6,617 research outputs found

    Faster Fully-Dynamic Minimum Spanning Forest

    Full text link
    We give a new data structure for the fully-dynamic minimum spanning forest problem in simple graphs. Edge updates are supported in O(log4n/loglogn)O(\log^4n/\log\log n) amortized time per operation, improving the O(log4n)O(\log^4n) amortized bound of Holm et al. (STOC'98, JACM'01). We assume the Word-RAM model with standard instructions.Comment: 13 pages, 2 figure

    Dynamic Ordered Sets with Exponential Search Trees

    Full text link
    We introduce exponential search trees as a novel technique for converting static polynomial space search structures for ordered sets into fully-dynamic linear space data structures. This leads to an optimal bound of O(sqrt(log n/loglog n)) for searching and updating a dynamic set of n integer keys in linear space. Here searching an integer y means finding the maximum key in the set which is smaller than or equal to y. This problem is equivalent to the standard text book problem of maintaining an ordered set (see, e.g., Cormen, Leiserson, Rivest, and Stein: Introduction to Algorithms, 2nd ed., MIT Press, 2001). The best previous deterministic linear space bound was O(log n/loglog n) due Fredman and Willard from STOC 1990. No better deterministic search bound was known using polynomial space. We also get the following worst-case linear space trade-offs between the number n, the word length w, and the maximal key U < 2^w: O(min{loglog n+log n/log w, (loglog n)(loglog U)/(logloglog U)}). These trade-offs are, however, not likely to be optimal. Our results are generalized to finger searching and string searching, providing optimal results for both in terms of n.Comment: Revision corrects some typoes and state things better for applications in subsequent paper

    Exploiting non-constant safe memory in resilient algorithms and data structures

    Get PDF
    We extend the Faulty RAM model by Finocchi and Italiano (2008) by adding a safe memory of arbitrary size SS, and we then derive tradeoffs between the performance of resilient algorithmic techniques and the size of the safe memory. Let δ\delta and α\alpha denote, respectively, the maximum amount of faults which can happen during the execution of an algorithm and the actual number of occurred faults, with αδ\alpha \leq \delta. We propose a resilient algorithm for sorting nn entries which requires O(nlogn+α(δ/S+logS))O\left(n\log n+\alpha (\delta/S + \log S)\right) time and uses Θ(S)\Theta(S) safe memory words. Our algorithm outperforms previous resilient sorting algorithms which do not exploit the available safe memory and require O(nlogn+αδ)O\left(n\log n+ \alpha\delta\right) time. Finally, we exploit our sorting algorithm for deriving a resilient priority queue. Our implementation uses Θ(S)\Theta(S) safe memory words and Θ(n)\Theta(n) faulty memory words for storing nn keys, and requires O(logn+δ/S)O\left(\log n + \delta/S\right) amortized time for each insert and deletemin operation. Our resilient priority queue improves the O(logn+δ)O\left(\log n + \delta\right) amortized time required by the state of the art.Comment: To appear in Theoretical Computer Science, 201

    I/O-Efficient Dynamic Planar Range Skyline Queries

    Get PDF
    We present the first fully dynamic worst case I/O-efficient data structures that support planar orthogonal \textit{3-sided range skyline reporting queries} in \bigO (\log_{2B^\epsilon} n + \frac{t}{B^{1-\epsilon}}) I/Os and updates in \bigO (\log_{2B^\epsilon} n) I/Os, using \bigO (\frac{n}{B^{1-\epsilon}}) blocks of space, for nn input planar points, tt reported points, and parameter 0ϵ10 \leq \epsilon \leq 1. We obtain the result by extending Sundar's priority queues with attrition to support the operations \textsc{DeleteMin} and \textsc{CatenateAndAttrite} in \bigO (1) worst case I/Os, and in \bigO(1/B) amortized I/Os given that a constant number of blocks is already loaded in main memory. Finally, we show that any pointer-based static data structure that supports \textit{dominated maxima reporting queries}, namely the difficult special case of 4-sided skyline queries, in \bigO(\log^{\bigO(1)}n +t) worst case time must occupy Ω(nlognloglogn)\Omega(n \frac{\log n}{\log \log n}) space, by adapting a similar lower bounding argument for planar 4-sided range reporting queries.Comment: Submitted to SODA 201

    The Logarithmic Funnel Heap: A Statistically Self-Similar Priority Queue

    Full text link
    The present work contains the design and analysis of a statistically self-similar data structure using linear space and supporting the operations, insert, search, remove, increase-key and decrease-key for a deterministic priority queue in expected O(1) time. Extract-max runs in O(log N) time. The depth of the data structure is at most log* N. On the highest level, each element acts as the entrance of a discrete, log* N-level funnel with a logarithmically decreasing stem diameter, where the stem diameter denotes a metric for the expected number of items maintained on a given level.Comment: 14 pages, 4 figure

    An Efficient Implementation of the Robust Tabu Search Heuristic for Sparse Quadratic Assignment Problems

    Full text link
    We propose and develop an efficient implementation of the robust tabu search heuristic for sparse quadratic assignment problems. The traditional implementation of the heuristic applicable to all quadratic assignment problems is of O(N^2) complexity per iteration for problems of size N. Using multiple priority queues to determine the next best move instead of scanning all possible moves, and using adjacency lists to minimize the operations needed to determine the cost of moves, we reduce the asymptotic complexity per iteration to O(N log N ). For practical sized problems, the complexity is O(N)
    corecore