16 research outputs found

    Deterministic and Probabilistic Binary Search in Graphs

    Full text link
    We consider the following natural generalization of Binary Search: in a given undirected, positively weighted graph, one vertex is a target. The algorithm's task is to identify the target by adaptively querying vertices. In response to querying a node qq, the algorithm learns either that qq is the target, or is given an edge out of qq that lies on a shortest path from qq to the target. We study this problem in a general noisy model in which each query independently receives a correct answer with probability p>12p > \frac{1}{2} (a known constant), and an (adversarial) incorrect one with probability 1p1-p. Our main positive result is that when p=1p = 1 (i.e., all answers are correct), log2n\log_2 n queries are always sufficient. For general pp, we give an (almost information-theoretically optimal) algorithm that uses, in expectation, no more than (1δ)log2n1H(p)+o(logn)+O(log2(1/δ))(1 - \delta)\frac{\log_2 n}{1 - H(p)} + o(\log n) + O(\log^2 (1/\delta)) queries, and identifies the target correctly with probability at leas 1δ1-\delta. Here, H(p)=(plogp+(1p)log(1p))H(p) = -(p \log p + (1-p) \log(1-p)) denotes the entropy. The first bound is achieved by the algorithm that iteratively queries a 1-median of the nodes not ruled out yet; the second bound by careful repeated invocations of a multiplicative weights algorithm. Even for p=1p = 1, we show several hardness results for the problem of determining whether a target can be found using KK queries. Our upper bound of log2n\log_2 n implies a quasipolynomial-time algorithm for undirected connected graphs; we show that this is best-possible under the Strong Exponential Time Hypothesis (SETH). Furthermore, for directed graphs, or for undirected graphs with non-uniform node querying costs, the problem is PSPACE-complete. For a semi-adaptive version, in which one may query rr nodes each in kk rounds, we show membership in Σ2k1\Sigma_{2k-1} in the polynomial hierarchy, and hardness for Σ2k5\Sigma_{2k-5}

    Finding the maximum and minimum

    Get PDF
    AbstractWe consider the problem of finding the maximum out of a list of n ordered items with binary comparisons where the pth fraction of the answers may be false. It is shown that the maximum can be determined iff p < 12 and that a successful strategy needs Θ(11−p)n questions. A few similar problems are also discussed, including the problem of finding the maximum and minimum simultaneously with lies and in the nuts and bolts model

    Result-Sensitive Binary Search with Noisy Information

    Get PDF
    We describe new algorithms for the predecessor problem in the Noisy Comparison Model. In this problem, given a sorted list L of n (distinct) elements and a query q, we seek the predecessor of q in L: denoted by u, the largest element less than or equal to q. In the Noisy Comparison Model, the result of a comparison between two elements is non-deterministic. Moreover, multiple comparisons of the same pair of elements might have different results: each is generated independently, and is correct with probability p > 1/2. Given an overall error tolerance Q, the cost of an algorithm is measured by the total number of noisy comparisons; these must guarantee the predecessor is returned with probability at least 1 - Q. Feige et al. showed that predecessor queries can be answered by a modified binary search with Theta(log (n/Q)) noisy comparisons. We design result-sensitive algorithms for answering predecessor queries. The query cost is related to the index, k, of the predecessor u in L. Our first algorithm answers predecessor queries with O(log ((log^{*(c)} n)/Q) + log (k/Q)) noisy comparisons, for an arbitrarily large constant c. The function log^{*(c)} n iterates c times the iterated-logarithm function, log^* n. Our second algorithm is a genuinely result-sensitive algorithm whose expected query cost is bounded by O(log (k/Q)), and is guaranteed to terminate after at most O(log((log n)/Q)) noisy comparisons. Our results strictly improve the state-of-the-art bounds when k is in omega(1) intersected with o(n^epsilon), where epsilon > 0 is some constant. Moreover, we show that our result-sensitive algorithms immediately improve not only predecessor-query algorithms, but also binary-search-like algorithms for solving key applications

    Robust and Adaptive Search

    Get PDF
    Binary search finds a given element in a sorted array with an optimal number of log n queries. However, binary search fails even when the array is only slightly disordered or access to its elements is subject to errors. We study the worst-case query complexity of search algorithms that are robust to imprecise queries and that adapt to perturbations of the order of the elements. We give (almost) tight results for various parameters that quantify query errors and that measure array disorder. In particular, we exhibit settings where query complexities of log n + ck, (1+epsilon) log n + ck, and sqrt(cnk)+o(nk) are best-possible for parameter value k, any epsilon > 0, and constant c

    Noisy Sorting Without Searching: Data Oblivious Sorting with Comparison Errors

    Get PDF
    We provide and study several algorithms for sorting an array of n comparable distinct elements subject to probabilistic comparison errors. In this model, the comparison of two elements returns the wrong answer according to a fixed probability, p_e < 1/2, and otherwise returns the correct answer. The dislocation of an element is the distance between its position in a given (current or output) array and its position in a sorted array. There are various algorithms that can be utilized for sorting or near-sorting elements subject to probabilistic comparison errors, but these algorithms are not data oblivious because they all make heavy use of noisy binary searching. In this paper, we provide new methods for sorting with comparison errors that are data oblivious while avoiding the use of noisy binary search methods. In addition, we experimentally compare our algorithms and other sorting algorithms

    Noisy Computing of the OR\mathsf{OR} and MAX\mathsf{MAX} Functions

    Full text link
    We consider the problem of computing a function of nn variables using noisy queries, where each query is incorrect with some fixed and known probability p(0,1/2)p \in (0,1/2). Specifically, we consider the computation of the OR\mathsf{OR} function of nn bits (where queries correspond to noisy readings of the bits) and the MAX\mathsf{MAX} function of nn real numbers (where queries correspond to noisy pairwise comparisons). We show that an expected number of queries of (1±o(1))nlog1δDKL(p1p) (1 \pm o(1)) \frac{n\log \frac{1}{\delta}}{D_{\mathsf{KL}}(p \| 1-p)} is both sufficient and necessary to compute both functions with a vanishing error probability δ=o(1)\delta = o(1), where DKL(p1p)D_{\mathsf{KL}}(p \| 1-p) denotes the Kullback-Leibler divergence between Bern(p)\mathsf{Bern}(p) and Bern(1p)\mathsf{Bern}(1-p) distributions. Compared to previous work, our results tighten the dependence on pp in both the upper and lower bounds for the two functions

    Approximate Selection with Unreliable Comparisons in Optimal Expected Time

    Get PDF
    corecore