6 research outputs found

    Searching in one billion vectors: re-rank with source coding

    Get PDF
    International audienceRecent indexing techniques inspired by source coding have been shown successful to index billions of high-dimensional vectors in memory. In this paper, we propose an approach that re-ranks the neighbor hypotheses obtained by these compressed-domain indexing methods. In contrast to the usual post-verification scheme, which performs exact distance calculation on the short-list of hypotheses, the estimated distances are refined based on short quantization codes, to avoid reading the full vectors from disk. We have released a new public dataset of one billion 128-dimensional vectors and proposed an experimental setup to evaluate high dimensional indexing algorithms on a realistic scale. Experiments show that our method accurately and efficiently re-ranks the neighbor hypotheses using little memory compared to the full vectors representation

    Fast, Compact and Highly Scalable Visual Place Recognition through Sequence-based Matching of Overloaded Representations

    Full text link
    Visual place recognition algorithms trade off three key characteristics: their storage footprint, their computational requirements, and their resultant performance, often expressed in terms of recall rate. Significant prior work has investigated highly compact place representations, sub-linear computational scaling and sub-linear storage scaling techniques, but have always involved a significant compromise in one or more of these regards, and have only been demonstrated on relatively small datasets. In this paper we present a novel place recognition system which enables for the first time the combination of ultra-compact place representations, near sub-linear storage scaling and extremely lightweight compute requirements. Our approach exploits the inherently sequential nature of much spatial data in the robotics domain and inverts the typical target criteria, through intentionally coarse scalar quantization-based hashing that leads to more collisions but is resolved by sequence-based matching. For the first time, we show how effective place recognition rates can be achieved on a new very large 10 million place dataset, requiring only 8 bytes of storage per place and 37K unitary operations to achieve over 50% recall for matching a sequence of 100 frames, where a conventional state-of-the-art approach both consumes 1300 times more compute and fails catastrophically. We present analysis investigating the effectiveness of our hashing overload approach under varying sizes of quantized vector length, comparison of near miss matches with the actual match selections and characterise the effect of variance re-scaling of data on quantization.Comment: 8 pages, 4 figures, Accepted for oral presentation at the 2020 IEEE International Conference on Robotics and Automatio

    Link and code: Fast indexing with graphs and compact regression codes

    Get PDF
    Similarity search approaches based on graph walks have recently attained outstanding speed-accuracy trade-offs, taking aside the memory requirements. In this paper, we revisit these approaches by considering, additionally, the memory constraint required to index billions of images on a single server. This leads us to propose a method based both on graph traversal and compact representations. We encode the indexed vectors using quantization and exploit the graph structure to refine the similarity estimation. In essence, our method takes the best of these two worlds: the search strategy is based on nested graphs, thereby providing high precision with a relatively small set of comparisons. At the same time it offers a significant memory compression. As a result, our approach outperforms the state of the art on operating points considering 64-128 bytes per vector, as demonstrated by our results on two billion-scale public benchmarks

    Fast Data Analytics by Learning

    Full text link
    Today, we collect a large amount of data, and the volume of the data we collect is projected to grow faster than the growth of the computational power. This rapid growth of data inevitably increases query latencies, and horizontal scaling alone is not sufficient for real-time data analytics of big data. Approximate query processing (AQP) speeds up data analytics at the cost of small quality losses in query answers. AQP produces query answers based on synopses of the original data. The sizes of the synopses are smaller than the original data; thus, AQP requires less computational efforts for producing query answers, thus can produce answers more quickly. In AQP, there is a general tradeoff between query latencies and the quality of query answers; obtaining higher-quality answers requires longer query latencies. In this dissertation, we show we can speed up the approximate query processing without reducing the quality of the query answers by optimizing the synopses using two approaches. The two approaches we employ for optimizing the synopses are as follows: 1. Exploiting past computations: We exploit the answers to the past queries. This approach relies on the fact that, if two aggregation involve common or correlated values, the aggregated results must also be correlated. We formally capture this idea using a probabilistic distribution function, which is then used to refine the answers to new queries. 2. Building task-aware synopses: By optimizing synopses for a few common types of data analytics, we can produce higher quality answers (or more quickly for certain target quality) to those data analytics tasks. We use this approach for constructing synopses optimized for searching and visualizations. For exploiting past computations and building task-aware synopses, our work incorporates statistical inference and optimization techniques. The contributions in this dissertation resulted in up to 20x speedups for real-world data analytics workloads.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/138598/1/pyongjoo_1.pd

    Searching with expectations

    Get PDF
    International audienceHandling large amounts of data, such as large image databases, requires the use of approximate nearest neighbor search techniques. Recently, Hamming embedding methods such as spectral hashing have addressed the problem of obtaining compact binary codes optimizing the trade-off between the memory usage and the probability of retrieving the true nearest neighbors. In this paper, we formulate the problem of generating compact signatures as a rate-distortion problem. In the spirit of source coding algorithms, we aim at minimizing the reconstruction error on the squared distances with a constraint on the memory usage. The vectors are ranked based on the distance estimates to the query vector. Experiments on image descriptors show a significant improvement over spectral hashing
    corecore