 3D MIMO channel models are critical for the development and evaluation of these techniques. Therefore, we propose a novel 3D generic non-stationary GBSM for wideband MIMO HST channels in the most common HST scenarios. The corresponding simulation model is then developed with angular parameters calculated by the Method of Equal Volume (MEV). The proposed models considers several timevarying channel parameters, such as the angular parameters, the number of taps, the Ricean K-factor, and the actual distance between the Transmitter (Tx) and Receiver (Rx). Based on the proposed generic models, we investigate the impact of the elevation angle on some of the channel statistical properties. The proposed 3D generic models are verified using relevant measurement data. Most standard channel models in the literature, like Universal Mobile Telecommunications System (UMTS), COST 2100, and IMT-2000 failed to introduce any of the HST scenarios. Even for the standard channel models which introduced a HST scenario, like IMT-Advanced (IMT-A) and WINNER II channel models, they offer stationary intervals that are noticeably longer than those in measured HST channels. This has inspired us to propose a non-stationary IMT-A channel model with time-varying parameters including the number of clusters, powers, delays of the clusters, and angular parameters. Based on the proposed non-stationary IMT-A channel model, important statistical properties, i.e., the time-variant spatial Cross-correlation Function (CCF) and time-variant ACF, are derived and analysed. Simulation results demonstrate that the stationary interval of the developed non-stationary IMT-A channel model can match that of relevant HST measurement data. In summary, the proposed theoretical and simulation models are indispensable for the design, testing, and performance evaluation of 5G high-mobility wireless communication systems in general and HST ones in specific

    Design and theoretical analysis of advanced power based positioning in RF system

    Get PDF
    Accurate locating and tracking of people and resources has become a fundamental requirement for many applications. The global navigation satellite systems (GNSS) is widely used. But its accuracy suffers from signal obstruction by buildings, multipath fading, and disruption due to jamming and spoof. Hence, it is required to supplement GPS with inertial sensors and indoor localization schemes that make use of WiFi APs or beacon nodes. In the GPS-challenging or fault scenario, radio-frequency (RF) infrastructure based localization schemes can be a fallback solution for robust navigation. For the indoor/outdoor transition scenario, we propose hypothesis test based fusion method to integrate multi-modal localization sensors. In the first paper, a ubiquitous tracking using motion and location sensor (UTMLS) is proposed. As a fallback approach, power-based schemes are cost-effective when compared with the existing ToA or AoA schemes. However, traditional power-based positioning methods suffer from low accuracy and are vulnerable to environmental fading. Also, the expected accuracy of power-based localization is not well understood but is needed to derive the hypothesis test for the fusion scheme. Hence, in paper 2-5, we focus on developing more accurate power-based localization schemes. The second paper improves the power-based range estimation accuracy by estimating the LoS component. The ranging error model in fading channel is derived. The third paper introduces the LoS-based positioning method with corresponding theoretical limits and error models. In the fourth and fifth paper, a novel antenna radiation-pattern-aware power-based positioning (ARPAP) system and power contour circle fitting (PCCF) algorithm are proposed to address antenna directivity effect on power-based localization. Overall, a complete LoS signal power based positioning system has been developed that can be included in the fusion scheme --Abstract, page iv

    Realistic geometry-based stochastic channel models for advanced wireless MIMO systems

    Get PDF
    The employment of multiple antennas at both the Transmitter (Tx) and Receiver (Rx) enables the so-called Multiple-Input Multiple-Output (MIMO) technologies to greatly improve the link reliability and increase the overall system capacity. MIMO has been recommended to be employed in various advanced wireless communication systems, e.g., the Fourth Generation (4G) wireless systems and beyond. For the successful design, performance test, and simulation of MIMO wireless communication systems, a thorough understanding of the underlying MIMO channels and corresponding models are indispensable. The approach of geometry-based stochastic modelling has widely been used due to its advantages, such as convenience for theoretical analysis and mathematical tractability. In addition, wireless Vehicle-to-Vehicle (V2V) communications play an important role in mobile relay-based cellular networks, vehicular ad hoc networks, and intelligent transportation systems. In V2V communication systems, both the Tx and Rx are in motion and equipped with low elevation antennas. This is di erent from conventional Fixed-to-Mobile (F2M) cellular systems, where only one terminal moves. This PhD project is therefore devoted to the modelling and simulation of wireless MIMO channels for both V2V and F2M communication systems. In this thesis, we rst propose a novel narrowband Three Dimensional (3D) theoretical Regular-Shape Geometry Based Stochastic Model (RS-GBSM) and the corresponding Sum-of-Sinusoids (SoS) simulation model for non-isotropic MIMO V2V Ricean fading channels. The proposed RS-GBSM has the ability to study the impact of the Vehicular Tra c Density (VTD) on channel statistics and jointly considers the azimuth and elevation angles by using the von Mises-Fisher (VMF) distribution. Moreover, a novel parameter computation method is proposed for jointly calculating the azimuth and elevation angles in the SoS channel simulator. Based on the proposed 3D theoretical RS-GBSM and its SoS simulation model, statistical properties are derived and thoroughly investigated. The impact of the elevation angle in the 3D model on key statistical properties is investigated by comparing with those of the corresponding Two Dimensional (2D) model. It is demonstrated that the 3D model is more practical to characterise real V2V channels, in particular for pico-cell scenarios. Secondly, actual V2V channel measurements have shown that the modelling assumption of Wide Sense Stationary (WSS) is valid only for very short time intervals. This fact inspires the requirement of non-WSS V2V channel models. Therefore, we propose a novel 3D theoretical wideband MIMO non-WSS V2V RS-GBSM and corresponding SoS simulation model. Due to the dynamic movement of both the Tx and Rx, the Angle of Departure (AoD) and Angle of Arrival (AoA) are time-variant, which makes our model non-stationary. The proposed RS-GBSMs are su ciently generic and adaptable to mimic various V2V scenarios. Furthermore, important local channel statistical properties are derived and thoroughly investigated. The impact of non-stationarity on these channel statistical properties is investigated by comparing with those of the corresponding WSS model. The proposed non-WSS RS-GBSMs are validated by measurements in terms of the channel stationary time. Thirdly, realistic MIMO channel models with a proper trade-o between accuracy and complexity are indispensable for the practical application. By comparing the accuracy and complexity of two latest F2M standardised channel models (i.e., LTE-A and IMT-A channel models), we employ some channel statistical properties as the accuracy metrics and the number of Real Operations (ROs) as the complexity metric. It is shown that the LTE-A MIMO channel model is simple but has signi cant aws in terms of the accuracy. The IMT-A channel model is complicated but has better accuracy. Therefore, we focus on investigating various complexity reduction methods to simplify the IMT-A channel model. The results have shown that the proposed methods do not degrade much the accuracy of the IMT-A channel model, whereas they can signi cantly reduce the complexity in terms of the number of ROs and channel coe cients computing time. Finally, to investigate the non-stationarity of the IMT-A MIMO channel model, we further propose a non-WSS channel model with time-varying AoDs and AoAs. The proposed time-varying functions can be applied to various scenarios according to moving features of Moving Clusters (MCs) and a Mobile Station (MS). Moreover, the impacts of time-varying AoDs and AoAs on local statistical properties are investigated thoroughly. Simulation results prove that statistical properties are varied with time due to the non-stationarity of the proposed channel model. In summary, the proposed reference models and channel simulators are useful for the design, testing, and performance evaluation of advanced wireless V2V and F2M MIMO communication systems

    Mobile to mobile channel modelling for wireless communications

    Get PDF
    Wireless communication has been experiencing many recent advances in mobile to mobile (M2M) applications. M2M communication systems differ from conventional fixed to mobile systems by having both transmitter and receiver in low elevation and in motion. This raises the need to come up with new channel models and perform statistical analysis on M2M communication channels looking from a different perspective. This need motivated us to perform the research outlined in this thesis. In reviewing the literature we found that though in general the M2M channel models are sparse, a major gap exists in the non geometrical stochastic based mathematical channel models. In filling this gap, we develop a novel mathematical non geometrical stochastic multiple input multiple output (MIMO) M2M channel model for two dimensional (2D) and three dimensional (3D) scattering environments. This model is based on the underlying physics of free space wave propagation and can be used as a framework for any environment by selecting suitable complex scattering gain functions. In addition, we extend this novel model to multicarrier M2M which is the first multicarrier channel model in the non geometrical stochastic M2M category. Based on our novel M2M channel model, we carry out an extensive analysis in space-time correlation, space-frequency correlation and second order channel statistics. With the choice of suitable parameters, this analysis and channel model can be used for any wireless environment. Thus, we claim that our novel channel model together with the analysis performed in this thesis can be taken as a generalized framework. A significant contribution of our analysis is the consideration of the impact of transmitter and receiver speed to space-time and space-frequency correlation, which is not available in the literature. Using a von Mises-Fisher distribution as the angular power distribution, the usefulness of the derived temporal correlation function is discussed. The simulation results corroborate the fact that both space-time and space-frequency correlations are reduced when transmitter or receiver speed increases. The rate of reduction of space-time correlation in von Mises-Fisher distribution scattering environment is more than in the isotropic environment. Under second order channel statistics, we consider Rice, Rayleigh and Nakagami fading channels in four different non-isotropic scattering environments with angle of departure (AoD) and angle of arrival (AoA) distributions given by (i) separable Truncated Gaussian, (ii) separable von-Mises, (iii) truncated Gaussian bivariate and (iv) truncated Laplacian bivariate distributions. We show that the major second order statistics, namely, the level crossing rate (LCR) and the average fade duration (AFD), in different fading channels can be expressed in terms of known scattering coefficients of the AoD and AoA distributions. As the channel models and their respective measurements provide reliable knowledge of the channel for the design and analysis of M2M systems, the proposed channel model and the corresponding analysis will be useful for the design, testing and performance evaluation of future M2M communication systems

    Characterization of Single- and Multi-antenna Wireless Channels

    Get PDF
    The wireless propagation channel significantly influences the received signal, so that it needs to be modeled effectively. Extensive measurements and analysis are required for investigating the validity of theoretical models and postulating new models based on measurements. Such measurements, analysis, and modeling are the topic of this thesis. The focus of the included contributions are Multiple-Input Multiple-Output (MIMO) propagation channels and radio channels for sensor network applications. Paper I presents results from one of the first MIMO measurements for a double-directional characterization of the outdoor-to-indoor wireless propagation channel. Such channels are of interest for both cellular and wireless LAN applications. We discuss physical aspects of building penetration, and also provide statistics of angle and delay spreads in the channel. The paper also investigates the coupling between DOD and DOA and the two spectra are found to have non-negligible dependence. We test the applicability of three analytical channel models that make different assumptions on the coupling between DODs and DOAs. Our results indicate that analytical models, that impose fewer restrictions on the DOD to DOA coupling, should be used preferrably over models such as the Kronecker model that have more restrictive assumptions. Paper II presents a cluster-based analysis of the outdoor-to-indoor MIMO measurements analyzed in Paper I. A subset of parameters of the COST 273 channel model, a generic model for MIMO propagation channels, are characterized for the outdoor-to-indoor scenario. MPC parameters are extracted at each measured location using a high-resolution algorithm and clusters of MPCs are identified with an automated clustering approach. In particular, the adopted clustering approach requires that all MPC parameters must be similar in order for the MPCs to form a cluster. A statistical analysis of the identified clusters is performed for both the intra- and inter-cluster properties. Paper III analyzes the spatial fading distribution for a range of canonical sensor deployment scenarios. The presented results are relevant to communicating within, and between, clusters of nodes. Contrary to the widely accepted assumption in published literature that the channel is AWGN at a small-enough distance, our measurements indicate that values of the Rice factor do not, in general, increase monotonically as the Tx-Rx distance is reduced. A probability mixture model is presented, with distance dependent parameters, to account for the distance dependent variations of the Rice factor. A simulation model that includes small- and large-scale fading effects is presented. According to the modeling approach, a sensor node placed anywhere within the spatial extent of a small-scale region will experience the channel statistics applicable to that region. Paper IV presents results characterizing a radio channel for outdoor short-range sensor networks. A number of antennas are placed on the ground in an open area and time-variation of the channel is induced by a person moving in the vicinity of the nodes. The channel statistics of both the LOS path and the overall narrowband signal are non-stationary. We investigate the stationarity interval length to be used for small-scale analysis. Our analysis of the various measured links shows that the Rx signal strength is significantly influenced by a moving person only when the person blocks the LOS path. We present a generic approach for modeling the LOS blockage, and also model the time-variant Doppler spectrum of the channel's scattered components

    Multipath propagation characterization for terrestrial mobile and fixed microwave communications

    Get PDF
    Multipath propagation is a key issue studied throughout this thesis, and it causes dispersions in delay, frequency and spatial domains. These are dominant phenomena in both terrestrial mobile and fixed wideband communications. In this thesis, multipath propagation mechanisms including diffraction, refraction, reflection and scattering are studied when radio waves interact with dielectric and metallic objects, or an atmospheric duct. Measurements were also performed for empirical modelling and validation of the theoretical work carried out in this thesis. By using physical optics (PO) method, the attenuation by double knife edges with ground reflections is solved for the first time under a general formula of the attenuation by multiple knife edges with ground reflections derived in this thesis, and some important and interesting conclusions are obtained. The attenuations by curvilinear-topped obstacles and by multiple flat-topped obstacles are also presented in closed forms. The results are the simplest and easiest ones available now, and they can be applied for field strength predictions both in mobile and fixed microwave communications. Based on three-ray (direct, reflected and super-refracted) and two-ray (direct and super-refracted) multipath models for plane and spherical earth, respectively, frequency selective fading (FSF) and depolarization due to clear air are studied by simulations and experiments for terrestrial line-of-sight (LOS) microwave links and dual-polarized communication systems. Novel simulation methods have been introduced and applied based on the fact that the amplitudes and excess delays of the rays are functions of the (modified) refractive index gradients which are random variables with exponential and normal distributions inside and outside the duct in lower atmosphere, respectively. Some important empirical or semi-empirical models and parameters are presented at 5 GHz based on large amount of measured data in indoor and outdoor environments. The results include path loss models, excess delay and rms delay spread, spatial and frequency correlations, window (sector) length of averaging fast fading components, path number distribution, and tapped-delay-line (TDL) channel models. These empirical or semi-empirical parameters and models are the latest results achieved at 5 GHz, and they are of great importance in designing of future wireless local area networks (WLAN), especially the TDL models are developed for the first time in this frequency band. Using a general autocorrelation function derived in this thesis for three-dimensional (3-D) scattering environments, a novel theoretical modelling method is developed to study the propagation mechanisms of different types of Doppler spectra observed in measurements. The 3-D autocorrelation function is connected to the probability density functions (PDF) of the angles of arrival (AoAs) of the scattered waves and the antenna radiation patterns in the azimuth and elevation planes. This is a new work which tries to define and explain the physical reasons of 3-D Doppler spectra from propagation point of view. A new computer simulation method for wideband 3-D received signal level in an urban environment is developed under the general assumptions of the distributions for path number, amplitude, excess delay etc. This simulation method can provide detailed fading characteristics for wideband mobile communications in a specific urban environment.reviewe
    corecore