81,722 research outputs found

    Deep Epitomic Convolutional Neural Networks

    Full text link
    Deep convolutional neural networks have recently proven extremely competitive in challenging image recognition tasks. This paper proposes the epitomic convolution as a new building block for deep neural networks. An epitomic convolution layer replaces a pair of consecutive convolution and max-pooling layers found in standard deep convolutional neural networks. The main version of the proposed model uses mini-epitomes in place of filters and computes responses invariant to small translations by epitomic search instead of max-pooling over image positions. The topographic version of the proposed model uses large epitomes to learn filter maps organized in translational topographies. We show that error back-propagation can successfully learn multiple epitomic layers in a supervised fashion. The effectiveness of the proposed method is assessed in image classification tasks on standard benchmarks. Our experiments on Imagenet indicate improved recognition performance compared to standard convolutional neural networks of similar architecture. Our models pre-trained on Imagenet perform excellently on Caltech-101. We also obtain competitive image classification results on the small-image MNIST and CIFAR-10 datasets.Comment: 9 page

    Finding strong lenses in CFHTLS using convolutional neural networks

    Get PDF
    We train and apply convolutional neural networks, a machine learning technique developed to learn from and classify image data, to Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) imaging for the identification of potential strong lensing systems. An ensemble of four convolutional neural networks was trained on images of simulated galaxy-galaxy lenses. The training sets consisted of a total of 62,406 simulated lenses and 64,673 non-lens negative examples generated with two different methodologies. The networks were able to learn the features of simulated lenses with accuracy of up to 99.8% and a purity and completeness of 94-100% on a test set of 2000 simulations. An ensemble of trained networks was applied to all of the 171 square degrees of the CFHTLS wide field image data, identifying 18,861 candidates including 63 known and 139 other potential lens candidates. A second search of 1.4 million early type galaxies selected from the survey catalog as potential deflectors, identified 2,465 candidates including 117 previously known lens candidates, 29 confirmed lenses/high-quality lens candidates, 266 novel probable or potential lenses and 2097 candidates we classify as false positives. For the catalog-based search we estimate a completeness of 21-28% with respect to detectable lenses and a purity of 15%, with a false-positive rate of 1 in 671 images tested. We predict a human astronomer reviewing candidates produced by the system would identify ~20 probable lenses and 100 possible lenses per hour in a sample selected by the robot. Convolutional neural networks are therefore a promising tool for use in the search for lenses in current and forthcoming surveys such as the Dark Energy Survey and the Large Synoptic Survey Telescope.Comment: 16 pages, 8 figures. Accepted by MNRA

    Convolutional neural networks: a magic bullet for gravitational-wave detection?

    Get PDF
    In the last few years, machine learning techniques, in particular convolutional neural networks, have been investigated as a method to replace or complement traditional matched filtering techniques that are used to detect the gravitational-wave signature of merging black holes. However, to date, these methods have not yet been successfully applied to the analysis of long stretches of data recorded by the Advanced LIGO and Virgo gravitational-wave observatories. In this work, we critically examine the use of convolutional neural networks as a tool to search for merging black holes. We identify the strengths and limitations of this approach, highlight some common pitfalls in translating between machine learning and gravitational-wave astronomy, and discuss the interdisciplinary challenges. In particular, we explain in detail why convolutional neural networks alone cannot be used to claim a statistically significant gravitational-wave detection. However, we demonstrate how they can still be used to rapidly flag the times of potential signals in the data for a more detailed follow-up. Our convolutional neural network architecture as well as the proposed performance metrics are better suited for this task than a standard binary classifications scheme. A detailed evaluation of our approach on Advanced LIGO data demonstrates the potential of such systems as trigger generators. Finally, we sound a note of caution by constructing adversarial examples, which showcase interesting "failure modes" of our model, where inputs with no visible resemblance to real gravitational-wave signals are identified as such by the network with high confidence.Comment: First two authors contributed equally; appeared at Phys. Rev.
    corecore