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PEBBLING IN SPLIT GRAPHS∗
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Abstract. Graph pebbling is a network optimization model for transporting discrete resources
that are consumed in transit: the movement of 2 pebbles across an edge consumes one of the
pebbles. The pebbling number of a graph is the fewest number of pebbles t so that, from any
initial configuration of t pebbles on its vertices, one can place a pebble on any given target vertex via
such pebbling steps. It is known that deciding whether a given configuration on a particular graph
can reach a specified target is NP-complete, even for diameter 2 graphs, and that deciding whether
the pebbling number has a prescribed upper bound is ΠP

2-complete. On the other hand, for many
families of graphs there are formulas or polynomial algorithms for computing pebbling numbers; for
example, complete graphs, products of paths (including cubes), trees, cycles, diameter 2 graphs, and
more. Moreover, graphs having minimum pebbling number are called Class 0, and many authors have
studied which graphs are Class 0 and what graph properties guarantee it, with no characterization
in sight. In this paper we investigate an important family of diameter 3 chordal graphs called split
graphs; graphs whose vertex set can be partitioned into a clique and an independent set. We provide a
formula for the pebbling number of a split graph, along with an algorithm for calculating it that runs
in O(nβ) time, where β = 2ω/(ω+1) ∼= 1.41 and ω ∼= 2.376 is the exponent of matrix multiplication.
Furthermore we determine that all split graphs with minimum degree at least 3 are Class 0.
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1. Introduction. Graph pebbling is a network optimization model for trans-
porting discrete resources that are consumed in transit: while 2 pebbles cross an edge
of a graph, only one arrives at the other end as the other is consumed (or spent on
toll, one can imagine). This operation is called a pebbling step. The basic questions
in the subject revolve around deciding whether a particular configuration of pebbles
on the vertices of a graph can reach a given root vertex via pebbling steps (for this
reason, graph pebbling is carried out on connected graphs only). If a configuration
can reach r, it is called r-solvable, and r-unsolvable otherwise.

Various rules for pebbling steps have been studied for years and have found ap-
plications in a wide array of areas. One version, dubbed black and white pebbling,
was applied to computational complexity theory in studying time-space tradeoffs (see
[15, 28]), as well as to optimal register allocation for compilers (see [30]). Connections
have also been made to pursuit and evasion games and graph searching (see [21, 27]).
Another version (black pebbling) is used to reorder large sparse matrices to minimize
in-core storage during an out-of-core Cholesky factorization scheme (see [12, 22, 24]).
A third version yields results in computational geometry in the rigidity of graphs,
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1450 L. ALCÓN, M. GUTIERREZ, AND G. HURLBERT

matroids, and other structures (see [13, 31]). The rule we study here originally pro-
duced results in combinatorial number theory and combinatorial group theory (the
existence of zero sum subsequences—see [4, 11]) and have recently been applied to
finding solutions in p-adic diophantine equations (see [23]). Most of these rules give
rise to computationally difficult problems, which we discuss for our case below.

We follow fairly standard graph terminology (e.g., [32]), with a graph G = (V,E)
having n = n(G) vertices V = V (G) and having edges E = E(G). The eccentricity
ecc(G, r) for a vertex r ∈ V equals maxv∈V dist(v, r), where dist(x, y) denotes the
length (number of edges) of the shortest path from x to y; the diameter diam(G) =
maxr∈V ecc(G, r). When G is understood we will shorten our notation to ecc(r).

The most studied graph pebbling parameter, the one investigated here, is the
pebbling number π(G) = maxr∈V π(G, r), where π(G, r) is defined to be the minimum
number t so that every configuration of size at least t is r-solvable. The size |C| of a
configuration C : V→N = {0, 1, . . .} is its total number of pebbles

∑
v∈V C(v). Simple

lower bounds like π(G) ≥ n (sharp for complete graphs, cubes, and, probabilisticaly,
almost all graphs) and π(G) ≥ 2diam(G) (sharp for paths and cubes, among others)
are easily derived. Graphs satisfying π(G) = n are called Class 0 and are a topic
of much interest (e.g., [2, 3, 5, 6, 9, 10]). Surveys on the topic can be found in [16,
17, 19], and include variations on the theme such as k-pebbling, fractional pebbling,
optimal pebbling, cover pebbling, and pebbling thresholds, as well as applications to
combinatorial number theory and combinatorial group theory.

Computing graph pebbling numbers is difficult in general. The problem of decid-
ing whether a given configuration of pebbles on a graph can reach a particular vertex
was shown in [14, 20] to be NP-complete (via reduction from the problem of finding
a perfect matching in a 4-uniform hypergraph). The problem of deciding whether a
graph G has a pebbling number of at most k was shown in [14] to be ΠP

2 -complete.1

On the other hand, pebbling numbers of many graphs are known: for example,
cliques, trees, cycles, cubes, diameter 2 graphs, graphs of connectivity exponential in
its diameter, and others. In particular, in [26] the pebbling number of a diameter 2
graph G was determined to be n or n + 1. Moreover, [5] characterized those graphs
having π(G) = n+ 1 (a slight error in the characterization was corrected by [3]). All
such connectivity 1 graphs have π(G) = n+1. The smallest such 2-connected graph is
the near-Pyramid on six vertices, which is the 6-cycle (r, a, p, c, q, b) with an extra two
or three of the edges of the triangle (a, b, c) (the Pyramid has all three). All diameter
2 graphs with pebbling number n+1 can be described by adding simple structures to
the near-Pyramid. It was shown in [14] that one can recognize such graphs in quartic
time.

Here we begin to study for which graphs their pebbling numbers can be calculated
in polynomial time. Aiming for tree-like structures (as was considered in [6]), one
might consider chordal graphs of various sorts. Moving away from diameter 2, one
might consider diameter 3 graphs; recently in [29], the tight upper bound of �3n/2�+2
has been shown for this class. Combining these two thoughts, we study split graphs
in this paper, and find that their pebbling numbers can be calculated quickly, in fact,
in O(n1.41) time.2

Split graphs can be described by adding simplicial vertices (cones) to a fixed
clique. In other words, a graph is a split graph if its vertices can be partitioned into

1That is, complete for the class of problems computable in polynomial time by a co-NP machine
equipped with an oracle for an NP-complete language.

2Here β ∼= 1.41 satisfies β = 2ω/(ω+1), where ω ∼= 2.376 is the exponent of matrix multiplication.
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PEBBLING IN SPLIT GRAPHS 1451

Fig. 1. Examples of Pereyra (left) and Phoenix (right) graphs.

an independent set S and a clique K. Notice that the Pyramid is a split graph with
clique {a, b, c} and cone vertices r, p, and q. The Pyramid plays a key role in the
theory of split graphs. However, the Pyramid has diameter 2, and we are interested
in diameter 3 split graphs.

It turns out that Pereyra and Phoenix graphs (which we define below and which
necessarily contain the Pyramid) are important for our work (see Figure 1). We
say that G has a Pyramid if there exist three cone vertices with degree 2 whose
neighborhoods do not have the Helly property (that is, their neighborhoods form a
triangle). We say that the subgraph induced by the closed neighborhoods of the three
cone vertices is a Pyramid of G. If r is one of the three cone vertices, we say it is an r-
Pyramid. A graph G is called r-Pereyra if it has an r-Pyramid, none of whose vertices
is a cut vertex of G. Denote by δ∗(G, r) the minimum degree among all vertices at
maximum distance from r. A graph G is r-Phoenix if it is r-Pereyra, ecc(r) = 3, and
δ∗(G, r) ≥ 4. A Pereyra (resp., Phoenix) graph is r-Pereyra (resp., r-Phoenix) for
some r.

Like the Pyramid, an r-Pereyra graph having ecc(r) = 2 has pebbling number one
more than “normal”; that is, it is an exception to how most of the graphs in its class
behave. On such G, the configuration that places 3 pebbles on p and q, 0 pebbles on
r, a, b, and c, and 1 everywhere else is r-unsolvable, showing that π(G, r) ≥ n+x+1,
where x is the number of cut vertices of G.3 (In the course of proving Theorem 5, one
finds that this configuration is the unique r-unsolvable configuration of size n+ x on
G.) We will find analogous behavior for r-Phoenix graphs as well.

We note that the pebbling number of a split graph can always be realized at a
cone root.

Proposition 1. If G is a split graph, then there is some cone vertex r such that
π(G) = π(G, r).

Proof. We choose S to be maximal and let r′ ∈ K. Because S is maximal we
know that r′ has a cone neighbor, say r. We show that π(G, r) ≥ π(G, r′) by proving
that if C′ is an r′-unsolvable configuration, then there is an r-unsolvable configuration
C with |C| = |C′|.

Suppose that C′ is r′-unsolvable and define C by C(r) = C′(r′) = 0, C(r′) =
C′(r) ≤ 1, and C(x) = C′(x) for all other x. For the sake of contradiction suppose
that σ is a minimal sequence of pebbling moves from C that places a pebble on r. If

3Note that we use the roman font x as a number, while the math font x will denote a vertex.
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1452 L. ALCÓN, M. GUTIERREZ, AND G. HURLBERT

ever a step of σ moves a pebble to r′, then a subsequence of σ places a pebble on r′

from C′ restricted to G − r, a contradiction. Hence, no pebbles ever reach r′ in σ.
Moreover, no pebbles ever leave r′ in σ since that would require a pebble to reach r′

first. Thus σ moves a pebble to r from C restricted to G− r′, and the final step of σ
moves a pebble from some r′′ �= r′ to r. Let σ′ be the same as σ except with the step
from r′′ to r replaced by the step from r′′ to r′. Then σ′ places a pebble on r′ from
C′ (because no pebble on r is used) restricted to G− r, a contradiction.

Notationally, we abbreviate deg(x) by dx. We also abbreviate N(x) by Nx (so
that dx = |Nx|), with [Nx] denoting Nx ∪ {x}. If v ∈ S, we define Kv = K −Nv. We
denote the set of cut vertices of G by X , with x = |X |. For a set U of vertices, we
write C(U) =

∑
x∈U C(x), and define U i = {u ∈ U | C(u) = i}. For a list of vertices,

we denote C(x1, . . . , xk) = (C(x1), . . . , C(xk)). We say that a graph is r-(semi)greedy
if every configuration of size at least π(G, r) has a (semi)greedy r-solution; that is,
every pebbling step in the solution decreases (does not increase) the distance of the
moved pebble to r. Note that any step from a cone vertex to one of its neighbors is
semigreedy.

Proposition 2. Every split graph is semigreedy.

Proof. We show that any sequence of pebbling steps that places a pebble on
r can be converted to one which is semigreedy. Let σ be such a sequence—remove
unnecessary steps so that it is minimal— and suppose that it is not semigreedy. Then
there are vertices u and v with dist(r, u) < dist(r, v) for which σ moves a pebble
from u to v. Because dist(r, u) > 1 and dist(r, v) ≤ 3, we have dist(r, u) = 2 and
dist(r, v) = 3, so v ∈ S. By minimality σ must move a pebble from v to some
neighbor w �= u. However, the replacement of the two steps u to v and v to w by
the single step u to w creates an r-solvable sequence with fewer nonsemigreedy steps.
Repeating this process produces a semigreedy r-solution.

We begin by outlining in section 2 a rather new technique for finding upper
bounds on π using weight functions. From there we prove pebbling number results
in the case that ecc(r) = 2. We prepare in section 4 preliminary lemmas that will
be used in section 5 to prove pebbling results for the ecc(r) = 3 case. In section 6
we prove Theorem 18, which gives an exact formula for the pebbling number of split
graphs. Using this we prove our main result, Corollary 19, which shows that pebbling
numbers for split graphs can be calculated in polynomial time. From this analysis we
learn that all split graphs with minimum degree at least 3 are Class 0. We end with
some comments and conjectures in section 7.

2. The weight function lemma. In this section we describe a tool developed
in [18] for calculating upper bounds for pebbling numbers of graphs that will be useful
in delivering a quick proof of Theorem 4.

Let G be a graph and let T be a subtree of G, with at least two vertices, rooted
at vertex r. For a vertex v ∈ V (T ) let v+ denote the parent of v; i.e., the T -
neighbor of v that is one edge closer to r (we also say that v is a child of v+). We
call T a strategy when we associate with it a nonnegative, nonzero weight function4

w : V (T )→Q with the property that w(r) = 0 and w(v+) ≥ 2w(v) for every other
vertex that is not a neighbor of r (and w(v) = 0 for vertices not in T ). We extend
w to a function on configurations by defining w(C) =

∑
v∈V w(v)C(v). Now denote

by T the configuration with T(r) = 0, T(v) = 1 for all v ∈ V (T ), and T(v) = 0

4The definition in [18] uses N, although Lemma 3 clearly holds with rationals Q as well.
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PEBBLING IN SPLIT GRAPHS 1453

everywhere else. The following was proven in [18].
Lemma 3 (weight function lemma). Let T be a strategy of G rooted at r, with

associated weight function w. Suppose that C is an r-unsolvable configuration of
pebbles on V (G). Then w(C) ≤ w(T).

The manner in which one uses this lemma to obtain a pebbling number upper
bound is as follows. If we have several strategies T1, . . . , Tm of G, each rooted at
r, with associated weight functions w1, . . . ,wm and configurations T1, . . . ,Tm, then
we can define the accumulated weight function w =

∑m
i=1 wi and the accumulated

configuration T =
∑m

i=1 Ti, and have that w(C) ≤ w(T) for every r-unsolvable
configuration C. Moreover, if it so happens that w(v) ≥ 1 for all v ∈ V − {r}, then
we also have |C| ≤ w(C), from which follows π(G, r) ≤ �w(T) + 1�.

The use of the weight function lemma is a little bit like the pigeonhole principle. If
a configuration has more pebbles than the upper bound provided by a set of strategies
on a graph G with root r, then the inequality for some strategy fails. Thus the
configuration can be solved on the tree corresponding to that strategy. One use of
this is the following.

Suppose that the set of strategies is given by trees that faithfully represent the
distances from r in G; for example, breadth-first search trees. Further assume that the
upper bound generated by the strategies equals π(G, r). Then because every minimal
solution on a tree is greedy on that tree, it is also greedy in G. This would prove that
G is r-greedy. We use this argument in Theorem 4 below.

3. Eccentricity two. For a split graph G define xr = |X − {r}|.
Theorem 4. If r ∈ K, then G is r-greedy and π(G, r) = n+ xr.
Proof. The lower bound is given by the configuration having 0 on r and every cut

vertex, 3 on one leaf per vertex in X −{r}, and 1 everywhere else. The upper bound
can be proved by using the weight function lemma as follows.

For every neighbor r′ of r we define a strategy Tr′ . If r
′ ∈ X , then give it weight

2. Include all of its neighbors outside of K, giving them weight 1 each. If r′ �∈ X ,
then give it weight 1. For every vertex s not yet in some strategy (necessarily not
in K; also ds ≥ 2), choose neighbors s′ and s′′ and include s in both strategies Ts′

and Ts′′ with weight 1/2 each. The resulting sum of strategies has weight 2 on every
vertex in X − {r}, and weight 1 everywhere else. Hence π(G, r) ≤ n+ xr.

Greediness follows because every strategy used is r-greedy.
We recall from the theorem of [3, 5] that if G is a diameter 2 graph, then, if it

has connectivity 1, we then have π(G) = n+1, and if it is 2-connected, we then have
π(G) = n+ 1 if and only if G is a member of the following special class of graphs F .
First, F contains the Pyramid P , as well as P−e for any edge e of the triangle (a, b, c).
Notice that these graphs have the following separation property: {a, b} separates r
from c, {b, c} separates q from a, and {a, c} separates p from b. Next, F is closed by
adding cones over pairs or triples from {a, b, c}. Finally, F is closed by adding edges
between cone vertices, provided that we maintain the separation property. Thus, if
G is a 2-connected split graph of diameter 2, then G ∈ F if and only if G is Pereyra.
In particular, we obtain the diameter 2 case of Theorem 5 below.

For a cone vertex r, we have two cases since ecc(r) ∈ {2, 3}. We first note that,
in the case ecc(r) = 2, every r-unsolvable configuration C has C(v) ≤ 3 for all v. In
particular, the solution moving pebbles directly to r from a vertex with C(v) ≥ 4 is
greedy. Recall that x = |X |.

Theorem 5. If r is a cone vertex with ecc(r) = 2, then π(G, r) = n + x + ψ,
where ψ = ψ(G, r) is 1 if G is r-Pereyra and 0 otherwise.
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Proof. The lower bound for non–r-Pereyra graphs is given by the following two
unsolvable configurations having size n+x− 1. The first, when r is the only leaf, has
0 on r and its neighbor r′, 3 on some x �= r′, and 1 everywhere else. Otherwise, the
second has 0 on r and every cut vertex, 3 on one leaf per vertex in X − {r}, and 1
everywhere else. For r-Pereyra graphs we place 0 on r, a, b, and c, 3 on p and q, and
1 everywhere else (X = ∅ because ecc(r) = 2).

We first prove the upper bound directly for r-Pereyra graphs. If G is r-Pereyra,
then Nr = {a, b}, and since ecc(r) = 2, we have x = 0 and [Nx] ∩ {a, b} �= ∅ for all x.
If C is r-unsolvable of size |C| = n+ 1, then C(r) = 0 and some C(x) ≥ 2 with, say,
a ∼ x. Thus C(a) = 0, and also C(y) ≤ 1 for all y ∈ Na. Now we have n+ 1 pebbles
on n−2 vertices, which means there must be another vertex z, with b ∼ z �∼ a, having
C(z) ≥ 2, and so C(b) = 0. This puts the n+ 1 pebbles on just n− 3 vertices, which
can only happen if C(r, a, b, x, z) = (0, 0, 0, 3, 3) and C(y) = 1 for all other y. But this
allows us to solve r by moving a pebble from x to a, from z to a common neighbor of
z and a and then to a, and finally from a to r. This contradiction means that every
configuration of size n+ 1 is r-solvable.

Next, we prove the upper bound for non–r-PereyraG. Let C be a configuration of
size n+x. We argue by induction on the number of cone vertices that C is r-solvable.
The base case is any graph with at most two cones. Such a graph has diameter 2, for
which we already noted in the paragraph following the proof of Theorem 4 that the
result is true. Hence we may assume that there are at least three cones and, moreover,
that diam(G) = 3. This means that dr ≥ 2 because, otherwise, ecc(r) = 2 would
require that every vertex is adjacent to the neighbor of r. Moreover, diam(G) = 3
implies that there are at least two cones different from r whose neighborhoods are
disjoint.

If a cone vertex v �= r has the property that G−v is r-Pereyra, then we say that v
is bad; otherwise, it is a good cone vertex. Notice that a bad cone vertex is necessarily
a leaf adjacent to a neighbor of r; in addition, it is the unique such leaf and dr = 2.

Suppose, for the sake of contradiction, that C is not r-solvable. Let v �= r
be any cone vertex, and define G′ = G − v, with C′ = C on G′ and C′(v) = 0.
Also define x′ = x(G′) and ψ′ = ψ(G′). Because C′ is r-unsolvable on G′, we have
n−C(v)+x = |C′| < π(G′, r). By induction, π(G′, r) = (n−1)+x′+ψ′ ≤ (n−1)+x
whether v is good or bad: if v is good, it holds because x′ ≤ x and ψ′ = 0, and if v
is bad, it holds because x′ = 0, ψ′ = 1, and x = 1. Therefore, we may assume that
C(v) ≥ 2.

If C(v) = 2, then move a pebble from v to one of its neighbors to form C∗. Then
C∗ is a configuration on G′ of size n− 1+x, which by induction is r-solvable. On the
other hand, if C(v) ≥ 3, then C(v) = 3. We can make the above argument for each
cone vertex; thus we may assume that C(v) = 3 for every cone vertex different from r.
Hence no neighbor of r is adjacent to more than one cone vertex, and every neighbor
of r adjacent to some cone vertex must have no pebble. Furthermore, if some x ∈ K
has 2 pebbles, then we can move pebbles greedily from v to its common neighbor r′

of r, from x to r′, and then from r′ to r. Hence we may assume that C(x) ≤ 1 for all
x ∈ K.

Recall that there are at least two cone vertices. If v is a cone vertex with neighbor
v′ having C(v′) ≥ 1, then move a pebble from another cone vertex u to its common
neighbor u′ of r. Then move a second pebble from v to v′ to u′ to r. Thus we must
have C(Nv) = 0 for every cone vertex v.

We claim that the neighborhoods of cone vertices are pairwise disjoint. Indeed,
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suppose two cone vertices u and v have a common neighbor x. If there is a third cone
vertex w (necessarily having 3 pebbles), then move one to its common neighbor w′ of
r. Then move pebbles from u and v to x, then from x to w′ to r. Thus there are no
other cone vertices. As mentioned above, if u and v are the only cone vertices, then
Nu and Nv are disjoint. This proves the claim.

Now we may partition G − r into closed neighborhoods of cone vertices and one
extra part K ′ consisting of vertices of K adjacent to no cone. Notice that the above
arguments show that C([Nv]) = 3 for every cone vertex v. Moreover, 3 = |[Nv]| + 1
when dv = 1 (i.e., v′ ∈ X), and 3 ≤ |[Nv]| otherwise. Also, C(K ′) ≤ |K ′|. Hence
|C| ≤ n− 1 + x, a contradiction.

We finish this section with a result that will be used to prove Theorem 13. Define
πk(G, r) to be the minimum number of pebbles t so that from every configuration of
size t one can move k pebbles to r (such a configuration is called k-fold r-solvable).
For example, π1(G, r) = π(G, r).

Recall that xr = |X − {r}|.
Theorem 6. If r ∈ K and δ = δ∗(G, r), then

π2(G, r) =

⎧⎨
⎩

n+ xr + 4 if δ = 1,
n+ 6− δ if 1 < δ < 4,
n+ 2 if δ ≥ 4.

Proof. Suppose δ = 1. Choose s to be a vertex at distance 2 from r with ds = δ.
The lower bound is given by the following configuration C of size n+ xr + 3 that is
not 2-fold r-solvable: we place 0 pebbles on r and each cut vertex, 7 on s, 3 on one
leaf per vertex in (X − {r})−Ns, and 1 everywhere else. Evidently, the only pebble
that can reach r comes from four that are on s.

For the upper bound, we assume that C is a configuration of size n+xr + 4 that
cannot place 2 pebbles on r. If we can place one pebble on r using at most 3 pebbling
steps, then Theorem 4 says we can place another on r with the remaining n + xr

pebbles, so we suppose otherwise.
This means that C(x) ≤ 1 for all x ∈ K, C(x) ≤ 3 for all x, C(Nx) = 0 for all

x ∈ S+ = S2 ∪ S3, and Nx ∩ Ny = ∅ for all x, y ∈ S+. Now every x ∈ S+ satisfies
|[Nx]|+ 1 ≥ 3 ≥ C(x) = C([Nx]), with equality if and only if x is a leaf. Hence, with
L denoting the set of leaves, L+ = L ∩ S+ and U = V − ∪x∈S+ [Nx], we have

|C| =
∑
x∈L+

C([Nx]) +
∑

x∈S+−L+

C([Nx]) +
∑
x∈U

C(x)

≤
∑
x∈L+

(|[Nx]|+ 1) +
∑

x∈S+−L+

|[Nx]|+ (|U | − 1)

≤ n+ xr − 1,

a contradiction.
Now suppose that 1 < δ < 4—notice that xr = 0 when δ > 1. The lower bound

comes from the configuration that places 7 on s, 0 on r and Ns, and 1 everywhere
else, having size n+ 5− δ. Once again, the only pebble that can reach r comes from
four that are on s.

The very same upper bound argument above works here when δ = 2, so we assume
that δ = 3, whereby C has size n + 3. Suppose C is not 2-fold r-solvable. Then by
Theorem 4 we have π1(G, r) = n; it must be that:

1. C(r) = 0;
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1456 L. ALCÓN, M. GUTIERREZ, AND G. HURLBERT

2. C(x) ≤ 1 for every x ∈ K;
3. if x ∈ S and C(x) ≥ 2, then C(Nx) = 0;
4. (by induction) C(x) ≥ 2 for every x ∈ S − {s}; and
5. if there exists a vertex x �= s at distance 2 from r with dx = δ, then C(s) ≥ 2.

Now, if there exists x ∈ S − {s}, then by part 4 we have C(x) ≥ 2, and by part
3 we have C(Nx) = 0. Let h ∈ Nx, h �= r, and consider G′ = G − h. Notice that
δ∗(G′, r) ≥ δ− 1 = 2 so that, by induction, π2(G

′, r) = n− 1+6− δ∗(G′, r) ≤ n+3 =
|C|. Thus C is 2-fold r-solvable, a contradiction.

Otherwise, S−{s} = ∅, and we can assume K = {r} ∪Ns. It follows that n = 5,
|C| = 8, and C is 2-fold r-solvable, a contraction.

Finally, suppose that δ ≥ 4. In this case the lower bound comes from the config-
uration with 3 on s, 0 on r, and 1 everywhere else, having size n+ 1. Here, the only
pebble that can reach r comes from two on s.

For the upper bound, let C be a configuration of size n + 2 that is not 2-fold
r-solvable. Since, by Theorem 4, we have π(G, r) = n, it must be that C(r) = 0, and
C(x) ≤ 1 for every x ∈ K. We will use induction on |K|, with the base cases being
all split graphs G and roots r such that δ∗(G, r) < 4, for which we have just shown
that the result is true. Note that as |K| decreases, eventually δ∗ < 4.

Let x ∈ K − {r}. Because δ ≥ 4, G − x is connected and has no cut vertices
except possibly r. Denote δ′ = δ∗(G − x, r). Notice that δ′ ≥ δ − 1, and so, by the
inductive hypothesis,

π2(G− x, r) =

{
n− 1 + 6− 3 = n+ 2 when δ′ = 3,
n− 1 + 2 = n+ 1 when δ′ ≥ 4.

This implies that if C(x) = 0, then C is 2-fold r-solvable, a contradiction.
Therefore, C(x) = 1 for every x ∈ K − {r}, thus C(S) = n+ 2 − |Kr| = |S|+ 3.

This means that in S there is a vertex with at least 4 pebbles or there are two vertices
with at least 2 pebbles each. In both cases we can place 2 pebbles on r, a contradiction
which completes the proof.

4. Eccentricity three. In the case that ecc(r) = 3, define D3(r) to be the set
of vertices at distance 3 from r, with δ = δ∗(G, r), and let s ∈ D3(r) be chosen
to have ds = δ. Denote by S the set of cone vertices of G, with Sv = S − {v} and
Srs = S−{r, s}. Also, letKv = K−Nv andKrs = Kr−Ns, and defineXrs = X∩Krs,
with xrs = |Xrs|. Now let X0 be the set of cut vertices of Nr adjacent to some cone
vertex in Sr, with x0 = |X0|. Note that xrs > 0 implies ds = 1.

Define the following four functions:

trs(G, r) = n+ xrs + 6− dr − ds,

tr(G, r) = n+ xrs + 2− dr,

ts(G, r) = n+ xrs + x0 + 2− ds,

t0(G, r) = n+ xrs + x0,

and let t(G, r) = max{tα(G, r) | α ∈ {rs, r, s, 0}}. Notice that t is well defined: the
selection of vertex s does not change the value of t. Furthermore, the choice of S in
the split representation of G does not influence t either. Also, if G is r-Phoenix, then
dr = 2, x0 = xrs = 0, and ds ≥ 4, which yields t(G, r) = n in this instance.

Next, define the following four configurations Cα of sizes |Cα| = tα(G, r) − 1.
Crs: 0 on r, Nr, Ns, Xrs; 7 on s, 3 on one leaf per cut vertex in Xrs;

and 1 everywhere else.
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Fig. 2. Graph of cases in Lemma 8.

Cr: 0 on r, Nr, and Xrs; 3 on s and on one leaf per cut vertex in
Xrs; and 1 everywhere else.

Cs: 0 on r, Ns, Xrs, and X0; 3 on s and on one leaf per cut vertex
in Xrs ∪X0; and 1 everywhere else.

C0: 0 on r, Xrs, and X0; 3 on one leaf per cut vertex in Xrs ∪X0;
and 1 everywhere else.

Also, in the case that G is r-Phoenix, define the configuration CP by placing 0 on
{r, a, b, c}, 3 on p and q, and 1 everywhere else. Notice that CP witnesses that
π(G) ≥ n+ 1 for every r-Phoenix graph G.

Lemma 7. Each Cα is r-unsolvable.

Proof. For α ∈ {s, 0}, Cα is r-unsolvable because the only pebbling moves avail-
able are from the cones with 3 pebbles to K, and after those no pebbling move is
available. In Cr, the only move available is from s to some v ∈ Ns, and then from v
along any path to some u ∈ Nr, at which point no more moves are available. In Crs,
the leaves with 3 pebbles can only move to their neighbors, at which point they stop.
Then s can only move 3 to its neighbor, at which point it can travel along any path
to some neighbor of r and stop there. Finally, as mentioned in the proof of Theorem
5, CP is r-unsolvable on r-Pereyra graphs.

Lemma 8. With the values of tα defined above, we list when (if and only if) each
is largest.

(rs) trs ≥ tα for all α ∈ {s, r, 0} when ds ≤ 4, dr + x0 ≤ 4, and dr + ds + x0 ≤ 6;
(r) tr ≥ tα for all α ∈ {rs, s, 0} when ds ≥ 4 and dr + x0 ≤ 2;
(s) ts ≥ tα for all α ∈ {rs, r, 0} when dr + x0 ≥ 4 and ds ≤ 2;
(0) t0 ≥ tα for all α ∈ {rs, s, r} when dr + ds + x0 ≥ 6, dr + x0 ≥ 2, and ds ≥ 2.

Proof. The proof is easy to check (see Figure 2).

The next lemma shows how the function t changes when some vertex is removed.
We say that a vertex v has a false twin if there exists v′ nonadjacent to v such that
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Nv = Nv′ .

Lemma 9. Let v ∈ Srs. Then:

1. If dv ≥ 2, then t(G− v, r) = t(G, r) − 1.
2. If dv = 1 and v has at least one false twin different from r, then t(G− v, r) =
t(G, r) − 1.

3. If dv = 1 and r is the only false twin vertex of v, then t(G−v, r) ≤ t(G, r)−1.
4. If dv = 1, v has no false twins, and Nv⊆Xrs, then t(G− v, r) = t(G, r) − 2.
5. If dv = 1, v has no false twins, and Nv⊆X0, then t(G− v, r) ≤ t(G, r) − 1.

Proof. The proof follows from Lemma 8.

Corollary 10. If v ∈ Srs, then t(G− v, r) ≤ t(G, r) − 1.

Lemma 11. If dr ≥ 2, x ∈ Nr, and Nx ∩ S = {r}, then t(G− x, r) ≤ t(G, r).

Proof. The proof follows from Lemma 8.

Lemma 12. Let G be non–r-Phoenix, δ = δ∗(G, r), and assume there exists v ∈ Sr

such that G′ = G − v is r-Phoenix. Then exactly one of the following statements is
true.

1. v is the only vertex of G with degree 1, and Nv⊆Nr. In this case, dr(G) =
dr(G

′) = 2, δ ≥ 4, xrs = 0, and x0 = 1; thus t(G, r) = n+ 1.
2. δ ≤ 3 and v is the only vertex of D3(r) with dv = δ. In this case,

t(G, r) =

{
n+ 3 if δ = 1,
n+ 4− δ if 2 ≤ δ ≤ 3.

In both cases, if w �= r is a cone vertex of an r-Pyramid of G, then G − w is not
r-Phoenix and t(G− w, r) = t(G, r)− 1.

Proof. This follows from the definition of r-Phoenix and from Lemma 8.

Theorem 13. If r is a cone vertex with ecc(r) = 3, then π(G, r) = t(G, r) +
φ(G, r), where φ(G, r) = 1 if G is r-Phoenix and 0 otherwise.

5. Proof of Theorem 13. The lower bound is given by Lemma 7. The upper
bound follows by induction on n = |V (G)|. The theorem is trivially true if n = 4.
Suppose that G is a graph with at least 5 vertices, r a cone vertex with ecc(r) = 3, and
C a configuration on G of size (without loss of generality) exactly t = t(G, r)+φ(G, r).
We assume, for the sake of contradiction, that C is not r-solvable; in particular,
C(r) = 0. Among vertices in D3(r), let s be chosen to have the minimum degree
δ = δ∗(G, r) and, among such vertices, having the maximum number of pebbles.

5.1. G is r-Phoenix. Since G is r-Phoenix, then t(G, r) = n and so |C| = n+1.
Let p ∈ S be a cone vertex of an r-Pyramid such that Np = {a, c}. It is clear that
C(p) ≤ 3. By Lemma 9(1), t(G−p, r) = t(G, r)−1. Thus, by the inductive hypothesis,
we have π(G−p, r) = t(G−p, r)+φ(G−p, r) = t(G, r)−1+φ(G−p, r) ≤ t(G, r) = n.

If C(p) = 2, then we can move a pebble from p to Np, and if C(p) = 1, then we
do nothing. In each case we have created a configuration C′ on G− p of size n, which
implies that C′, and hence C is r-solvable, a contradiction. So we may assume that
C(p) = 3 and, by an analogous argument, that C(q) = 3, where q is a cone vertex of
the r-Pyramid such that Nq = {b, c}. Moreover, we can assume that p and q are the
only cone vertices with degree 2 whose neighborhoods are {a, c} or {b, c}. It follows
that the graph G− p is not r-Phoenix, so φ(G − p, r) = 0.

Then, as above, we obtain π(G− p, r) = t(G, r)− 1 + φ(G− p, r) = t(G, r)− 1 =
n− 1. Moving a pebble from p to Np, we obtain a configuration C′ on G− p of size
n+1−3+1 = n−1, which implies that C′, and hence C is r-solvable, a contradiction.
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5.2. G is not r-Phoenix. Since G is not r-Phoenix, we have |C| = t(G, r) +
φ(G, r) = t(G, r) + 0 = t(G, r). We break this into two cases, subsections 5.2.1 and
5.2.2.

5.2.1. G − v is r-Phoenix for some v ∈ Sr. We consider the two different
cases of Lemma 12.

1. The first case of Lemma 12 has t(G, r) = n+1 and v at distance 2 of r; thus
C(v) ≤ 3.
(a) If C(v) ≤ 2, we obtain a configuration C′ of G−v with at least |C|−1 =

t(G, r) − 1 = n pebbles. Since G − v is r-Phoenix, t(G − v, r) = n− 1,
then, by the inductive hypothesis, π(G−v, r) = t(G−v, r)+φ(G−v, r) =
n−1+1 = n. This means that C′, and so C, is r-solvable, a contradiction.

(b) If C(v) = 3, let w �= r be a cone vertex of an r-Pyramid having distance
2 from v. It is clear that C(w) ≤ 1; thus we obtain a configuration
|C′| of G − w with at least |C| − 1 = t(G, r) − 1 = n pebbles. By the
observation at the end of Lemma 12, t(G − w, r) = n + 1 − 1 = n and
G−w is not r-Phoenix; then, by the inductive hypothesis, π(G−w, r) =
t(G−w, r) +φ(G−w, r) = n+0 = n. This means that C′, and thus C,
is r-solvable, a contradiction.

2. The second case of Lemma 12 has two options for t(G, r), depending on the
value of δ.
(a) If dv = δ = 1, then |C| = t(G, r) = n+3. We can assume that C(v) ≤ 7.

i. If C(v) ≤ 6, then, since by the inductive hypothesis π(G − v, r) =
t(G− v, r) + φ(G− v, r) = n− 1 + 1 = n, it is easy to see that C is
r-solvable, a contradiction.

ii. If C(v) = 7, then let w �= r be a cone vertex of an r-Pyramid. It
is clear that C(w) ≤ 1; thus we have a configuration C ′ on G − w
of size at least n + 2. By the observation at the end of Lemma 12,
t(G−w, r) = n+3− 1 = n+2. Also, G−w is not r-Phoenix so, by
the inductive hypothesis, π(G−w, r) = t(G−w, r) +φ(G−w, r) =
n+ 2+ 0 = n+ 2. This means that C′, and thus C, is r-solvable, a
contradiction.

(b) If 2 ≤ dv = δ ≤ 3, then |C| = t(G, r) = n + 4 − d. Let p be a cone
vertex of an r-Pyramid such that Np = {a, c} with a ∈ Nr. Since G− p
is not r-Phoenix, by Lemma 9 and the inductive hypothesis, we can
assume that C(p) = 3. Thus we find the configuration C′, equal to C
on G− {w, r}, having size |C| − 3 = n+ 4− d− 3 = n+ 1− d ≥ n− 2.
By Theorem 4 we have π(G−{p, r}, a) = n− 2, and so C′ is a-solvable,
implying that C is r-solvable, a contradiction.

5.2.2. For every x ∈ Sr, G − x is not r-Phoenix. Recall that s ∈ D3(r)
has the maximum number of pebbles among those vertices of D3(r) having ds = δ.

1. Some v ∈ Srs has C(v) ≤ 2. We obtain a configuration C′ of G − v with at
least |C| − 1 = t(G, r)− 1 pebbles. By Corollary 10, t(G− v, r) ≤ t(G, r)− 1,
so by the inductive hypothesis π(G − v, r) = t(G − v, r) + φ(G − v, r) ≤
t(G, r)− 1 + 0 = t(G, r)− 1. This means that C′, and hence C, is solvable, a
contradiction.

2. Some v ∈ Srs has C(v) ≥ 4 and every other u ∈ Srs has C(u) ≥ 3. Notice
that we can assume that v ∈ D3(r), that C(x) ≤ 3 for every x ∈ Srs − {v},
and that C(y) = 0 and Ny ∩ S = {r} for all y ∈ Nr (in particular, x0 = 0).
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Let r′ ∈ Nr and assume that dr = 1. By Theorem 6 we have

π2(G− r, r′) =

⎧⎨
⎩

n− 1 + xrs + 1 + 4 = n+ xrs + 4 if δ = 1,
n− 1 + 6− δ = n+ 5− δ if 1 < δ < 4,
n− 1 + 2 = n+ 1 if δ ≥ 4.

By Lemma 8 (since xrs = 0 when δ > 1) we also have

t(G, r) =

⎧⎨
⎩

n+ xrs − 1− 1 + 6 = n+ xrs + 4 if δ = 1,
n− 1− δ + 6 = n+ 5− δ if 1 < δ < 4,
n− 1 + 2 = n+ 1 if δ ≥ 4.

Thus C can place 2 pebbles on r′, then 1 on r, a contradiction. It follows
that we can assume that dr ≥ 2, so that the graph G− r′ is connected.
The configuration C′, the restriction of C to G − r′, has size |C′| = |C| =
t(G, r). By Lemma 11, t(G− r′, r) ≤ t(G, r). Since G− r′ is not r-Phoenix,
we know from the inductive hypothesis that π(G − r′, r) = t(G − r′, r) +
φ(G− r′, r) = t(G− r′, r) ≤ t(G, r). This means that C′, and therefore C, is
solvable, a contradiction.

3. Srs = ∅ or every v ∈ Srs has C(v) = 3.
(a) x0 ≥ 1: Let w be a leaf adjacent to r′ ∈ Nr. By Theorem 4, π(G − r −

w, r′) = n− 2 + xrs + γ, where γ = 1 when ds = 1 and γ = 0 otherwise.
We move a pebble from w to r′ and consider the configuration C′, the
restriction of C to G − r − w, of size t(G, r) − 3. Notice that when
ds = 1 we have t(G, r) − 3 ≥ ts(G, r) − 3 = n+ xrs + x0 − ds+ 2− 3 =
π(G − r − w, r′) − γ + x0 − ds + 1 ≥ π(G − r − w, r′), and that when
ds > 1 we have t(G, r)− 3 ≥ t0(G, r)− 3 = n+xrs+x0− 3 = π(G− r−
w, r′)− γ +x0 − 1 ≥ π(G− r−w, r′). Thus, in both cases, it is possible
to move another pebble to r′, a contradiction.

(b) x0 = 0 and xrs ≥ 1: Notice that in this case C(s) ≥ 3. Let w be a leaf
adjacent to w′ ∈ Krs.
i. If w has no false twins, by the inductive hypothesis and Lemma 9(4),
π(G − w, r) = t(G − w, r) = t(G, r) − 2. We move a pebble from
w to w′ and consider the configuration C′, the restriction of C to
G−w (except with C′(w′) = C(w′)+1), having size t(G, r)−3+1 =
t(G, r) − 2 = π(G− w, r). This makes C′, and hence C, r-solvable,
a contradiction.

ii. If w has a false twin, then we can assume that s has no false twins
and C(s) = 3. Thus w can be chosen as s and the proof follows as
above.

(c) x0 = 0 and xrs = 0: Recall from Lemma 8 that in this case we have

t(G, r) =

⎧⎪⎪⎨
⎪⎪⎩

n− dr − ds + 6 if dr ≤ 4, ds ≤ 4, dr + ds ≤ 6; (rs)
n− dr + 2 if dr ≤ 2, ds ≥ 4; (r)
n− ds + 2 if dr ≥ 4, ds ≤ 2; (s)
n if dr ≥ 2, ds ≥ 2, dr + ds ≥ 6. (0)

Furthermore, when dr = 1 we have from Theorem 6 that |C| = t(G, r) ≥
π2(G− r, r′), where r′ is the neighbor of r. Thus we can place 2 pebbles
on r′ and hence solve r, a contradiction. So we will assume hereafter
that dr ≥ 2.
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i. C(Nr) > 0: Then there exists r′ ∈ Nr with C(r′) = 1. By Theorem
4, π(G − r, r′) = n − 1 + γ, where γ = 1 when ds = 1 and γ = 0
otherwise. We consider the configuration C′, the restriction of C
to G − r (except with C′(r′) = 0), having size t(G, r) − 1, which
is at least π(G − r, r′) when ds > 1. When ds = 1 we see that
t(G, r) − 1 ≥ ts(G, r) − 1 = n − 1 + 2 − 1 = π(G − r, r′). In either
case, C′ is r′-solvable, a contradiction.

ii. C(Nr) = 0: Define the sets

Ars = {x ∈ Srs | Nx ∩Nr �= ∅, Nx ∩Ns �= ∅},
Ar = {x ∈ Srs | Nx ∩Nr �= ∅, Nx ∩Ns = ∅},
As = {x ∈ Srs | Nx ∩Nr = ∅, Nx ∩Ns �= ∅}, and
A0 = {x ∈ Srs | Nx ∩Nr = ∅, Nx ∩Ns = ∅}.

Of course, Ki = ∅ for i ≥ 4. Notice that, whenever C(s) ≥ 4,
Ar �= ∅, Ars �= ∅, K1 ∩Nr �= ∅, or some pair of vertices x, y ∈ Srs

satisfies Nx∩Ny �= ∅, we can assume that both Ki = ∅ for i ≥ 2 and
that either A0 = ∅ or the sets [Nx] for x ∈ A0 are pairwise disjoint.
We will analyze the possible intersections between the neighbor-
hoods of the cone vertices to compare the number of vertices and
the size of the configuration. We consider different cases depending
on the number of pebbles in s. Let K ′ = K −N(S).
A. 6 ≤ C(s) ≤ 7: In this case Ar = Ars = As = ∅. Thus n =

1+dr+1+ds+
∑

x∈A0
|[Nx]|+|K ′| ≥ 1+dr+1+ds+3|A0|+|K1|.

We also have C(K) = |K1|, and so |C| = 3|A0| + C(s) + |K1|.
Then |C| = t(G, r) ≥ n − dr − ds + 6 ≥ 1 + dr + 1 + ds +
3|A0|+ |K1| − dr − ds + 6 = |C| − C(s) + 8. Thus C(s) ≥ 8, a
contradiction.

B. 4 ≤ C(s) ≤ 5: In this case Ar = Ars = ∅. Moreover, K1⊆Ns,
|As| + |K1| ≤ 1, and Nx ∩ Ny = ∅ for all {x, y}⊆Srs (x �= y).
This means that |C| = 3|A0| + 3|As| + |K1| + C(s) and n ≥
1+dr+1+ds+

∑
x∈A0

|[Nx]|+ |As| ≥ dr+ds+3|A0|+2+ |As|.
Together these imply that |C| = t(G, r) ≥ n − dr − ds + 6 ≥
3|A0| + 8 + |As| = |C| − 2|As| − |K1| − C(s) + 8, and hence
C(s) ≥ 8− 2|As| − |K1| ≥ 6, a contradiction.

C. 2 ≤ C(s) ≤ 3:
I. If Ar �= ∅, then Ars = As = ∅, Ki = ∅ for i ≥ 2, and
K1⊆NAr −Nr −Ns.
	 If |Ar| ≤ 2, then n ≥ 1 + dr + 1 + ds +

∑
x∈A0

|[Nx]| +
|Ar| + |K1| ≥ dr + ds + 2 + 3|A0| + |Ar | + |K1|. Also
3|A0| + 3|Ar| + C(s) + |K1| = |C| ≥ n − dr − ds + 6 ≥
8 + 3|A0| + |Ar| + |K1|, which implies the contradiction
that C(s) ≥ 8− 2|Ar| ≥ 4.

		 If |Ar| ≥ 3, thenK1 = ∅ and n ≥ 1+1+ds+
∑

x∈A0∪Ar
|[Nx]|

≥ ds+2+3|A0|+3|Ar|. Thus 3|A0|+3|Ar|+C(s) = |C| ≥
n−ds+2 ≥ 4+3|A0|+3|Ar|, which implies the contradiction
that C(s) ≥ 4.

II. If Ar = ∅ and Ars �= ∅, then Ars contains exactly one vertex
w and K1⊆Nw. In this case we see that the sets [Nr], [Nx]
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(for all x ∈ A0), K
1, and [Ns] are pairwise disjoint. Thus

|C| ≤ 3 + |K1| + 3|A0| + C(s) and |C| = t(G, r) ≥ n − dr −
ds+6 ≥ 1+dr +1+ |K1|+3|A0|+1+ds−dr −ds+6, which
implies C(s) ≥ 6, a contradiction.

III. If Ar = Ars = ∅, let r′ ∈ Nr and consider G′ = G−([Nr]−r′).
Notice that if δ = 1, then, by Theorem 6,

π2(G
′, r′) =

⎧⎨
⎩

n− dr + xrs + 1 + 4 if δ = 1,
n− dr + 6− δ if 1 < δ < 4,
n− dr + 2 if δ ≥ 4.

Since C(Nr) = 0, the restriction of C to G′ has size

t(G, r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n+ xrs + 5− dr if δ = 1, dr ≤ 4,
n+ xrs + 1 if δ = 1, dr ≥ 4,
n+ 4− dr if δ = 2, dr ≤ 4,
n if δ = 2, dr ≥ 4,
n+ 3− dr if δ = 3, dr ≤ 3,
n if δ = 3, dr ≥ 3,
n+ 1 if δ ≥ 4, dr = 1,
n if δ ≥ 4, dr ≥ 2.

Thus C is 2-fold r′-solvable, hence r-solvable, a contradiction.
D. C(s) ≤ 1: In this case, we have a configuration C′ (the restric-

tion of C to G − s) of size at least |C| − 1 = t(G, r) − 1 on
the graph G − s. We will show that π(G − s, r) ≤ t(G, r) − 1,
implying that C′, and hence C is r-solvable, a contradiction.
I. If r has eccentricity 2 in G− s and G− s is not Pereyra, then
π(G− s, r) = n− 1. On the other hand t(G, r) ≥ n.

II. If r has eccentricity 2 in G − s and G − s is r-Pereyra, then
π(G− s, r) = n− 1 + 1 = n and dr = 2. Furthermore, ds ≤ 3
because G is not r-Phoenix. Hence t(G, r) = n− 2− ds +6 ≥
n+ 1.

III. If r has eccentricity 3 in G−s, then, by the inductive hypoth-
esis, π(G− s, r) = t(G− s, r), since we know that G− s is not
r-Phoenix. Let δ′ = δ∗(G − s, r) and notice that, since any
cone vertex of Srs has 3 pebbles and s has just 1 pebble, then
ds < δ′. We have from Lemma 8 that

t(G−s, r) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

n− dr − δ′ + 5 if dr ≤ 4, δ′ ≤ 4, (rs)′

and dr + δ′ ≤ 6;
n− dr + 1 if dr ≤ 2, δ′ ≥ 4; (r)′

n− δ′ + 1 if dr ≥ 4, δ′ ≤ 2; (s)′

n− 1 if dr ≥ 2, δ′ ≥ 2, (0)′

and dr + δ′ ≥ 6.

Observe that the only possible change of cases from G to G−s
is from (rs) to (r)′ or (0)′, or from (s) to (0)′. It is easy to
see that in all cases t(G− s, r) ≤ t(G, r) − 1.

This completes the proof.
For n = 2m (+1 if n is odd), define the sun Sn to be the split graph with

|K| = m and m leaves matched with the vertices of K (and an extra leaf joined to K
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if necessary). According to Theorem 13 we have π(Sn) = n+ (m− 2) + (6− 1− 1) =
�3n/2�+ 2, showing that the pebbling bound for diameter 3 graphs given in [29] is
tight.

6. Algorithms. We begin with a key construction for finding a Pyramid in a
split graph G. Suppose that r is a cone vertex of G with dr = 2. Then let X be the
set of cut vertices of G, let W be the set of degree 2 vertices of G whose neighbors
are in G −X , and define the graph H = H(G) to have vertices ∪v∈WNv and edges
{Nv}v∈W .

Theorem 14. Given a split graph G and root r, deciding whether G is r-Pereyra
is a linear-time problem.

Proof. Of course, G being r-Pereyra requires dr = 2. The graph H = H(G) takes
linear time to construct. Then G is r-Pereyra if and only if H has a triangle including
the edge Nr, which can be checked in linear time.

Corollary 15. If G is a split graph with root r, then π(G, r) can be calculated
in linear time.

Proof. The set of cut vertices X of G is the neighborhood of the degree one cone
vertices, and so can be calculated in linear time at the start. For r ∈ K, Theorem 4
determines π(G, r) immediately. For a cone vertex r, we calculate its eccentricity in
linear time via breadth-first search. If its eccentricity is 2, then Theorem 5 determines
π(G, r) in linear time from recognizing whether it is r-Pereyra or not. Otherwise, we
have ecc(r) = 3. In the breadth-first search we also learned of all cone vertices s at
distance 3 from r. As we encounter each such s we keep track of the one having least
degree. At the end we calculate t(G, r) immediately from Lemma 8 and find π(G, r)
via Theorem 13.

Finding a triangle in a graph is a well-known problem in combinatorial optimiza-
tion. The best known algorithm is found in [1], below. Let ω ∼= 2.376 be the exponent
of matrix multiplication, and define β = 2ω/(ω + 1) ∼= 1.41.

Algorithm 16 (see [1, Theorem 3.5]). Deciding whether a graph G with m edges
contains a triangle, and finding one if it does, can be completed in O(mβ) time.

Theorem 17. Given a split graph G, there is an O(n1.41) algorithm to decide
whether G is Pereyra.

Proof. We define H = H(G) as above and see that G is Pereyra if and only if H
has a triangle. Then Algorithm 16 decides this in O(n1.41) time, since the number of
edges of H is at most the number of vertices of G.

Theorem 18. If G is a diameter 3 split graph, then π(G) is given as follows.
1. If x ≥ 2, then

π(G) = n+ x + 2.
2. If x = 1, then

π(G) =

{
n+ 5− δ∗ if some leaf r has ecc(r) = 3 and δ∗ = δ∗(G, r) ≤ 4,
n+ 1 otherwise.

3. If x = 0, then

π(G) =

⎧⎪⎪⎨
⎪⎪⎩

n+ 4− δ∗ if there is a cone vertex r with dr = 2, ecc(r) = 3
and δ∗ = δ∗(G, r) ≤ 3,

n+ 1 if no such r exists and G is Pereyra,
n otherwise.

Proof. Recall from Proposition 1 that π(G) = π(G, r) for some cone root r.
If x ≥ 2, then there exist leaves r and s at distance 3 from each other (in fact,

if r is a leaf, then so is s). For every such r and s we have t(G, r) = trs(G, r) =
n + xrs + 6 − dr − ds from Lemma 8. Also, xrs = x − 2 and dr = ds = 1, so that
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t(G, r) = n+ x+ 2 when r is a leaf. When ecc(r) = 3 but r is not a leaf, we see that
t(G, r) ≤ n+ x + 2 (with equality if and only if dr = 2, ds = 1, and x0 = 0). Finally,
when ecc(r) = 2 we have from Theorem 5 that π(G, r) = n+x+ψ < n+x+2. Hence
Theorem 13 implies π(G) = n+ x + 2.

If x = 1, then G is not Phoenix. When ecc(r) = 2, G is not Pereyra, and so
Theorem 5 gives π(G, r) = n+ 1. When ecc(r) = 3, the cut vertex v is a neighbor of
either r or s, and so xrs = 0. The function tr = n+2−dr is maximized at n+1 when
r is a leaf, so π(G) ≥ n+1. Obviously t0 ≤ n+1, and ts = n+x0+2−ds ≤ n+1, since
ds = 1 implies x0 = 0. The function trs is also maximized when r is a leaf. Indeed, if
v �∈ Nr then s is a leaf. Then with r′ = s having corresponding s′ ∈ D3(r

′) we have
tr′s′ ≥ trs because dr′ = ds = 1 and ds′ ≤ dr. So we may assume that v ∈ Nr. If r is
not a leaf, then let w be a leaf. But then with r′ = w having corresponding s′ ∈ D3(r

′)
we have tr′s′ > trs since dr′ < dr and ds′ = ds. Thus we have π(G) ≥ n+5−ds when
r is a leaf and s ∈ D3(r) with ds = δ∗.

Finally, if x = 0, we note from Lemma 8 and Theorem 13 that the only way to
have π(G, r) ≥ n + 1 when some cone vertex r has ecc(r) = 3 is either via trs (with
dr = 2 and ds ≤ 3) or if G is r-Phoenix. When a cone vertex r has ecc(r) = 2, then
we have π(G, r) = n + 1 if G is r-Pereyra, by Theorem 5. Thus π(G, r) = n in all
other cases.

The above description can be reorganized as follows. Suppose that there is no
cone vertex r with dr = 2 and s ∈ D3(r) with ds = δ∗(G, r) ≤ 3. If G is Pereyra,
then it is r-Pereyra for some cone vertex r with dr = 2. Now we know that either
ecc(r) = 2 or δ∗(G, r) ≥ 4, the latter case of which makes G r-Phoenix. In either case
we get π(G, r) = n+ 1.

It is apparent from Theorem 18 that for every n ≤ k ≤ �3n/2� + 2 there is an
n-vertex split graph G with π(G) = k.

Corollary 19. Calculating π(G) when G is a split graph can be completed in
O(n1.41) time.

Proof. Recall that we discover the value of x in linear time. So if x ≥ 2, then
π(G) = n+ x + 2. When x = 1 we let r be any leaf of G. Using breadth-first search
from r we discover whether D3(r) �= ∅ and, if so, find s ∈ D3(r) with ds = δ∗(G, r).
Thus, in linear time we know π(G).

Now, if x = 0, we describe a linear algorithm either to find a cone vertex r with
dr = 2 and some s ∈ D3(r) having ds ≤ 3 or to conclude that none exist. For ease of
notation, we write di for dvi and Ni for Nvi .

In linear time we can reorder the vertices of G so that di = 2 for 1 ≤ i ≤ k and
di = 3 for k + 1 ≤ i ≤ l. Initialize λ(i) to be empty for every vertex vi of G.

Then as i ranges from 1 to k we perform the following two steps. First, we add
i to λ(j) for each vj ∈ Ni. Second, we check the size of Li = ∪vj∈Niλ(j). If |Li| < i,
then we choose any j ∈ {1, . . . , i}−Li—for such a j we know that Ni∩Nj = ∅—then
set r = vj and s = vi, and halt the algorithm. If |Li| ≥ i, then we continue to the
next i.

If it is the case that r and s have not yet been found, we let i range from k + 1
to l, performing the following step each time. If |Li| < k, then we choose any j ∈
{1, . . . , k} −Li—for such a j we know that Ni ∩Nj = ∅—then set r = vj and s = vi,
and halt the algorithm. If |Li| ≥ k, then we continue to the next i.

If we have not yet found r and s by now, they do not exist. This algorithm is
linear because of the bounded degrees.

If r and s were found, then π(G) = n+ 6− dr − ds. If no such r and s exist, we
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use Theorem 17 to discover whether G is Pereyra, which takes O(n1.41) time. If it is,
then π(G) = n+ 1, otherwise π(G) = n.

7. Remarks. We begin by noting the following corollary to Theorem 18.

Corollary 20. If G is a split graph with δ(G) ≥ 3, then G is Class 0.

Proof. The first two instances of the x = 0 case of Theorem 18 require δ(G) =
2.

Note that this implies that every 3-connected split graph is Class 0. The analogous
result with “split” replaced by “diameter 2” was proven in [5]. The full characteriza-
tion of diameter 2, 2-connected, non-Class 0 graphs in [5] involves the appearance of
a Pyramid, whereas for 2-connected, non-Class 0 split graphs, Pereyra and Phoenix
graphs play a significant role.

With the similarities in structure and function mentioned above between Pyramid
and Pereyra graphs, one wonders two things. First, in the diameter 2 case, it is possible
to add edges between twin cone vertices (thus leaving the class of split graphs) without
changing the pebbling number; is the same true for diameter 3? Second, what graph
(or family of graphs) might appear in a formulation of the pebbling number of a
2-connected diameter 4 graph?

It is interesting that, while one can calculate the pebbling number of a diameter 2
graph in polynomial time, it was shown in [8] that it is NP-complete to decide whether
a given configuration on a diameter 2 graph can solve a fixed root. (The same was
proven more recently for planar graphs in [7]—the problem is polynomial for planar
diameter 2 graphs.) In that context we offer the following.

Problem 21. Let C be a configuration on a split graph G with root r. Is it
possible in polynomial time to determine if C is r-solvable?

We also offer the following two conjectures.

Conjecture 22. If G is chordal, then π(G) can be calculated in polynomial
time.

Conjecture 23. For fixed d, if diam(G) = d, then π(G) can be calculated in
polynomial time.

At the very least we believe that, for a chordal or fixed diameter graph G, it can
be decided in polynomial time whether or not G is Class 0.
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1466 L. ALCÓN, M. GUTIERREZ, AND G. HURLBERT

[7] C. A. Cusack, L. Dion, and T. Lewis, The complexity of pebbling reachability in planar
graphs, preprint.

[8] C. A. Cusack, T. Lewis, D. Simpson, and S. Taggart, The complexity of pebbling in
diameter two graphs, SIAM J. Discrete Math., 26 (2012), pp. 919–928.

[9] A. Czygrinow and G. Hurlbert, Girth, pebbling and grid thresholds, SIAM J. Discrete
Math., 20 (2006), pp. 1–10.

[10] A. Czygrinow, G. Hurlbert, H. A. Kierstead, and W. T. Trotter, A note on graph
pebbling, Graphs Combin., 18 (2002), pp. 219–225.

[11] S. Elledge and G. H. Hurlbert, An application of graph pebbling to zero-sum sequences in
abelian groups, Integers, 5 (2005), A17.

[12] J. R. Gilbert, T. Lengauer, and R. E. Tarjan, The pebbling problem is complete in
polynomial space, SIAM J. Comput., 9 (1980), pp. 513–525.

[13] Y. Gurevich and S. Shelah, On finite rigid structures, J. Symbolic Logic, 61 (1996), pp.
549–562.

[14] D. S. Herscovici, B. D. Hester, and G. H. Hurlbert, t-Pebbling and extensions, Graphs
Combin., 29 (2013), pp. 955–975.

[15] J. Hopcroft, W. Paul, and L. Valiant, On time versus space, J. Assoc. Comput. Mach.,
24 (1977), pp. 332–337.

[16] G. Hurlbert, Recent progress in graph pebbling, Graph Theory Notes N.Y., 49 (2005), pp.
25–37.

[17] G. Hurlbert, General graph pebbling, Discrete Appl. Math., 161 (2013), pp. 1221–1231.
[18] G. Hurlbert, The weight function lemma for graph pebbling, arXiv:1101.5641 [math.CO]

2011.
[19] G. Hurlbert, The graph pebbling page, http://mingus.la.asu.edu/∼hurlbert/pebbling/pebb.html.
[20] G. Hurlbert and H. Kierstead, Graph Pebbling Complexity and Fractional Pebbling, un-

published, 2005.
[21] L. M. Kirousis and C. H. Papadimitriou, Searching and pebbling, Theoret. Comput. Sci.,

47 (1986), pp. 205–218.
[22] M. M. Klawe, The complexity of pebbling for two classes of graphs, in Graph Theory with

Applications to Algorithms and Computer Science (Kalamazoo, MI, 1984), Wiley-Intersci.
Publ., Wiley, New York, 1985, pp. 475–487.

[23] M. P. Knapp, 2-adic Zeros of Diagonal Forms and Distance Pebbling of Graphs, preprint.
[24] J. W. H. Liu, An application of generalized tree pebbling to sparse matrix factorization, SIAM

J. Algebraic Discrete Methods, 8 (1987), pp. 375–395.
[25] K. Milans and B. Clark, The complexity of graph pebbling, SIAM J. Discrete Math., 20

(2006), pp. 769–798.
[26] L. Pachter, H. Snevily, and B. Voxman, On pebbling graphs, Congr. Numer., 107 (1995),

pp. 65–80.
[27] T. D. Parsons, Pursuit-evasion in a graph, in Theory and Applications of Graphs, Y. Alani

and D. R. Lick, eds., Springer, Berlin, 1976, pp. 426–441.
[28] M. S. Paterson and C. E. Hewitt, Comparative schematology, in Proceedings of the MAC

Conference on Concurrent Systems and Parallel Computation, Woods Hole, MA, 1970,
pp. 119–127.

[29] L. Postle, N. Streib, and C. Yerger, Pebbling graphs of diameter three and four, J. Graph
Theory, 72 (2013), pp. 398–417.

[30] R. Sethi, Complete register allocation problems, SIAM J. Comput., 4 (1975), pp. 226–248.
[31] I. Streinu and L. Theran, Sparse hypergraphs and pebble game algorithms, European J.

Combin., 30 (2009), pp. 1944–1964.
[32] D. B. West, Introduction to Graph Theory, Prentice-Hall, Upper Saddle River, NJ, 1996.

D
ow

nl
oa

de
d 

02
/2

7/
15

 to
 1

49
.1

69
.1

59
.6

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

arXiv:1101.5641
http://mingus.la.asu.edu/$\sim $hurlbert/pebbling/pebb.html


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


