3 research outputs found

    Simultaneous Estimation of Sub-canopy Topography and Forest Height with Single-baseline Single-polarization TanDEM-X Interferometric Data Combined with ICESat-2 Data

    Get PDF
    To address the challenge of retrieving sub-canopy topography using single-baseline single-polarization TanDEM-X InSAR data, we propose a novel InSAR processing framework. Our methodology begins by employing the SINC model to estimate the penetration depth (PD). Subsequently, we establish a linear relationship between PD and phase center height (PCH) to generate a wall-to-wall PCH product. To achieve this, space-borne LiDAR data are employed to capture the elevation bias between actual ground elevation and InSAR-derived elevation. Finally, the sub-canopy topography is derived by subtracting the PCH from the conventional InSAR-based DEM. Moreover, this approach enables the simultaneous estimation of forest height from single-baseline TanDEM-X data by combining the estimated PD and PCH components. The approach has been validated against Airborne Lidar Scanning data over four diverse sites encompassing different forest types, terrain conditions, and climates. The derived sub-canopy topography in the boreal and hemi-boreal forest sites (Krycklan and Remningstorp) demonstrated notable improvement in accuracy. Additionally, the winter acquisitions outperformed the summer ones in terms of inversion accuracy. The achieved RMSEs for the winter scenarios were 2.45 m and 3.83 m, respectively, representing a 50% improvement over the InSAR-based DEMs. And the forest heights are also close to the ALS measurements, with RMSEs of 2.70 m and 3.33 m, respectively. For the Yanguas site in Spain, characterized by rugged terrain, sub-canopy topography in forest areas was estimated with an accuracy of 4.27m, a 35% improvement over the original DEM. For the denser tropical forest site, only an average elevation bias could be corrected.This work is funded by the National Key R&D Program of China (No. 2022YFB3902605), the National Natural Science Foundation of China (Nos. 42227801, 42030112, 42204024, 42104016, 42330717), the Spanish Ministry of Science and Innovation (State Agency of Research, AEI) and the European Funds for Regional Development under Project PID2020-117303GB-C22/AEI/10.13039/501100011033, the Natural Science Foundation for Excellent Young Scholars of Hunan Province (No. 2023JJ20061), and in part by the China Scholarship Council Foundation to the Joint Ph.D. Studies at University of Alicante (No. 202106370125)

    Hemiboreaalsete metsade kaardistamine interferomeetrilise tehisava-radari andmetelt

    Get PDF
    Väitekirja elektrooniline versioon ei sisalda publikatsioone.Käesolev doktoritöö uurib tehisavaradari (SAR) kasutusvõimalusi metsa kõrguse hindamiseks hemiboreaalsete metsade vööndis. Uurimistöö viidi läbi Tartu Üli¬kooli, Tartu Observatooriumi, Aalto Ülikooli, Euroopa Kosmoseagentuuri (ESA) kaugseire keskuse ESRIN ja Reach-U koostöös. Uurimistöös kasutatud satelliidi¬andmed on pärit Saksa Kosmosekeskuse (DLR) kõrglahutusega bistaatilise X-laineala tehisavaradari TanDEM-X satelliidipaarilt. Sagedasti uuenevad satelliidiandmed, nende globaalne katvus ja kõrge ruumi¬line lahutus võimaldavad tehisavaradari abil kaardistada metsi ning nendes toimu¬vaid muutusi suurtel maa-aladel. Radari abil on võimalik saada kõrge lahutusvõimega pilte, mis on tundlikud taimestikule, maapinna karedusele ja dielektrilistele omadustele. Sünkroonis lendava radaripaari samaaegselt tehtud pildid elimineerivad võimalikud ajalised muutused taimestikus ning tänu sellele on radariandmetest võimalik tuletada metsade vertikaalset struktuuri ja kõrgust. Uurimistöös käsitletakse tehisavaradari interferomeetrilise koherentsuse tund¬likkust metsa kõrguse suhtes ning analüüsitakse, millised keskkonna ja klimaati¬lised tingimused ning satelliidi orbiidiga seotud parameetrid mõjutavad radari¬piltidelt erinevate puuliikide kõrguse hindamise täpsust. Lisaks keskendub väitekiri interferomeetrilisele koherentsusele tuginevate mudelite analüüsi¬misele ning nende täpsuse hindamisele operatiivse metsa kõrguse kaardistamise raken-duseks. Vaatluse alla on võetud kolm testala, mis asuvad Soomaa rahvuspargis, Võrtsjärve idakaldal Rannus ja Peipsiveere looduskaitsealal ning katavad kokku 2291 hektarit metsa. 23 TanDEM-X satelliidipildi koherentsuspilte võrreldakse samadel testaladel aerolaserskaneerimise (LiDAR) abil mõõdetud puistute kõrgu¬sega, mis on omakorda jagatud kolme rühma (kuused, männid ja laia¬lehised segametsad). RVoG (Random Volume over Ground) taimekatte mudel ning sellest tule¬tatud lihtsamad pooleempiirilised mudelid sobituvad olemasolevate TanDEM-X koherentsuse ning LiDARi metsa puistute kõrgusandmetega hästi. Töö tule¬mused kinnitavad, et tulevikus on suurte ja erinevatest metsatüüpidest koosne¬vate metsade kõrguse kosmosest kaardistamisel otstarbekas kasutusele võtta esmalt just soovitatud lihtsamad ja universaalsemad mudelid.This thesis presents research in the field of radar remote sensing and contributes to the forest monitoring application development using space-borne synthetic aperture radar (SAR). Satellite data is particularly useful for large-scale forestry applications making high revisit monitoring of the state of forests worldwide possible. The sensitivity of SAR to the dielectric and geometrical properties of the targets, penetration capacity and coherent imaging properties make it a unique tool for mapping and monitoring forest biomes. SAR satellites are also capable of retrieving additional information about the structure of the forest, tree height and biomass estimates as an essential input for monitoring the changes in the carbon stocks. Interferometric SAR (InSAR) is an advanced SAR imaging technique that allows the retrieval of forest parameters while working in nearly all weather conditions, independently of daylight and cloud cover. This research concen¬trates on assessing the impact of different variables affecting hemiboreal forest height estimation from space-borne X-band interferometric SAR coherence data. In particular, the research analyses the changes in coherence dynamics related to seasonal conditions, tree species and imaging properties using a large collection of interferometric SAR images from different seasons over a four-year period. The study is carried out over three test sites in Estonia using the extensive multi-temporal dataset of 23 TanDEM-X images, covering 2291 hectares of forests to describe the relation between the interferometric SAR coherence mag¬nitude and forest parameters. The work demonstrates how the correlation of interferometric coherence and Airborne LiDAR Scanning (ALS)-derived forest height varies for pine and deciduous tree species, for summer (leaf-on) and winter (leaf-off) conditions and for flooded forest floor. A simple semi-empirical modelling approach is proposed as being suitable for wide area forest mapping with limited a priori information under a range of seasonal and environ¬¬mental conditions. A Random Volume over Ground (RVoG) model and three semi-empirical models are compared and validated against a large dataset of coherence magnitude and ALS-measured data over hemiboreal forests in Estonia. The results show that all proposed models perform well in describing the relationship between hemiboreal forest height and interferometric coherence, allowing in future to derive forest stand height with an accuracy suitable for a wide range of applications

    FUSING GEDI LIDAR AND TANDEM-X INSAR OBSERVATIONS FOR IMPROVED FOREST STRUCTURE AND BIOMASS MAPPING

    Get PDF
    The upcoming NASA’s Global Ecosystem Dynamics Investigation (GEDI) mission presents an unprecedented opportunity to advance current global biomass estimates. However, gaps are expected between GEDI’s ground tracks, requiring the development of fusion-based methodologies to contiguously map forest biomass at satisfactory resolutions and accuracies. This dissertation is built on the complementary advantages of observations from GEDI and DLR’s TerraSAR-X/TanDEM-X (TDX)) Interferometric Synthetic Aperture Radar (InSAR) mission. To meet the goal of mapping forest structure and biomass contiguously and accurately, three types of fusion strategies have been investigated. First, a simulated GEDI-derived digital terrain model (DTM) was utilized to improve height estimation from TDX. Forest heights were initially derived from TDX coherence alone as a baseline using the widely used Random Volume over Ground (RVoG) scattering model. Here, assumptions about RVoG parameters – extinction coefficient (σ) and ground-to-volume amplitude ratio (µ) – were made. Using an external DTM derived from simulated GEDI lidar data, RVoG model was used to calculate spatially varied σ values and derived forest heights with better accuracy. TDX forest height estimation was further improved with the aid of simulated GEDI-derived DTM and canopy heights. The additional use of simulated GEDI canopy heights as RVoG input not just refined σ but also enabled the estimation of µ. Based on these parameters, forest heights were improved across three different forest types; biases were reduced from 1.7–3.8 m using only simulated GEDI DTMs to -0.9–1.1 m by using both simulated GEDI DTMs and canopy heights. Finally, wall-to-wall TDX heights were used to improve biomass estimates from simulated GEDI data over three contrasting forest types. When using simulated GEDI sampled observations alone, uncertainties were estimated statistically to be 9.0–19.9% at 1 km. These were improved to 5.2–11.7% at the same resolution by upscaling simulated GEDI footprint biomass with TDX heights. The GEDI/TDX data fusion also enabled the generation of biomass maps at a fine spatial resolution of 100 m, with uncertainties estimated to be 6.0–14.0%. Through the exploration of these fusion strategies, it has been demonstrated that a fusion-based mapping method could realize the generation of forest biomass products from GEDI with unprecedented resolutions and accuracies, while taking advantage of global seamless observations from TDX
    corecore