38 research outputs found

    Two-batch liar games on a general bounded channel

    Get PDF
    We consider an extension of the 2-person R\'enyi-Ulam liar game in which lies are governed by a channel CC, a set of allowable lie strings of maximum length kk. Carole selects x∈[n]x\in[n], and Paul makes tt-ary queries to uniquely determine xx. In each of qq rounds, Paul weakly partitions [n]=A0∪>...∪At−1[n]=A_0\cup >... \cup A_{t-1} and asks for aa such that x∈Aax\in A_a. Carole responds with some bb, and if a≠ba\neq b, then xx accumulates a lie (a,b)(a,b). Carole's string of lies for xx must be in the channel CC. Paul wins if he determines xx within qq rounds. We further restrict Paul to ask his questions in two off-line batches. We show that for a range of sizes of the second batch, the maximum size of the search space [n][n] for which Paul can guarantee finding the distinguished element is ∼tq+k/(Ek(C)(qk))\sim t^{q+k}/(E_k(C)\binom{q}{k}) as q→∞q\to\infty, where Ek(C)E_k(C) is the number of lie strings in CC of maximum length kk. This generalizes previous work of Dumitriu and Spencer, and of Ahlswede, Cicalese, and Deppe. We extend Paul's strategy to solve also the pathological liar variant, in a unified manner which gives the existence of asymptotically perfect two-batch adaptive codes for the channel CC.Comment: 26 page

    Minimum and maximum against k lies

    Full text link
    A neat 1972 result of Pohl asserts that [3n/2]-2 comparisons are sufficient, and also necessary in the worst case, for finding both the minimum and the maximum of an n-element totally ordered set. The set is accessed via an oracle for pairwise comparisons. More recently, the problem has been studied in the context of the Renyi-Ulam liar games, where the oracle may give up to k false answers. For large k, an upper bound due to Aigner shows that (k+O(\sqrt{k}))n comparisons suffice. We improve on this by providing an algorithm with at most (k+1+C)n+O(k^3) comparisons for some constant C. The known lower bounds are of the form (k+1+c_k)n-D, for some constant D, where c_0=0.5, c_1=23/32=0.71875, and c_k=\Omega(2^{-5k/4}) as k goes to infinity.Comment: 11 pages, 3 figure

    On the Multi-Interval Ulam-R\'enyi Game: for 3 lies 4 intervals suffice

    Full text link
    We study the problem of identifying an initially unknown mm-bit number by using yes-no questions when up to a fixed number ee of the answers can be erroneous. In the variant we consider here questions are restricted to be the union of up to a fixed number of intervals. For any e≥1e \geq 1 let kek_e be the minimum kk such that for all sufficiently large mm, there exists a strategy matching the information theoretic lower bound and only using kk-interval questions. It is known that ke=O(e2)k_e = O(e^2). However, it has been conjectured that the ke=Θ(e).k_e = \Theta(e). This linearity conjecture is supported by the known results for small values of ee. For e≤2e\leq2 we have ke=e.k_e = e. We extend these results to the case e=3e=3. We show k3≤4k_3 \leq 4 improving upon the previously known bound k3≤10.k_3 \leq 10.Comment: 31 pages, 5 figures, extension of the result to non-asymptotic strategie

    Minimum average-case queries of q + 1 -ary search game with small sets

    Get PDF
    Given a search space S={1,2,...,n}, an unknown element x*∈S and fixed integers ℓ≥1 and q≥1, a q+1-ary ℓ-restricted query is of the following form: which one of the set {A 0,A 1,...,A q} is the x* in?, where (A 0,A 1,...,A q) is a partition of S and | Ai|≤ℓ for i=1,2,...,q. The problem of finding x* from S with q+1-ary size-restricted queries is called as a q+1-ary search game with small sets. In this paper, we consider sequential algorithms for the above problem, and establish the minimum number of average-case sequential queries when x* satisfies the uniform distribution on S. © 2011 Elsevier B.V. All rights reserved

    Search when the lie depends on the target

    Get PDF
    The following model is considered. There is exactly one unknown element in the n-element set. A question is a partition of S into three classes: (A,L,B). If x ∈ A then the answer is "yes" (or 1), if x ∈ B then the answer is "no" (or 0), finally if x ∈ L then the answer can be either "yes" or "no". In other words, if the answer "yes" is obtained then we know that x ∈ A ∪ L while in the case of "no" answer the conclusion is x ∈ B ∪ L. The mathematical problem is to minimize the minimum number of questions under certain assumptions on the sizes of A,B and L. This problem has been solved under the condition |L| ≥ k by the author and Krisztián Tichler in previous papers for both the adaptive and non-adaptive cases. In this paper we suggest to solve the problem under the conditions |A| ≤ a, |B| ≤ b. We exhibit some partial results for both the adaptive and non-adaptive cases. We also show that the problem is closely related to some known combinatorial problems. Let us mention that the case b = n - a has been more or less solved in earlier papers. © Springer-Verlag Berlin Heidelberg 2013

    On Nonadaptive Search Problem

    Get PDF
    2000 Mathematics Subject Classification: 91A46, 91A35.We consider nonadaptive search problem for an unknown element x from the set A = {1, 2, 3, . . . , 2^n}, n ≥ 3. For fixed integer S the questions are of the form: Does x belong to a subset B of A, where the sum of the elements of B is equal to S? We wish to find all integers S for which nonadaptive search with n questions finds x. We continue our investigation from [4] and solve the last remaining case n = 2^k , k ≥ 2
    corecore