
Noisy Sorting Without Searching: Data Oblivious
Sorting with Comparison Errors
Ramtin Afshar #

University of California, Irvine, CA, USA

Michael Dillencourt #

University of California, Irvine, CA, USA

Michael T. Goodrich #

University of California, Irvine, CA, USA

Evrim Ozel #

University of California, Irvine, CA, USA

Abstract
We provide and study several algorithms for sorting an array of n comparable distinct elements
subject to probabilistic comparison errors. In this model, the comparison of two elements returns the
wrong answer according to a fixed probability, pe < 1/2, and otherwise returns the correct answer.
The dislocation of an element is the distance between its position in a given (current or output)
array and its position in a sorted array. There are various algorithms that can be utilized for sorting
or near-sorting elements subject to probabilistic comparison errors, but these algorithms are not
data oblivious because they all make heavy use of noisy binary searching. In this paper, we provide
new methods for sorting with comparison errors that are data oblivious while avoiding the use of
noisy binary search methods. In addition, we experimentally compare our algorithms and other
sorting algorithms.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases sorting, algorithms, randomization, experimentation

Digital Object Identifier 10.4230/LIPIcs.SEA.2023.8

Supplementary Material
Software (Source Code): https://github.com/UC-Irvine-Theory/NoisyObliviousSorting

archived at swh:1:dir:d49510784ab64d4ac0f4f9d2879587b83e8d91a8

1 Introduction

Given an array, A, of n distinct comparable elements, we study the problem of efficiently
sorting A subject to noisy probabilistic comparisons. In this framework, which has been
extensively studied [2, 5, 7–9,14,16,17,19,21,23,31], the comparison of two elements, x and
y, results in a true result independently according to a fixed probability, and otherwise
returns the opposite (false) result. In the case of persistent errors [2, 7–9, 17], the result
of a comparison of two given elements, x and y, always returns the same result. In the
case of non-persistent errors [5, 14, 16, 19, 23, 31], however, the probabilistic determination
of correctness is determined independently for each comparison, even if it is for a pair of
elements, (x, y), that were previously compared.

Motivation for sorting with comparison errors comes from multiple sources, including
applied cryptography scenarios where cryptographic comparison protocols can fail with
known probabilities (see, e.g., [6, 20, 33]). In such cases, reducing the noise from comparison
errors can be computationally expensive, and the framework advanced in our paper offers an
alternative, possibly more efficient approach, where a higher error rate is tolerated while still
achieving the ultimate goal of sorting or near-sorting with high probability. Further, other
applications of sorting with comparison errors include ranking objects in online forums via
group A/B testing [32].

© Ramtin Afshar, Michael Dillencourt, Michael T. Goodrich, and Evrim Ozel;
licensed under Creative Commons License CC-BY 4.0

21st International Symposium on Experimental Algorithms (SEA 2023).
Editor: Loukas Georgiadis; Article No. 8; pp. 8:1–8:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:afsharr@uci.edu
mailto:mbdillen@uci.edu
mailto:goodrich@uci.edu
mailto:eozel@uci.edu
https://doi.org/10.4230/LIPIcs.SEA.2023.8
https://github.com/UC-Irvine-Theory/NoisyObliviousSorting
https://archive.softwareheritage.org/swh:1:dir:d49510784ab64d4ac0f4f9d2879587b83e8d91a8;origin=https://github.com/UC-Irvine-Theory/NoisyObliviousSorting;visit=swh:1:snp:11bcbab19e893bdc43b87c1e2297d58d514a39d9;anchor=swh:1:rev:1e2a1df6446614d389ddcfa8cc9eb1640e19de85
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Noisy Sorting Without Searching

Since it is not possible to always correctly sort an array, A, subject to persistent comparison
errors, we follow the formulation of Geissmann et al. [7–9], and define the dislocation of
an element, x, in an arary, A, as the absolute value of the difference between x’s index in
A and its index in the correctly sorted permutation of A. Further, define the maximum
dislocation of A as the maximum dislocation for the elements in A, and let the total
dislocation of A be the sum of the dislocations of the elements in A. By known lower
bounds [7–9], the best a sorting algorithm can achieve under persistent comparison errors is
a maximum dislocation of O(log n) and a total dislocation of O(n). Thus, coming close to
such asymptotic maximum and total dislocation guarantees should be the goal for a sorting
algorithm in the presence of persistent comparison errors.

Given the cryptographic applications of noisy comparisons, we desire sorting algorithms
that are data oblivious, which support privacy-preserving cryptographic protocols. A sorting
algorithm is data oblivious if its memory access pattern does not reveal any information
about the data values being sorted. Unfortunately, existing efficient algorithms for sorting
with noisy comparisons are not data oblivious. Indeed, they all make use of noisy binary
search [8], which is a data-sensitive random walk in a binary search tree, e.g., see Geissmann,
Leucci, Liu, and Penna [8], Feige, Raghavan, Peleg, and Upfal [5], and Leighton, Ma, and
Plaxton [19]. Instead, we desire efficient sorting algorithms that tolerate noisy comparisons
and avoid the use of noisy binary search, so as to be data oblivious (i.e., privacy preserving
if comparisons are done according to a data-hiding protocol).

Related Prior Results. Problems involving probabilistic comparison errors can trace their
roots back to a classic problem by Rényi [27] of playing a two-person game where player A
poses yes/no questions to a player B who lies with a given probability; see a survey by Pelc [24].
Notable prior results include a paper by Pippenger [25] on computing Boolean functions with
probabilistically noisy gates and work by Yao and Yao [34] on sorting networks built from noisy
comparators. There is also considerable work on searching when the total number of faulty
comparisons is bounded rather than considering probabilistic noisy comparisons, including
the work by Kenyon-Mathieu and Yao [15] and Rivest, Meyer, Kleitman, Winklmann, and
Spencer [28]. Also of note is work by Karp and Kleinberg [14], who study binary searching
for a value x ∈ [0, 1] in an array of biased coins ordered by their biases.

Braverman and Mossel [2] introduce a persistent-error model, where comparison errors
are persistently wrong with a fixed probability, p < 1/2 − ε, and they achieve a sorting
algorithm that in our framework runs in O(n3+f(p)) time, where f(p) is some function of p,
with maximum expected dislocation O(log n) and total dislocation O(n). Klein, Penninger,
Sohler, and Woodruff [17] improve the running time to O(n2), but with O(n log n) total
dislocation w.h.p. The running time for sorting in the persistent-error model optimally
with respect to maximum and total dislocation was subsequentially improved to O(n2),
O(n3/2), and ultimately to O(n log n), in a sequence of papers by Geissmann, Leucci, Liu,
and Penna [7–9], all of which are not data oblivious because they make extensive use of noisy
binary searching, which amounts to a random walk in a binary search tree.

Our Results. In this paper, we provide data-oblivious sorting algorithms that tolerate
persistent noisy comparisons. In addition, we empirically compare our algorithms to other
sorting algorithms, including the worst-case optimal algorithm, Riffle sort, by Geissmann,
Leucci, Liu, and Penna [8], which is not data oblivious, but it achieves an optimal maximum
and total dislocation under noisy comparisons. It runs in O(n log n) time, but it makes use
of noisy binary search.

R. Afshar, M. Dillencourt, M. T. Goodrich, and E. Ozel 8:3

In addition to providing theoretical analysis for some of our algorithms, we empirically
study all of our algorithms by measuring the effect of changing the amount of noise and
the input size on the amount of dislocation, inversions, and number of comparisons. Our
experiments show that for all of the data-oblivious algorithms we provide in this paper,
the maximum and total dislocations are comparable to the optimal bounds of O(log n) and
O(n) respectively for the best algorithms that are not data oblivious. Moreover, we include
experimental results for some standard sorting algorithms such as insertion sort, quick sort,
and shell sort, for which we provide emipirical evidence that all of our algorithms significantly
outperform these other algorithms in terms of the maximum and total dislocation metrics.
These results indicate that our algorithms are able to combine the properties of both having
a good tolerance to noisy comparisons while also being data-oblivious.

2 Window-Sort

Our first sorting algorithm is a version of window-sort [7], which will be useful as a subroutine
in our other algorithms. We describe the pseudo-code at a high level in Algorithm 1, for
approximately sorting an array of size n that has maximum dislocation at most d1 ≤ n so
that it will have maximum dislocation at most d2 = d1/2k, for some integer k ≥ 1, with high
probability as a function of d2.

Algorithm 1 Window-Sort(A = {a0, a1, . . . , an−1}, d1, d2).

1 for w ← 2d1, d1, d1/2, . . . , 2d2 do
2 foreach i← 0, 1, 2, . . . , n− 1 do
3 ri ← max{0, i− w}+ |{aj < ai : |j − i| ≤ w}|
4 Sort A (deterministically) by nondecreasing ri values (i.e., using ri as the

comparison key for ai)
5 return A

In addition to implementing window-sort data obliviously, we provide a new analysis of
window-sort, which allows us to apply it in new contexts. We begin this new analysis with
the following lemma, which establishes the progress made in each iteration of window-sort.

▶ Lemma 1. Suppose the comparison error probability, pe, is at most 1/16. If an array, A,
has maximum dislocation at most d′ prior to an iteration of window-sort for w = 2d′ (line 1
of Algorithm 1), then after this iteration, A will have maximum dislocation at most d′/2 with
probability at least 1− n2−d′/8.

Proof. Let ai be an element in A. Let W denote the window of elements in A for which
we perform comparisons with ai in this iteration; hence, 2d′ ≤ |W | ≤ 4d′. Because A has
maximum dislocation d′, by assumption, there are no elements to the left (resp., right) of
W that are greater than ai (resp., less than ai). Thus, ai’s dislocation after this iteration
depends only on the comparisons between ai and elements in its window. Let X be a random
variable that represents ai’s dislocation after this iteration, and note that X ≤ Y , where Y

is the number of incorrect comparisons with ai performed in this iteration. Note further
that we can write Y as the sum of |W | independent indicator random variables and that
µ = E[Y] = pe|W | ≤ d′/4. Thus, if we let R = d′/2, then R ≥ 2µ; hence, we can use a
Chernoff bound as follows:

Pr(X > d′/2) ≤ Pr(Y > d′/2) = Pr(Y > R) ≤ 2−R/4 = 2−d′/8.

Thus, with the claimed probability, the maximum dislocation for all elements of A will be at
most d′/2, by a union bound. ◀

SEA 2023

8:4 Noisy Sorting Without Searching

This implies the following.

▶ Theorem 2. Suppose the comparison error probability, pe, is at most 1/16. If an array, A,
of size n has maximum dislocation at most d1 ≥ log n, then executing Window-Sort(A, d1, d2)
runs in O(d1n) time. Further, we can execute Window-Sort(A, d1, d2) data-obliviously to
result in A having maximum dislocation of d2/2 with probability at least 1− 2n2−d2/8, where
d2 = d1/2k, for some integer k ≥ 1.

Proof. For the running time and data obliviousness, note that we can perform the
deterministic sorting step using a data-oblivious sorting algorithm (e.g., see [12]) in O(n log n)
time. The windowed comparison steps (step 3 of Algorithm 1) are already data-oblivious
and their running times form a geometric sum adding up to O(d1n); hence, the total time for
all the deterministic sorting steps (step 4 of Algorithm 1) is O((log(d1/d2))n log n), which is
at most O(d1n) for d1 ≥ log n.

For the maximum dislocation bound, note once w = 2d2 and the array A prior to
this iteration has maximum dislocation at most d2, then it will result in having maximum
dislocation at most d2/2 with probability at least 1 − n2−d2/8, by Lemma 1. Thus, by a
union bound, the overall failure probability is at most

n
(

2−d2/8 + 2−2d2/8 + 2−4d2/8 + · · ·+ 2−d1/8
)

< n2−d2/8
∞∑

i=0
2−i = 2n2−d2/8. ◀

In terms of efficiency, we note that our data-oblivious implementation of window-sort is
only time-efficient for small subarrays; hence, we need to do more work to design an efficient
data-oblivious sorting algorithm.

3 Window-Merge-Sort

In this section, we describe a simple algorithm for sorting with noisy comparisons, which
achieves a maximum dislocation of O(log n). Our window-merge-sort method is a windowed
version of merge sort; hence, it is deterministic but not data oblivious. Nevertheless, it does
avoid using noisy binary search.

Suppose we are given an array, A, of n elements (we use n to denote the original size of
A, and N to denote the size of the subproblem we are currently working on recursively). Our
method runs in O(n log2 n) time and we give the pseudo-code for this method in Algorithm 2,
with d = c log n for a constant c ≥ 1 set in the analysis.

Our method begins by checking if the current problem size, N , satisfies N ≤ 6d, in which
case we’re done. Otherwise, if N > 6d, then we divide A into 2 subarrays, A1 and A2, of
roughly equal size and recursively approximately sort each one. For the merge of the two
sublists, A1 and A2, we inductively assume that A1 and A2 have maximum dislocation at
most 3d/2 = (3c/2) log n. We then copy the first 3d elements of A1 and the first 3d elements
of A2 into a temporary array, S, and we note that, by our induction hypothesis, S contains
the smallest 3d/2 elements currently in A1 and the smallest 3d/2 elements currently in A2.
We then call Window-Sort(S, 4d, d), and copy the first d elements from the output of this
window-sort to the output of the merge, removing these same elements from A1 and A2.
Then we repeat this merging process until we have at most 6d elements left in A1 ∪A2, in
which case we call window-sort on the remaining elements and copy the result to the output
of the merge. The following lemma establishes the correctness of this algorithm.

▶ Lemma 3. If A1 and A2 each have maximum dislocation at most 3d/2, then the merge of
A1 and A2 has maximum dislocation at most 3d/2 with probability at least 1−N2−d/8.

R. Afshar, M. Dillencourt, M. T. Goodrich, and E. Ozel 8:5

Algorithm 2 Window-Merge-Sort(A = {a0, a1, . . . , aN−1}, n, d).

1 if N ≤ 6d then
2 return Window-Sort(A, 4d, d)
3 Divide A into two subarrays, A1 and A2, of roughly equal size
4 Window-Merge-Sort(A1, n, d)
5 Window-Merge-Sort(A2, n, d)
6 Let B be an initially empty output list
7 while |A1|+ |A2| > 6d do
8 Let S1 be the first min{3d, |A1|} elements of A1
9 Let S2 be the first min{3d, |A2|} elements of A2

10 Let S ← S1 ∪ S2
11 Window-Sort(S, 4d, d)
12 Let B′ be the first d elements of (the near-sorted) S

13 Add B′ to the end of B and remove the elements of B′ from A1 and A2

14 Call Window-Sort(A1 ∪A2, 4d, d) and add the output to the end of B

15 return B

Proof. By Lemma 1 and a union bound, each of the calls to window-sort performed during
the merge of A1 and A2 will result in an output with maximum dislocation at most d/2, with
at least the claimed probability. So, let us assume each of the calls to window-sort performed
during the merge of A1 and A2 will result in an output with maximum dislocation at most
d/2. Consider, then, merge step i, involving the i-th call to Window-Sort(S, 4d, d), where
S consists of the current first 3d elements in A1 and the current first 3d elements in A2,
which, by assumption, contain the current smallest 3d/2 elements in A1 and current smallest
3d/2 elements in A2. Thus, since this call to window-sort results in an array with maximum
dislocation at most d/2, the subarray, Bi, of the d elements moved to the output in step
i includes the d/2 current smallest elements in A1 ∪ A2. Moreover, the first d/2 elements
in Bi have no smaller elements that remain in S. In addition, for the d/2 elements in the
second half of Bi, let S′ denote the set of elements that remain in S that are smaller than at
least one of these d/2 elements. Since the output of Window-Sort(S, 4d, d) has maximum
dislocation at most d/2, we know that |S′| ≤ d/2 Moreover, the elements in S′ are a subset
of the smallest d/2 elements that remain in S and there are no elements in (A1 ∪A2)− S

smaller than the elements in S′ (since S includes the 3d/2 smallest elements in A1 and
A2, respectively. Thus, all the elements in S′ will be included in the subarray, Bi+1, of d

elements output in merge step i + 1. In addition, a symmetric argument applies to the first
d/2 elements with respect to the d elements in Bi−1. Therefore, the output of the merge of
A1 and A2 will have maximum dislocation at most 3d/2 with the claimed probability. ◀

Window-merge-sort clearly runs in O(n log2 n) time. This gives us the following.

▶ Theorem 4. Given an array, A, of n distinct comparable elements, one can deterministically
sort A in O(n log2 n) time subject to comparison errors with probability pe ≤ 1/16, so as to
have maximum dislocation of O(log n) w.h.p., assuming that the block size B is at least log n.

This method is not data oblivious, however. For example, in a merge of two subarrays, A1
and A2, if each element in A1 is less than all the elements in A2, then with high probability
the merge will take almost all the elements from A1 before taking any elements from A2.

SEA 2023

8:6 Noisy Sorting Without Searching

4 Window-Oblivious-Merge-Sort

In this section, we describe a deterministic data-oblivious sorting algorithm that can tolerate
noisy comparisons, which uses our data-oblivious window-sort only for small subarrays.
Our method is an adaptation of the classic odd-even merge-sort algorithm [1] to the noisy
comparison model, and it runs in O(n log3 n) time, and achieves a maximum dislocation of
O(log n), set in the analysis. We give our algorithm in Algorithm 3, with d = c log n, where
c is a constant set in the analysis.

Algorithm 3 Window-Odd-Even-Sort(A = {a0, a1, . . . , aN−1}, n, d).

1 if N ≤ 6d then
2 return Window-Sort(A, 4d, d)
3 Divide A into two subarrays, A1 and A2, of roughly equal size
4 Window-Odd-Even-Sort(A1, n, d)
5 Window-Odd-Even-Sort(A2, n, d)
6 B ← Window-Merge(A1, A2, d)
7 return B

8

9 Window-Merge(A1, A2, d):
10 if |A1|+ |A2| ≤ 6d then
11 return Window-Sort(A1 ∪A2, 4d, d)
12 Let Ao

1 (resp., Ae
1) be the subarray of A1 of elements at odd (resp., even) indices

13 Let Ao
2 (resp., Ae

2) be the subarray of A2 of elements at odd (resp., even) indices
14 B1 ← Window-Merge(Ae

1, Ae
2, d)

15 B2 ← Window-Merge(Ao
1, Ao

2, d)
16 Let B be the shuffle of B1 and B2, so its even (resp., odd) indices are B1 (resp., B2)
17 for i = 0, 1, 2, . . . , |B|/d do
18 Window-Sort(B[id : id + 6d], 4d, d)
19 return B

Note that, assuming d is O(log n), the running time for window-merge is characterized by
the recurrence, T (n) = 2T (n/2) + n log n, which is O(n log2 n); hence, the running time for
window-odd-even-sort is characterized by the recurrence, T (n) = 2T (n/2) + n log2 n, which
is O(n log3 n).

The correctness of window-merge is proved using induction and the 0-1 principle, which
is that if a data-oblivious algorithm can sort an array of 0’s and 1’s, then it can sort any
array1 [18]. Let n be a power of 2, and consider the elements of each of A1 and A2 arranged
in two columns with even indices in the left column and odd indices in the right column.
(See Figure 1.) By the 0-1 principle, if A1 and A2 each have maximum dislocation at most d,
then, for each arrangement of A1 and A2, the difference between the number of 1’s in the
left column and the number of 1’s in the right column is at most d + 1.

Next stack the two-column arrangement of A1 on top of that for A2 and note that our
window-merge algorithm recursively sorts each column, which, by induction will each have
maximum dislocation d. That is, by the 0-1 principle, each column will consist of a contiguous

1 It is straightforward to show that the 0-1 principle holds for our noisy sorting setting as well.

R. Afshar, M. Dillencourt, M. T. Goodrich, and E. Ozel 8:7

even odd

A1

even odd

A2

(a)

even odd

(b)

even odd

(c)

1

Figure 1 Window-Merge (a) Subarrays A1 and A2. (b) A before the merge. (c) A after the merge.

sequence of 0’s, followed by a sequence of length at most 2d comprising a mixture of 0’s and
1’s, followed by a contiguous sequence of 1’s. Further, by how we began our arrangement,
the difference between the number of 1’s in the left column and the number of 1’s in the right
column in the full arrangement of A1 and A2 is at most 2d + 2. Thus, all the unsortedness is
confined to a region of at most 4d + 2 consecutively-indexed elements in the merged sequence,
which are then completely contained in a region of 5d consecutively-indexed elements that
begin at a multiple of d. Our window-merge method is guaranteed to call window-sort for
this region of elements, bringing its maximum dislocation to be at most d. We observe that
there are other calls to window-sort as well, but these will not degrade the sortedness of this
region. Thus, the result is that the maximum dislocation of the merged list is at most d.

This gives us the following.

▶ Theorem 5. Given an array, A, of n distinct comparable elements, one can deterministically
and data-obliviously sort A in O(n log3 n) time, subject to comparison errors with probability
pe ≤ 1/16, so as to have maximum dislocation of O(log n) w.h.p.

We note that the only randomization here is in the comparison model. The algorithm for
Theorem 5 is deterministic. If we are willing to use a randomized algorithm, however, we
can achieve a faster running time.

5 Randomized Shellsort

In this section, we describe a randomized data-oblivious sorting method that runs in O(n log n)
time. The method is the simple randomized Shellsort algorithm of Goodrich [10], which we
review in an appendix in Algorithm 4. It is based on peforming region compare-exhanges
between subarrays of equal size, which, for a constant c ≥ 1 set in the analysis, consists of
constructing c random matchings between the elements of the two subarrays and performing
compare-exchange operations between the matched elements. We study the dislocation
reduction properties of randomized Shellsort empirically.

6 Annealing Sort

We briefly review here the annealing sort algorithm (see Algorithm 5 in an appendix), first
introduced by Goodrich [11], which is a randomized data-oblivious sorting algorithm, and
uses the simulated annealing meta-heuristic that involves following an annealing schedule
defined by a temperature sequence T = (T1, T2, . . . Tt) and a repetition sequence

SEA 2023

8:8 Noisy Sorting Without Searching

R = (r1, r2, . . . , rt). This algorithm essentially uses a randomized round-robin strategy of
scanning the input array A and performing, for each i = 1, 2, . . . , n, a compare-exchange
operation between A[i] and A[s] where s is a randomly chosen index not equal to i. At
each round j, the temperature Tj is then used to determine how far apart the candidate
comparison elements with indices i and s should be at each time step. Following the simulated
annealing metaheuristic, the temperatures in the annealing schedule decrease over time, and
each random choice is repeated rj number of times in round j. In our experiments, we follow
the same three-phase annealing schedule used in the analysis of this algorithm in [11].

7 Experiments

To empirically test the performance of our algorithms under persistent noisy errors, we
implemented each of the algorithms described in Sections 2–6, along with riffleSort, which
is a non-data-oblivious noisy sorting algorithm introduced by Geissman, Leucci, Liu, and
Penna [8] that we review in an appendix in Algorithm 6. We also compare our algorithms
to the standard and well-known insertion sort, randomized quicksort, and Shellsort [29]
algorithms, e.g., see [3, 13]. For completeness, we include pseudo-code for these classic
algorithms in an appendix in Algorithm 7.

We have also considered a variant of randomized Shellsort, which we denote by
randomizedShellSortNo2s3s that does not include the 2 hop and 3 hop passes (lines 7-8
in Algorithm 4), as we do not think that they are necessary for the algorithm to perform
well in practice. For standard Shell sort, we used the Pratt sequence [26], which uses a gap
sequence consisting of all products of powers of 2 and 3 less than the array size, and we
denote this algorithm by shellSortPratt.

Parameter configurations. The riffleSort algorithm uses a parameter c to determine
the group sizes during noisy binary search. Geissmann, Leucci, Liu, and Penna [8] assume
c = 103 in their analysis; however, we set c = 5 so that the algorithm works with the input
sequence sizes we use. We also set a parameter, h, of riffle-sort, which affects the height of
the noisy binary search tree, to be log(⌊n+1

5d ⌋), where d is the maximum dislocation of the
input sequence given to the noisy binary search tree. For all other parameters, we follow
the values used in [8]. We have also made a significant and potentially risky modification
to the noisy binary search algorithm described by Geissmann, Leucci, Liu, and Penna [8]
so that it works in a practical setting. In particular, while the original description of this
subroutine fixes an upper bound τ = ⌊240 log n⌋ on the total number of steps performed
in a noisy binary search random walk, we found that this resulted in unreasonably long
running times for the input sequence sizes we used, and we instead lowered this upper bound
to τ = ⌊7 log n⌋ in our implementation. Despite using lower τ , the algorithm surprisingly
produces good dislocation bounds, while taking significantly less time. Because of its reliance
on noisy binary searching, riffle-sort is not data-oblivious, so we used its performance as the
best achievable empirical dislocation bounds, which our data-oblivious methods compare
against.

For annealing sort, we follow the annealing schedule and constants used in [4], which
defines additional parameters h, gscale, and finds suitable values for them alongside the
existing parameters c and q defined by Goodrich [11], all of which affect the temperature and
repetition schedules used in the algorithm; hence, we set h = 1, gscale = 0, c = 10, and q = 1.

R. Afshar, M. Dillencourt, M. T. Goodrich, and E. Ozel 8:9

For windowMergeSort and windowOddEvenMergeSort, we set d = log n.
Though a larger constant multiple of log n is required for the theoretical proofs of these
algorithms, we found that this wasn’t necessary in practice; in fact we observed that d = log n

resulted in lower inversions and dislocations in our experiments.
Lastly, for windowSort, we set d1 = n/2 and d2 = log n, and for

randomizedShellSort, we set c = 4.

Experimental setup. We implemented each algorithm in C++2, and compared the
performance of each algorithm by measuring the total dislocations, maximum dislocations,
and the number of inversions of the output arrays, as well as the total number of pairwise
comparisons that were done. Each data point in the following plots correspond to the average
of 5 runs of the algorithm with random input sequences of integers.

To implement noisy persistent comparisons, we make use of tabulation hashing [22,30].
In our tabulation hashing setting, we let f denote the number of bits to be hashed, and s ≤ f

be a block size, and t = ⌈f/s⌉ be the number of blocks. We initialize a two dimensional
t× 2s array, A, with random q bit integers. Given a key, c, with f bits, we partition f into t

blocks of s bits. For our experiments, we set f = 64, s = 8, and q = 14. If ci represents the
i-th block, the hash value h(c) will be derived using the lookup table as follows:

h(c) = A[0][c0]⊕A[1][c1]⊕ · · · ⊕A[t][ct]

For simulating a noisy comparison, given two 4-Byte Integers, x < y, we first concatenate
the numbers to get the key, c = (x · 232) + y. Then, we hash c to derive h(c), a random
q = 14 bit integer. We determine that the comparison of these two numbers is noisy if and
only if h(c) ≤ p · 2q, where p is the noise probability, and output the result of the comparison
accordingly.

We performed two sets of experiments: one with a varying probability p of comparison
error and fixed input size n = 32768, and the other with varying input size n and a
fixed probability p = 0.03 of comparison error. In our experiments, p takes on values
(2−1, 2−2 . . . , 2−10), and n takes on values (216, 215 . . . , 27).

Results and analysis. We first consider experiments with varying p, and compare the
maximum dislocations, total dislocations and inversions between each algorithm. We see
from Figure 2 that all of the data-oblivious algorithms we describe in this paper have
maximum and total dislocations that are inline with the theoretical optimal bounds of
O(log n) and O(n) respectively, as well as riffleSort, particularly when p < 0.1. For
example, we see that windowOddEvenMergeSort tends to be the best-performing data-
oblivious algorithm for different values of p, achieving a total dislocation of at most ≈ 35 300,
a maximum dislocation of at most 12, and at most ≈ 19 200 total inversions for values of
p < 0.1.

We see that all of the non-standard algorithms tend to form an S-shaped curve, in terms
of their dislocation bounds, such that as p starts to increase, the number of dislocations and
inversions start to increase slowly, then there is a sharper increase after we reach p > 0.1.
As expected, we see that the highest dislocation and inversions is when p = 0.5, which is
the worst-case scenario for p (for any value of p > 0.5, reversing the output should result

2 Our implementations of all algorithms can be found at https://github.com/UC-Irvine-Theory/
NoisyObliviousSorting.

SEA 2023

https://github.com/UC-Irvine-Theory/NoisyObliviousSorting
https://github.com/UC-Irvine-Theory/NoisyObliviousSorting

8:10 Noisy Sorting Without Searching

102

103

104

105

106

107

108

Nu
m

. I
nv

er
sio

ns

insertionSort
shellSortPratt
quickSort
windowSort
windowMergeSort

windowOddEvenMergeSort
annealingSort
randomizedShellSort
randomizedShellSortNo2s3s
riffleSort

102

103

104

105

106

107

108

To
ta

l D
isl

oc
at

io
n

10 3 10 2 10 1

100

101

102

103

104

M
ax

. D
isl

oc
at

io
n

p

Figure 2 Effect of varying the comparison error probability p on the inversion and dislocation
counts, with input sequences of size 32768.

R. Afshar, M. Dillencourt, M. T. Goodrich, and E. Ozel 8:11

in a sequence with lower dislocation). In particular, as p goes from 1/32 to 1/2, all of the
non-standard algorithms go from having up to 100 maximum dislocation and ≈ 28 900 total
dislocation to having up to ≈ 30 000 maximum dislocation and ≈ 345 million total dislocation.
These results match our theoretical analyses in this paper, as we assume that p ≤ 1/16 in
order to prove bounds for the dislocation. The proof for the version of riffleSort we use
assumes similar bounds for p [8]. On the other hand, we see that our implementations of
insertion sort, quick sort, and Shell sort do not have the tendency to form an S-curve, and
their inversion and dislocation counts are significantly higher compared to our algorithms.

In Figure 3, we see the effect of varying p and n on the number of comparisons made
during the algorithm. We see that the number of comparisons tends to grow smaller as p

increases in riffleSort, insertionSort and shellSortPratt. When the input size is
varied, we see that riffleSort, insertionSort and quickSort use the fewest number
of comparisons. Notably, we see that randomizedShellSort (and its variant without
2 and 3-hop passes), as well as annealingSort, are the best-performing data-oblivious
algorithms in terms of the number of comparisons. Overall, we found that riffleSort was
the best-performing algorithm in both sets of experiments; however, it uses the noisy binary
search subroutine and is thus not a data-oblivious algorithm.

10 3 10 2 10 1

p

105

106

107

108

109

insertionSort
shellSortPratt
quickSort
windowSort
windowMergeSort

windowOddEvenMergeSort
annealingSort
randomizedShellSort
randomizedShellSortNo2s3s
riffleSort

102 103 104

n

103

105

107

109

Nu
m

. C
om

pa
ris

on
s

Figure 3 Effect of varying the comparison error probability p and the input size n on the number
of comparisons.

We also consider how the dislocation is distributed across the output array for each
algorithm. In Figure 4, we see the average dislocation across different array indices for 5 runs
of each algorithm with input sequences of size 16384, and p = 0.03. For each output array,

SEA 2023

8:12 Noisy Sorting Without Searching

we grouped the indices into 128 bins and took the average dislocation inside each bin. From
this figure we can see the significant difference in dislocation counts between the standard
sorting algorithms insertion sort, Shellsort and quick sort, compared to the other algorithms
we implemented. All of the standard sorting algorithms have bins with over 2000 dislocation
on average, whereas none of the other algorithms have any bins with over 1.2 dislocations on
average, with riffleSort having less than 0.2 dislocations on average accross all of its bins.

While the distribution of dislocation is similar accross most algorithms, we see that
insertion sort has most of its dislocation at the two ends of the array, whereas quickSort
has a few bins with high dislocation and has lower dislocation for most of the remaining bins.

8 Conclusions and Future Work

We introduced the sorting algorithms Window-Merge-Sort and Window-Odd-Even-Sort, both
of which are tolerant to noisy comparisons, with the latter also being data-oblivious, with
the key difference from existing algorithms being that we do not require use of a noisy binary
search subroutine for either algorithms. We then provided both theoretical and experimental
analyses, comparing our algorithms to some standard well-known sorting algorithms, and
saw that our algorithms perform well in a practical setting as well. Interestingly, we found
that the data-oblivious algorithms Annealing sort and Randomized Shellsort performed quite
well under noisy comparisons in our experiments, though we have not provided a theoretical
analysis for either of these algorithms. Therefore one possible direction for future work could
be to prove similar bounds for these two algorithms.

R. Afshar, M. Dillencourt, M. T. Goodrich, and E. Ozel 8:13

0

40
96

81
92

12
28

8

16
38

3

0.0

0.2

0.4

0.6

0.8

1.0

1.2
AnnealingSort

0

40
96

81
92

12
28

8

16
38

3

0.0

0.2

0.4

0.6

0.8

1.0

1.2
RandomizedShellSort

0

40
96

81
92

12
28

8

16
38

3

0.0

0.2

0.4

0.6

0.8

1.0

1.2
RandomizedShellSortNo2s3s

0

40
96

81
92

12
28

8

16
38

3

0.0

0.2

0.4

0.6

0.8

1.0

1.2
WindowMergeSort

0

40
96

81
92

12
28

8

16
38

3

0.0

0.2

0.4

0.6

0.8

1.0

1.2
WindowOddEvenMergeSort

0

40
96

81
92

12
28

8

16
38

3

0.0

0.2

0.4

0.6

0.8

1.0

1.2
WindowSort

0

40
96

81
92

12
28

8

16
38

3

0

2000

4000

6000

8000

10000
InsertionSort

0

40
96

81
92

12
28

8

16
38

3

0

2000

4000

6000

8000

10000
QuickSort

0

40
96

81
92

12
28

8

16
38

3

0

2000

4000

6000

8000

10000
ShellSortPratt

0

40
96

81
92

12
28

8

16
38

3

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
RiffleSort

Array index

Di
slo

ca
tio

n

Figure 4 Averaged dislocation counts at different array indices over 5 runs for each algorithm on
input sequences of size 16384, and p = 0.03. Each bar in the histogram corresponds to a bin of 128
indices.

SEA 2023

8:14 Noisy Sorting Without Searching

References
1 Kenneth E Batcher. Sorting networks and their applications. In Proc. of the Spring Joint

Computer Conference (AFIPS), pages 307–314. ACM, 1968. doi:10.1145/1468075.1468121.
2 Mark Braverman and Elchanan Mossel. Noisy sorting without resampling. In 19th ACM-SIAM

Symposium on Discrete Algorithms (SODA), pages 268–276, 2008.
3 Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to

Algorithms. MIT Press, 4/e edition, 2022.
4 Kris Vestergaard Ebbesen. On the practicality of data-oblivious sorting. Master’s thesis,

Aurhus Univ., Denmark, 2015.
5 Uriel Feige, Prabhakar Raghavan, David Peleg, and Eli Upfal. Computing with noisy

information. SIAM Journal on Computing, 23(5):1001–1018, 1994.
6 Marc Fischlin. A cost-effective pay-per-multiplication comparison method for millionaires. In

David Naccache, editor, Topics in Cryptology CT-RSA, pages 457–471. Springer, 2001.
7 Barbara Geissmann, Stefano Leucci, Chih-Hung Liu, and Paolo Penna. Sorting with recurrent

comparison errors. In Yoshio Okamoto and Takeshi Tokuyama, editors, 28th Int. Symp.
on Algorithms and Computation (ISAAC), volume 92 of LIPIcs, pages 38:1–38:12, 2017.
doi:10.4230/LIPIcs.ISAAC.2017.38.

8 Barbara Geissmann, Stefano Leucci, Chih-Hung Liu, and Paolo Penna. Optimal sorting with
persistent comparison errors. In Michael A. Bender, Ola Svensson, and Grzegorz Herman,
editors, 27th European Symposium on Algorithms (ESA), volume 144 of LIPIcs, pages 49:1–
49:14, 2019.

9 Barbara Geissmann, Stefano Leucci, Chih-Hung Liu, and Paolo Penna. Optimal dislocation
with persistent errors in subquadratic time. Theory of Computing Systems, 64(3):508–521,
2020. This work appeared in preliminary form in STACS’18.

10 Michael T. Goodrich. Randomized shellsort: A simple data-oblivious sorting algorithm. J.
ACM, 58(6):27:1–27:26, December 2011. doi:10.1145/2049697.2049701.

11 Michael T. Goodrich. Spin-the-bottle sort and annealing sort: Oblivious sorting via round-robin
random comparisons. Algorithmica, pages 1–24, 2012. doi:10.1007/s00453-012-9696-5.

12 Michael T. Goodrich. Zig-zag sort: A simple deterministic data-oblivious sorting algorithm
running in O(n log n) time. In 46th ACM Symposium on Theory of Computing (STOC), pages
684–693, 2014. doi:10.1145/2591796.2591830.

13 Michael T Goodrich and Roberto Tamassia. Algorithm Design and Applications, volume 363.
Wiley, 2015.

14 Richard M Karp and Robert Kleinberg. Noisy binary search and its applications. In 18th
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 881–890, 2007.

15 Claire Kenyon-Mathieu and Andrew C Yao. On evaluating boolean functions with unreliable
tests. International Journal of Foundations of Computer Science, 1(01):1–10, 1990.

16 Kamil Khadiev, Artem Ilikaev, and Jevgenijs Vihrovs. Quantum algorithms for some strings
problems based on quantum string comparator. Mathematics, 10(3):377, 2022.

17 Rolf Klein, Rainer Penninger, Christian Sohler, and David P. Woodruff. Tolerant algorithms.
In Camil Demetrescu and Magnús M. Halldórsson, editors, European Symposium on Algorithms
(ESA), pages 736–747. Springer, 2011.

18 Donald E Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching.
Addison-Wesley, 2nd edition, 1998.

19 Tom Leighton, Yuan Ma, and C. Greg Plaxton. Breaking the Θ(n log2 n) barrier for sorting
with faults. Journal of Computer and System Sciences, 54(2):265–304, 1997. doi:10.1006/
jcss.1997.1470.

20 Wen Liu, Shou-Shan Luo, and Ping Chen. A study of secure multi-party ranking problem.
In Eighth ACIS Int. Conf. on Software Engineering, Artificial Intelligence, Networking, and
Parallel/Distributed Computing (SNPD), volume 2, pages 727–732, 2007. doi:10.1109/SNPD.
2007.367.

https://doi.org/10.1145/1468075.1468121
https://doi.org/10.4230/LIPIcs.ISAAC.2017.38
https://doi.org/10.1145/2049697.2049701
https://doi.org/10.1007/s00453-012-9696-5
https://doi.org/10.1145/2591796.2591830
https://doi.org/10.1006/jcss.1997.1470
https://doi.org/10.1006/jcss.1997.1470
https://doi.org/10.1109/SNPD.2007.367
https://doi.org/10.1109/SNPD.2007.367

R. Afshar, M. Dillencourt, M. T. Goodrich, and E. Ozel 8:15

21 Cheng Mao, Jonathan Weed, and Philippe Rigollet. Minimax rates and efficient algorithms for
noisy sorting. In Firdaus Janoos, Mehryar Mohri, and Karthik Sridharan, editors, Proceedings
of Algorithmic Learning Theory, volume 83 of Proceedings of Machine Learning Research,
pages 821–847, 2018.

22 Mihai Pǎtraşcu and Mikkel Thorup. The power of simple tabulation hashing. J. ACM,
59(3):1–50, June 2012. doi:10.1145/2220357.2220361.

23 Andrzej Pelc. Searching with known error probability. Theoretical Computer Science, 63(2):185–
202, 1989. doi:10.1016/0304-3975(89)90077-7.

24 Andrzej Pelc. Searching games with errors—fifty years of coping with liars. Theoretical
Computer Science, 270(1):71–109, 2002. doi:10.1016/S0304-3975(01)00303-6.

25 Nicholas Pippenger. On networks of noisy gates. In 26th IEEE Symp. on Foundations of
Computer Science (FOCS), pages 30–38, 1985. doi:10.1109/SFCS.1985.41.

26 Vaughan Ronald Pratt. Shellsort and sorting networks. PhD thesis, Stanford University,
Stanford, CA, USA, 1972.

27 Alfréd Rényi. On a problem in information theory. Magyar Tud. Akad. Mat. Kutató Int. Közl.,
6:505–516, 1961. See https://mathscinet.ams.org/mathscinet-getitem?mr=0143666.

28 R.L. Rivest, A.R. Meyer, D.J. Kleitman, K. Winklmann, and J. Spencer. Coping with errors
in binary search procedures. Journal of Computer and System Sciences, 20(3):396–404, 1980.
doi:10.1016/0022-0000(80)90014-8.

29 D. L. Shell. A high-speed sorting procedure. Comm. ACM, 2(7):30–32, July 1959. doi:
10.1145/368370.368387.

30 Mikkel Thorup. Fast and powerful hashing using tabulation. Commun. ACM, 60(7):94–101,
June 2017. doi:10.1145/3068772.

31 Ziao Wang, Nadim Ghaddar, and Lele Wang. Noisy sorting capacity. arXiv, abs/2202.01446,
2022. arXiv:2202.01446.

32 Ya Xu, Nanyu Chen, Addrian Fernandez, Omar Sinno, and Anmol Bhasin. From infrastructure
to culture: A/B testing challenges in large scale social networks. In 21th ACM SIGKDD
Int. Conf. on Knowledge Discovery and Data Mining (KDD), pages 2227–2236, 2015. doi:
10.1145/2783258.2788602.

33 Andrew C. Yao. Protocols for secure computations. In 23rd IEEE Symp. on Foundations of
Computer Science (FOCS), pages 160–164, 1982. doi:10.1109/SFCS.1982.38.

34 Andrew C. Yao and F. Frances Yao. On fault-tolerant networks for sorting. SIAM Journal on
Computing, 14(1):120–128, 1985. doi:10.1137/0214009.

SEA 2023

https://doi.org/10.1145/2220357.2220361
https://doi.org/10.1016/0304-3975(89)90077-7
https://doi.org/10.1016/S0304-3975(01)00303-6
https://doi.org/10.1109/SFCS.1985.41
https://mathscinet.ams.org/mathscinet-getitem?mr=0143666
https://doi.org/10.1016/0022-0000(80)90014-8
https://doi.org/10.1145/368370.368387
https://doi.org/10.1145/368370.368387
https://doi.org/10.1145/3068772
https://arxiv.org/abs/2202.01446
https://doi.org/10.1145/2783258.2788602
https://doi.org/10.1145/2783258.2788602
https://doi.org/10.1109/SFCS.1982.38
https://doi.org/10.1137/0214009

8:16 Noisy Sorting Without Searching

A Some Existing Sorting Algorithms

In this section, we review some existing sorting algorithms that we included in our tests.

A.1 Randomized Shellsort

The first existing sorting algorithm we review is the randomized Shellsort of Goodrich [10],
which we give in Algorithm 4. This algorithm is data oblivious.

Algorithm 4 Random-Shellsort(A = {a0, a1, . . . , an−1}).

1 for o = n/2, n/22, n/23, . . . , 1 do
2 Let Ai denote subarray A[io .. io + o− 1], for i = 0, 1, 2, . . . , n/o− 1.
3 begin a shaker pass
4 Region compare-exchange Ai and Ai+1, for i = 0, 1, 2, . . . , n/o− 2.
5 Region compare-exchange Ai+1 and Ai, for i = n/o− 2, . . . , 2, 1, 0.
6 begin an extended brick pass
7 Region compare-exchange Ai and Ai+3, for i = 0, 1, 2, . . . , n/o− 4.
8 Region compare-exchange Ai and Ai+2, for i = 0, 1, 2, . . . , n/o− 3.
9 Region compare-exchange Ai and Ai+1, for even i = 0, 1, 2, . . . , n/o− 2.

10 Region compare-exchange Ai and Ai+1, for odd i = 0, 1, 2, . . . , n/o− 2.

A.2 Annealing Sort

The next existing sorting algorithm we review is the annealing-sort method of Goodrich [11],
which we review in Algorithm 5. This algorithm is also data oblivious.

Algorithm 5 Annealing-Sort(A = {a0, a1, . . . , aN−1}, n, T, R).

1 for j = 1, 2, . . . , t do
2 for i = 1, . . . , n− 1 do
3 for k = 1, 2, . . . , rj do
4 Let s be a random integer in the range [i + 1, min(n, i + Tj)]
5 if A[i] > A[s] then
6 Swap A[i] and A[s]

7 for i = n, n− 1, . . . 2 do
8 for k = 1, 2, . . . , rj do
9 Let s be a random integer in the range [max(1, i− Tj), i− 1]

10 if A[s] > A[i] then
11 Swap A[i] and A[s]

R. Afshar, M. Dillencourt, M. T. Goodrich, and E. Ozel 8:17

A.3 Riffle Sort

We include pseudo-code for the riffle-sort method of Geissman, Leucci, Liu, and Penna [8],
which we review in Algorithm 6, for k = (log n)/2 and γ = 2020. The pseudo-code
uses a subroutine test(x, v) (see [8], Definition 1), which checks whether some element x

approximately belongs to the interval pointed to by some node v in the noisy binary search
tree, which is the main place where this algorithm is not data oblivious.

Algorithm 6 Riffle-Sort(A = {a0, a1, . . . , an−1}).

1 T0, T1, . . . , Tk ← Partition(A)
2 S0 ←WindowSort(T0,

√
n, 1)

3 for j = 1, . . . , k + 1 do
4 Si ←Merge(Si, Ti−1)
5 Si ←WindowSort(Si, 9γ log n, 1)
6 return Sk+1
7

8 Partition(A) :
9 for i = k, . . . , 1 do

10 Ti ← 2i−1√n elements chosen u.a.r. from A \ {Ti+1, . . . , Tk}
11 T0 ← remaining

√
n elements in A

12 return T0, . . . , Tk

13

14 Merge(A, B) :
15 foreach x ∈ B do
16 rankx ← NoisyBinarySearch(A, x)
17 Insert simultaneously all elements x ∈ B according to rankx into A
18 return A

19

20 NoisyBinarySearch(A, x) :
21 Construct noisy binary search trees T0, T1 as described in [8], section 3.1.
22 for j = 0, 1 do
23 t← 7⌊log |A|⌋
24 curr ← Tj .root

25 while t > 0 do
26 if curr is a leaf of Tj then
27 return curr

28 Call test(x, c) for each child c of node curr.
29 if exactly one of the calls pass for some child node c then
30 curr ← c

31 else
// all tests have failed

32 curr ← curr.parent

33 t← t− 1

34 return an arbitrary index // both walks have timed out

SEA 2023

8:18 Noisy Sorting Without Searching

A.4 Well-known Sorting Algorithms
For the sake of completeness, we also include pseudo-code for the well-known insertion-sort,
quick-sort, and Shellsort algorithms, in Algorithm 7. None of these three algorithms are
data oblivious. One can modify insertion-sort to be data oblivious, however, by continuing
the compare-and-swap inner loop process to the beginning of the array in every iteration.
Likewise, the Shellsort algorithm can also be modified to be data oblivious in the same
manner, since its inner loop is essentially an insertion-sort carried out across elements
separated by the gap distance in each iteration.

Algorithm 7 Well-known sorting algorithms, assuming the input array, A, is of size n

and indexed starting at 0. We sort A by calling Insertion-Sort(A, n), Quick-sort(A, 0, n − 1),
or Shell-sort(A, n, G), where G is a non-increasing gap sequence of positive integers less
than n, such as the Pratt sequence [26], which consists of all products of powers of 2 and 3
less than n.

Insertion-sort(A, n):
for i← 1, . . . , n− 1 do

j ← i

while j > 0 and A[j − 1] > A[j] do
Swap A[j] and A[j − 1]
j ← j − 1

Quick-sort(A, l, h):
if l < h then

Choose x uniformly at random from the subarray A[l..h]
Partition A into A[l..p− 1], A[p], and A[p + 1..h], where A[i] < x for i ∈ [l, p− 1],
A[p] = x, and A[i] ≥ x for i ∈ [p + 1, h] (if these subarrays exist)

Quick-sort(A, l, p− 1)
Quick-sort(A, p + 1, h)

Shell-sort(A, n, G):
foreach g ∈ G do

for i← g, . . . , n− 1 do
j ← i

while j ≥ g and A[j − g] > A[j] do
Swap A[j] and A[j − g]
j ← j − g

	1 Introduction
	2 Window-Sort
	3 Window-Merge-Sort
	4 Window-Oblivious-Merge-Sort
	5 Randomized Shellsort
	6 Annealing Sort
	7 Experiments
	8 Conclusions and Future Work
	A Some Existing Sorting Algorithms
	A.1 Randomized Shellsort
	A.2 Annealing Sort
	A.3 Riffle Sort
	A.4 Well-known Sorting Algorithms

