185 research outputs found

    The pebbling threshold of the square of cliques

    Get PDF
    AbstractGiven an initial configuration of pebbles on a graph, one can move pebbles in pairs along edges, at the cost of one of the pebbles moved, with the objective of reaching a specified target vertex. The pebbling number of a graph is the minimum number of pebbles so that every configuration of that many pebbles can reach any chosen target. The pebbling threshold of a sequence of graphs is roughly the number of pebbles so that almost every (resp. almost no) configuration of asymptotically more (resp. fewer) pebbles can reach any chosen target. In this paper we find the pebbling threshold of the sequence of squares of cliques, improving upon an earlier result of Boyle and verifying an important instance of a probabilistic version of Graham's product conjecture

    PEBBLING IN SPLIT GRAPHS

    Get PDF
    abstract: Graph pebbling is a network optimization model for transporting discrete resources that are consumed in transit: the movement of 2 pebbles across an edge consumes one of the pebbles. The pebbling number of a graph is the fewest number of pebbles t so that, from any initial configuration of t pebbles on its vertices, one can place a pebble on any given target vertex via such pebbling steps. It is known that deciding whether a given configuration on a particular graph can reach a specified target is NP-complete, even for diameter 2 graphs, and that deciding whether the pebbling number has a prescribed upper bound is Π[P over 2]-complete. On the other hand, for many families of graphs there are formulas or polynomial algorithms for computing pebbling numbers; for example, complete graphs, products of paths (including cubes), trees, cycles, diameter 2 graphs, and more. Moreover, graphs having minimum pebbling number are called Class 0, and many authors have studied which graphs are Class 0 and what graph properties guarantee it, with no characterization in sight. In this paper we investigate an important family of diameter 3 chordal graphs called split graphs; graphs whose vertex set can be partitioned into a clique and an independent set. We provide a formula for the pebbling number of a split graph, along with an algorithm for calculating it that runs in O(n[superscript β]) time, where β = 2ω/(ω + 1) [= over ∼] 1.41 and ω [= over ∼] 2.376 is the exponent of matrix multiplication. Furthermore we determine that all split graphs with minimum degree at least 3 are Class 0

    Linear-time algorithms for testing the satisfiability of propositional horn formulae

    Get PDF
    AbstractNew algorithms for deciding whether a (propositional) Horn formula is satisfiable are presented. If the Horn formula A contains K distinct propositional letters and if it is assumed that they are exactly P1,…, PK, the two algorithms presented in this paper run in time O(N), where N is the total number of occurrences of literals in A. By representing a Horn proposition as a graph, the satisfiability problem can be formulated as a data flow problem, a certain type of pebbling. The difference between the two algorithms presented here is the strategy used for pebbling the graph. The first algorithm is based on the principle used for finding the set of nonterminals of a context-free grammar from which the empty string can be derived. The second algorithm is a graph traversal and uses a “call-by-need” strategy. This algorithm uses an attribute grammar to translate a propositional Horn formula to its corresponding graph in linear time. Our formulation of the satisfiability problem as a data flow problem appears to be new and suggests the possibility of improving efficiency using parallel processors
    corecore