6,721 research outputs found

    A Survey on Design and Implementation of Protected Searchable Data in the Cloud

    Get PDF
    While cloud computing has exploded in popularity in recent years thanks to the potential efficiency and cost savings of outsourcing the storage and management of data and applications, a number of vulnerabilities that led to multiple attacks have deterred many potential users. As a result, experts in the field argued that new mechanisms are needed in order to create trusted and secure cloud services. Such mechanisms would eradicate the suspicion of users towards cloud computing by providing the necessary security guarantees. Searchable Encryption is among the most promising solutions - one that has the potential to help offer truly secure and privacy-preserving cloud services. We start this paper by surveying the most important searchable encryption schemes and their relevance to cloud computing. In light of this analysis we demonstrate the inefficiencies of the existing schemes and expand our analysis by discussing certain confidentiality and privacy issues. Further, we examine how to integrate such a scheme with a popular cloud platform. Finally, we have chosen - based on the findings of our analysis - an existing scheme and implemented it to review its practical maturity for deployment in real systems. The survey of the field, together with the analysis and with the extensive experimental results provides a comprehensive review of the theoretical and practical aspects of searchable encryption

    Towards a secure and efficient search over encrypted cloud data

    Get PDF
    Includes bibliographical references.2016 Summer.Cloud computing enables new types of services where the computational and network resources are available online through the Internet. One of the most popular services of cloud computing is data outsourcing. For reasons of cost and convenience, public as well as private organizations can now outsource their large amounts of data to the cloud and enjoy the benefits of remote storage and management. At the same time, confidentiality of remotely stored data on untrusted cloud server is a big concern. In order to reduce these concerns, sensitive data, such as, personal health records, emails, income tax and financial reports, are usually outsourced in encrypted form using well-known cryptographic techniques. Although encrypted data storage protects remote data from unauthorized access, it complicates some basic, yet essential data utilization services such as plaintext keyword search. A simple solution of downloading the data, decrypting and searching locally is clearly inefficient since storing data in the cloud is meaningless unless it can be easily searched and utilized. Thus, cloud services should enable efficient search on encrypted data to provide the benefits of a first-class cloud computing environment. This dissertation is concerned with developing novel searchable encryption techniques that allow the cloud server to perform multi-keyword ranked search as well as substring search incorporating position information. We present results that we have accomplished in this area, including a comprehensive evaluation of existing solutions and searchable encryption schemes for ranked search and substring position search

    State of The Art and Hot Aspects in Cloud Data Storage Security

    Get PDF
    Along with the evolution of cloud computing and cloud storage towards matu- rity, researchers have analyzed an increasing range of cloud computing security aspects, data security being an important topic in this area. In this paper, we examine the state of the art in cloud storage security through an overview of selected peer reviewed publications. We address the question of defining cloud storage security and its different aspects, as well as enumerate the main vec- tors of attack on cloud storage. The reviewed papers present techniques for key management and controlled disclosure of encrypted data in cloud storage, while novel ideas regarding secure operations on encrypted data and methods for pro- tection of data in fully virtualized environments provide a glimpse of the toolbox available for securing cloud storage. Finally, new challenges such as emergent government regulation call for solutions to problems that did not receive enough attention in earlier stages of cloud computing, such as for example geographical location of data. The methods presented in the papers selected for this review represent only a small fraction of the wide research effort within cloud storage security. Nevertheless, they serve as an indication of the diversity of problems that are being addressed

    A Practical Searchable Symmetric Encryption Scheme for Smart Grid Data

    Full text link
    Outsourcing data storage to the remote cloud can be an economical solution to enhance data management in the smart grid ecosystem. To protect the privacy of data, the utility company may choose to encrypt the data before uploading them to the cloud. However, while encryption provides confidentiality to data, it also sacrifices the data owners' ability to query a special segment in their data. Searchable symmetric encryption is a technology that enables users to store documents in ciphertext form while keeping the functionality to search keywords in the documents. However, most state-of-the-art SSE algorithms are only focusing on general document storage, which may become unsuitable for smart grid applications. In this paper, we propose a simple, practical SSE scheme that aims to protect the privacy of data generated in the smart grid. Our scheme achieves high space complexity with small information disclosure that was acceptable for practical smart grid application. We also implement a prototype over the statistical data of advanced meter infrastructure to show the effectiveness of our approach

    Achieving Secure and Efficient Cloud Search Services: Cross-Lingual Multi-Keyword Rank Search over Encrypted Cloud Data

    Full text link
    Multi-user multi-keyword ranked search scheme in arbitrary language is a novel multi-keyword rank searchable encryption (MRSE) framework based on Paillier Cryptosystem with Threshold Decryption (PCTD). Compared to previous MRSE schemes constructed based on the k-nearest neighbor searcha-ble encryption (KNN-SE) algorithm, it can mitigate some draw-backs and achieve better performance in terms of functionality and efficiency. Additionally, it does not require a predefined keyword set and support keywords in arbitrary languages. However, due to the pattern of exact matching of keywords in the new MRSE scheme, multilingual search is limited to each language and cannot be searched across languages. In this pa-per, we propose a cross-lingual multi-keyword rank search (CLRSE) scheme which eliminates the barrier of languages and achieves semantic extension with using the Open Multilingual Wordnet. Our CLRSE scheme also realizes intelligent and per-sonalized search through flexible keyword and language prefer-ence settings. We evaluate the performance of our scheme in terms of security, functionality, precision and efficiency, via extensive experiments

    Efficient searchable symmetric encryption for storing multiple source data on cloud

    Full text link
    Β© 2015 IEEE. Cloud computing has greatly facilitated large-scale data outsourcing due to its cost efficiency, scalability and many other advantages. Subsequent privacy risks force data owners to encrypt sensitive data, hence making the outsourced data no longer searchable. Searchable Symmetric Encryption (SSE) is an advanced cryptographic primitive addressing the above issue, which maintains efficient keyword search over encrypted data without disclosing much information to the storage provider. Existing SSE schemes implicitly assume that original user data is centralized, so that a searchable index can be built at once. Nevertheless, especially in cloud computing applications, user-side data centralization is not reasonable, e.g. an enterprise distributes its data in several data centers. In this paper, we propose the notion of Multi-Data-Source SSE (MDS-SSE), which allows each data source to build a local index individually and enables the storage provider to merge all local indexes into a global index afterwards. We propose a novel MDS-SSE scheme, in which an adversary only learns the number of data sources, the number of entire data files, the access pattern and the search pattern, but not any other distribution information such as how data files or search results are distributed over data sources. We offer rigorous security proof of our scheme, and report experimental results to demonstrate the efficiency of our scheme

    Design Architecture-Based on Web Server and Application Cluster in Cloud Environment

    Full text link
    Cloud has been a computational and storage solution for many data centric organizations. The problem today those organizations are facing from the cloud is in data searching in an efficient manner. A framework is required to distribute the work of searching and fetching from thousands of computers. The data in HDFS is scattered and needs lots of time to retrieve. The major idea is to design a web server in the map phase using the jetty web server which will give a fast and efficient way of searching data in MapReduce paradigm. For real time processing on Hadoop, a searchable mechanism is implemented in HDFS by creating a multilevel index in web server with multi-level index keys. The web server uses to handle traffic throughput. By web clustering technology we can improve the application performance. To keep the work down, the load balancer should automatically be able to distribute load to the newly added nodes in the server
    • …
    corecore