22,528 research outputs found

    Massively Parallel Sort-Merge Joins in Main Memory Multi-Core Database Systems

    Full text link
    Two emerging hardware trends will dominate the database system technology in the near future: increasing main memory capacities of several TB per server and massively parallel multi-core processing. Many algorithmic and control techniques in current database technology were devised for disk-based systems where I/O dominated the performance. In this work we take a new look at the well-known sort-merge join which, so far, has not been in the focus of research in scalable massively parallel multi-core data processing as it was deemed inferior to hash joins. We devise a suite of new massively parallel sort-merge (MPSM) join algorithms that are based on partial partition-based sorting. Contrary to classical sort-merge joins, our MPSM algorithms do not rely on a hard to parallelize final merge step to create one complete sort order. Rather they work on the independently created runs in parallel. This way our MPSM algorithms are NUMA-affine as all the sorting is carried out on local memory partitions. An extensive experimental evaluation on a modern 32-core machine with one TB of main memory proves the competitive performance of MPSM on large main memory databases with billions of objects. It scales (almost) linearly in the number of employed cores and clearly outperforms competing hash join proposals - in particular it outperforms the "cutting-edge" Vectorwise parallel query engine by a factor of four.Comment: VLDB201

    The Search for Extraterrestrial Intelligence (SETI)

    Get PDF
    A bibliography of reports concerning the Search for Extraterrestrial Intelligence is presented. Cosmic evolution, space communication, and technological advances are discussed along with search strategies and search systems

    Neutrino Physics at DPF 2013

    Full text link
    The field of neutrino physics was covered at DPF 2013 in 32 talks, including three on theoretical advances and the remainder on experiments that spanned at least 17 different detectors. This summary of those talks cannot do justice to the wealth of information presented, but will provide links to other material where possible. There were allso two plenary session contributions on neutrino physics at this meeting: the current status of what we know about neutrino (oscillation) physics was outlined by Huber, and the next steps in long baseline oscillation expeirments were described by Fleming. This article covers a subset of the topics discussed at the meeting, with emphasis given to those talks that showed data or new results.Comment: Presentation at the DPF 2013 Meeting of the American Physical Society Division of Particles and Fields, Santa Cruz, California, August 13-17, 201

    Optimal dynamic operations scheduling for small-scale satellites

    Get PDF
    A satellite's operations schedule is crafted based on each subsystem/payload operational needs, while taking into account the available resources on-board. A number of operating modes are carefully designed, each one with a different operations plan that can serve emergency cases, reduced functionality cases, the nominal case, the end of mission case and so on. During the mission span, should any operations planning amendments arise, a new schedule needs to be manually developed and uplinked to the satellite during a communications' window. The current operations planning techniques over a reduced number of solutions while approaching operations scheduling in a rigid manner. Given the complexity of a satellite as a system as well as the numerous restrictions and uncertainties imposed by both environmental and technical parameters, optimising the operations scheduling in an automated fashion can over a flexible approach while enhancing the mission robustness. In this paper we present Opt-OS (Optimised Operations Scheduler), a tool loosely based on the Ant Colony System algorithm, which can solve the Dynamic Operations Scheduling Problem (DOSP). The DOSP is treated as a single-objective multiple constraint discrete optimisation problem, where the objective is to maximise the useful operation time per subsystem on-board while respecting a set of constraints such as the feasible operation timeslot per payload or maintaining the power consumption below a specific threshold. Given basic mission inputs such as the Keplerian elements of the satellite's orbit, its launch date as well as the individual subsystems' power consumption and useful operation periods, Opt-OS outputs the optimal ON/OFF state per subsystem per orbital time step, keeping each subsystem's useful operation time to a maximum while ensuring that constraints such as the power availability threshold are never violated. Opt-OS can provide the flexibility needed for designing an optimal operations schedule on the spot throughout any mission phase as well as the ability to automatically schedule operations in case of emergency. Furthermore, Opt-OS can be used in conjunction with multi-objective optimisation tools for performing full system optimisation. Based on the optimal operations schedule, subsystem design parameters are being optimised in order to achieve the maximal usage of the satellite while keeping its mass minimal

    Blazing the trailway: Nuclear electric propulsion and its technology program plans

    Get PDF
    An overview is given of the plans for a program in nuclear electric propulsion (NEP) technology for space applications being considered by NASA, DOE, and DOD. Possible missions using NEP are examined, and NEP technology plans are addressed regarding concept development, systems engineering, nuclear fuels, power conversion, thermal management, power management and distribution, electric thrusters, facilities, and issues related to safety and environment. The programmatic characteristics are considered

    Mars Activities: Teacher Resources and Classroom Activities

    Get PDF
    This set of classroom activities presents the challenges of operating a planetary rover, how to construct a scale model of the Earth-Moon system, how Martian surface core samples can be identified and what they tell us about Mars. Each activity comes with clearly delineated instructions, associated standards, guides and worksheets, and enhancement materials. Educational levels: High school, Intermediate elementary, Middle school, Primary elementary

    ASAP: An Automatic Algorithm Selection Approach for Planning

    Get PDF
    Despite the advances made in the last decade in automated planning, no planner out- performs all the others in every known benchmark domain. This observation motivates the idea of selecting different planning algorithms for different domains. Moreover, the planners’ performances are affected by the structure of the search space, which depends on the encoding of the considered domain. In many domains, the performance of a plan- ner can be improved by exploiting additional knowledge, for instance, in the form of macro-operators or entanglements. In this paper we propose ASAP, an automatic Algorithm Selection Approach for Planning that: (i) for a given domain initially learns additional knowledge, in the form of macro-operators and entanglements, which is used for creating different encodings of the given planning domain and problems, and (ii) explores the 2 dimensional space of available algorithms, defined as encodings–planners couples, and then (iii) selects the most promising algorithm for optimising either the runtimes or the quality of the solution plans

    Dark sectors 2016 Workshop: community report

    Get PDF
    This report, based on the Dark Sectors workshop at SLAC in April 2016, summarizes the scientific importance of searches for dark sector dark matter and forces at masses beneath the weak-scale, the status of this broad international field, the important milestones motivating future exploration, and promising experimental opportunities to reach these milestones over the next 5-10 years
    • …
    corecore