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In the last few years, machine learning techniques, in particular convolutional neural networks, have
been investigated as a method to replace or complement traditional matched filtering techniques that are
used to detect the gravitational-wave signature of merging black holes. However, to date, these methods
have not yet been successfully applied to the analysis of long stretches of data recorded by the Advanced
LIGO and Virgo gravitational-wave observatories. In this work, we critically examine the use of
convolutional neural networks as a tool to search for merging black holes. We identify the strengths
and limitations of this approach, highlight some common pitfalls in translating between machine learning
and gravitational-wave astronomy, and discuss the interdisciplinary challenges. In particular, we explain in
detail why convolutional neural networks alone cannot be used to claim a statistically significant
gravitational-wave detection. However, we demonstrate how they can still be used to rapidly flag the times
of potential signals in the data for a more detailed follow-up. Our convolutional neural network architecture
as well as the proposed performance metrics are better suited for this task than a standard binary
classifications scheme. A detailed evaluation of our approach on Advanced LIGO data demonstrates the
potential of such systems as trigger generators. Finally, we sound a note of caution by constructing
adversarial examples, which showcase interesting “failure modes” of our model, where inputs with no
visible resemblance to real gravitational-wave signals are identified as such by the network with high
confidence.
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I. INTRODUCTION

Matched filtering techniques [1–4] have proven highly
successful in discovering binary black hole coalescences
from the recordings of the Advanced LIGO and Advanced
Virgo gravitational-wave observatories [5–11]. Ten obser-
vations of merging black holes have now been made [12].
These observations have enabled population studies of the
properties of stellar-mass black holes and allowed precision
tests of general relativity to be carried out [12,13]. The most

important observation to date was arguably the detection of
a binary neutron star inspiral together with a gamma-ray
burst and other electromagnetic counterparts [14,15]. This
detection heralds the era of multi-messenger gravitational-
wave astronomy, has yielded an independent measurement
of Hubble’s constant, and probed the behavior of matter at
the core of neutron stars [16,17].
Additional observatories in Japan and India are expected

to become operational in the next five years forming an
evolving detector network capable of observing hundreds
of sources every year [18,19]. These sources will need to be
rapidly observed, localized in the sky and this information
quickly disseminated to electromagnetic partners to maxi-
mize the chance of multimessenger observations [19]. This
requires reliable, real-time identification of potential com-
pact binary coalescences (CBCs) to provide a time window
and basic parameter estimate for slower, but more accurate
Bayesian inference techniques to follow-up [20,21].
However, current matched filtering techniques are compu-
tationally expensive, with the computational cost scaling as
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a function of the broadness of the detector’s sensitivity
curve and the number of observatories; both of which are
expected to increase in the coming years [19].
In this work, we investigate whether some of these

challenges can efficiently be overcome by using deep
convolutional neural networks (CNNs). CNNs are a
machine learning technique that has been employed suc-
cessfully on a wide variety of tasks, including image
classification [22–24], natural language processing [25],
and audio generation [26]. In the physics community, an
early application of CNNs was [27]; Carleo et al. [28]
provide a review of recent developments in this direction.
In particular, CNNs have also been studied in the literature
as a tool for gravitational-wave searches, and previous
works have shown that they can indeed be effectively
applied to this problem when treating it as a binary (i.e.,
two-class) classification task [29,30].
However, despite these promising preliminary results,

we believe that the precise role that machine learning can
play within the larger scope of CBC searches and practical
multimessenger gravitational-wave astronomy has not yet
been assayed in sufficient detail. The main goal of this work
is, therefore, to carefully and realistically analyze the
practical potential of using CNNs to search for GWs from
CBCs. Here, we pay particular attention to realistic data
generation, an appropriate, task-specific architecture design
and adequately chosen performance metrics. This results in
the following main contributions:
(1) We provide an in-depth analysis of the challenges

one may expect machine learning to solve within the
scope of a search for GWs from CBCs, and also
discuss their limitations in replacing matched filter-
ing or Bayesian parameter estimation techniques.

(2) We extend the existing, binary classification-based
approach of using CNNs to also handle inputs of
varying length. This requires the introduction of new
task-specific performance metrics, which we discuss
and relate to the existing metrics.

(3) We highlight potential challenges and subtle pitfalls
in the data generation process that may lead to unfair
comparisons. To facilitate further research and
reproducibility in this area, we release the data
generation workflow we have developed as a reus-
able open source software package.

(4) Finally, the empirical results of our architecture
indicate that deep convolutional neural networks
are a powerful supplement to the existing pipeline
for fast and reliable trigger generation. However, we
also demonstrate that—like most deep neural net-
works—our architecture is also prone to adversarial
attacks: We can construct inputs with no visible
resemblance to gravitational-wave signals that are
nevertheless identified as such by the model.

As a key aspect of this work, we aim to foster
communication and understanding between disciplines:

On the one hand, we hope to help physicists less acquainted
with deep learning techniques understand the strengths and
limitations of such methods in gravitational-wave searches
and gain intuition towards how they function in this con-
text. Simultaneously, for machine learning experts, we
explicitly highlight some problem-specific subtleties—
ranging from data generation to model architecture design
and meaningful evaluation metrics—to help them to
circumvent tempting pitfalls.
The rest of this paper is structured as follows. In Sec. II,

we revisit matched filtering (with a focus on the imple-
mentation by PYCBC). Furthermore, we discuss the
existing literature on using CNNs in the context of
gravitational-wave searches. In Sec. III, we then continue
by reviewing the previously used binary classification
framework more principally, and discuss for which spe-
cific tasks CNNs may be useful and for which their output
is insufficient. Consequently, after introducing our care-
fully designed data generation procedure and the correspo-
nding open source software package in Sec. IV, we
suggest a fully convolutional network architecture suited
for gravitational-wave trigger generation in streaming data
in Sec. V. This architecture naturally gives way to novel
performance metrics, which we develop in Sec. VI, where
we also explain their benefits and relation to current
standard metrics. In Sec. VII, we present and discuss the
results of our model together with a note of caution
concerning adversarial examples, highlighting the still not
well-understood and unsettling brittleness of deep neural
networks. Finally, we conclude with a summary and
outlook in Sec. VIII.

II. PROBLEM SETUP AND RELATED WORK

Observing compact binary coalescences has always been
one of the primary goals of gravitational-wave astronomy.
To date, searches for such systems rely on matched filtering
using a large template bank (i.e., a set of simulated
waveforms covering a carefully chosen parameter space).
In the first part of this section, we will describe matched
filtering with a specific focus on the implementation
provided by the PYCBC software package [3,31]. We
explain the necessary components for a statistically sound
search procedure and explain what it means to “detect” a
gravitational wave. Readers familiar with the matched
filtering search pipeline may wish to skip parts II A,
II B, and II C. In part II D, we then review the existing
work using convolutional neural networks for gravitational-
wave searches.

A. Matched filtering-based searches

Schutz [32] vividly describes the intuition behind the
matched filtering technique as follows: “Matched filtering
works by multiplying the output of the detector by a
function of time (called the template) that represents an
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expected waveform, and summing (integrating) the result.
If there is a signal matching the waveform buried in the
noise then the output of the filter will be higher than
expected for pure noise.”
In the following, we will formalize this idea mathemati-

cally in order to provide the necessary background for a
comparison between matched filtering and the outputs of
deep learning-based systems later on. Readers interested in
further details are referred to the excellent overview of
matched filtering in the context of the LIGO and Virgo
collaborations by Caudill [33] (and references therein).
The fundamental assumption of matched filtering is that

the strain sðtÞ measured by the interferometric detector is
made up of two additive components, namely the instru-
ment noise nðtÞ and the (astrophysical) signal hðtÞ:

sðtÞ ¼ nðtÞ þ hðtÞ: ð1Þ

For a given power spectral density Sn of n, we can then
quantify the agreement between a given template TðtÞ in
the template bank and the recorded strain sðtÞ at a time t0
by computing the signal-to-noise ratio (SNR).
For an appropriate choice of normalization, the matched

filtering signal-to-noise ratio is given by:

SNRðt0Þ ≔
Z

∞

−∞

s̃ðfÞ · T̃�ðfÞ · e2πift0
SnðfÞ

df; ð2Þ

where the tilde denotes the Fourier transform. For sta-
tionary Gaussian noise it can be shown that—by design—
the SNR is indeed the optimal detection statistic for finding
a signal hðtÞ if the time-reversed template Tð−tÞ is equal to
the signal [1]. This is called the matched filter. In practice,
the template bank should therefore contain accurate simu-
lated waveforms that cover the space of expected signals in
the recorded data sufficiently densely. Computing the SNR
for every waveform in the template bank and applying a
threshold then produces a list of candidate event times.
In reality, however, the data is usually neither stationary

nor exactly Gaussian. One particular challenge to the data
analysis are so called glitches. Glitches are nonstationary
noise transients, which comprise a range of different short-
time phenomena that affect the quality of the data measured
by the detectors. They occur frequently, at rates up to
several times per minute [34]. Some of these effects are
well understood, such as the signature of scattered light in
the beam tube; others, however, remain enigmatic. For
example, a certain common type of glitch named “blip,”
whose origin is only poorly understood, tends to mimic the
signals that one would expect from the merger of two
intermediate-mass black holes, thus limiting the sensitivity
for this kind of event [35].
As a consequence of these non-Gaussian and nonsta-

tionary effects, the real distribution of the SNR (and thus
the threshold value) is not known and must be determined

empirically in order to obtain calibrated statistical results
from the computed SNR. Allen et al. [1] provide a detailed
account of the merits and challenges of matched filtering in
practical gravitational-wave searches.

B. The PYCBC search pipeline

To understand the crucial components of a full search
(which ideally results in a detection), we now outline the
current PYCBC search pipeline [3]. The different steps of
the search procedure are also illustrated schematically as a
flowchart in Fig. 1.
In a first step, a template bank containing simulated

waveforms that cover the parameter space of interest is
constructed; typically using the simulation routines pro-
vided by LALSUITE [36], the central codebase that imple-
ments all waveform models used in Advanced LIGO and
Advanced Virgo analyses. For more technical details we
refer the reader to, e.g., Capano et al. [37].
This template bank is then used to compute an SNR time

series for every possible combination of templates and
recordings (i.e., we match every template with every
observatory). We then find the times of peaks within all
these SNR time series that exceed a certain pre-defined
threshold. Next we cluster these times to keep only the
times of largest SNR within a 1-second window and then
store the remaining times alongside the parameters of the
template that caused the match. Each of these recordings is
called a trigger.
Consequently, we obtain a list of single detector triggers

for each observatory independently. Furthermore, a set of
signal consistency tests—χ2 tests—are computed for every
trigger, which help to discriminate between real events and
triggers that were caused by noise transients [38]. More
precisely, these χ2-test values are used to compute a re-
weighted single detector SNR which serves as a ranking
statistic. In a subsequent stage, several coincidence tests
(for both the event time and the estimated event parameters)
are conducted: the single detector triggers are combined if
the same template matched at compatible times (i.e., within
light distance of each other) in all detectors. The resulting
coincident triggers are called candidate events. Finally,
each candidate event is assigned a combined ranking
statistic, informally called loudness, which is computed
from the parameters of the triggers in each observatory. The
precise mathematical definitions of the individual and
combined ranking statistics are hand-tuned and regularly
adjusted (see, e.g., Nitz et al. [39] or Nitz [40]).
Note that while the loudness is designed to intuitively

correspond to our confidence of the candidate being a
real event (higher scores indicating higher confidence), the
raw numerical values have no significance. Instead, we
are interested in the relative ordering of the candidate
events that is induced by the loudness score. To claim a
detection—that is, to say that a candidate event with a given
loudness in fact corresponds to a true gravitational-wave
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signal—we must perform the following statistical test:
within our model assumptions, what is the probability that
we observe this loudness purely by chance, if in reality
there is no gravitational-wave signal present? This prob-
ability measures the statistical significance of the detection,
that is, the confidence with which we can reject the null
hypothesis, namely “there was no real signal in the data”.
At this point, it is crucial to contrast this with deep

learning based machine learning classifiers. The output of
such classifier on a single example—for example, from a
softmax or sigmoid output layer—is also between 0 and 1
and thus at times interpreted as a probability. However,
these “probabilities” only reflect the “degree of confidence”
of the network regarding its prediction. Therefore, they
must not be interpreted as the statistical significance of a
detection (see also Sec. III).
In PYCBC, the probability of obtaining a given loudness

from only noise is estimated via frequentist inference over a
given time period. To this end, a matched filtering search is
performed on a recording of given length T that is known to
not contain any gravitational-wave signals. We then count
the number of resulting candidate events that are at least as
loud as the candidate event.
To obtain data that is guaranteed to not contain any

gravitational-wave signals but still shares characteristics of
real detector recordings, PYCBCmakes use of time shifts. It
shifts the recordings of the detectors relative to each other by
a time period that is larger than the light travel time between
them (see again Fig. 1 for where this fits in the pipeline).
Assuming that gravitational waves above the detection
threshold of the instrument are sparse in time (i.e., further
apart than the time shift), this ensures that no real signal will
pass the coincidence tests and give rise to a candidate event.
Instead, any candidate event found for a time-shifted input
must be due to triggers caused by the random detector noise.
Therefore, the loudness scores of candidate events found in
time-shifted data can be used to estimate the frequency of
false positives. This further allows us to derive false alarm
rates for candidate events in the data that was not time-
shifted and ultimately assign a statistical significance to a
claimed detection. For a slightly more detailed yet compact
description of how to estimate these probabilities in practice,
we again refer to Caudill [33].

C. Injections

To conclude this introduction to the existing search
pipeline, we note that due to the relatively small number
of events detected so far, a proper performance evaluation
of any search approach hinges on so called injections. An
injection is a simulated waveform that is added into a piece
of background noise (either synthetic or real) to emulate a
real gravitational-wave signal as it would be observed by an
actual detector. The search performance can then be
evaluated by searching for a large variety of such injections
added to the recorded strain data. Because in this case we

FIG. 1. Flowchart of the PYCBC search pipeline, which shows
the full process of going from the recordings of the different
observatories to the detection of a gravitational wave.
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know the precise location of the injections, we have access
to the ground truth required to evaluate the detection rate
and false alarm rate of the search pipeline for a given
template bank, real recordings, and injections.
In the previous paragraphs, we have glanced over the

fact that we can only compute false alarm probabilities
and detection rates within our model assumptions. These
assumptions include—among other factors—the parameter
ranges and distributions of simulated waveforms both for
the template bank and injections. Since the true physical
distribution of gravitational-wave sources in the Universe
(not only in terms of location, but also in terms of the
parameters of their constituents) is unknown, these choices
will not only affect how the obtained performance results
transfer to real searches, but also influence the sensitivity
towards various sources. In Sec. IV, we comment on this in
a little more detail. However, a full discussion of how to
properly incorporate such ad hoc choices in the statistical
analysis of the method is beyond of the scope of this work.

D. Existing CNN-based approaches

The idea of using convolutional neural networks (CNNs)
to process time series information goes back to the early
days of deep learning itself, more than twenty years ago
[41]. Ever since, the community has established CNNs as
one of the major work horses for processing images as well
as time series data like audio (or various time-frequency
representation thereof), which is structurally similar to the
strain data produced by gravitational-wave observatories.
CNNs have been particularly successful in supervised
classification or regression tasks, where they are typically
trained to map inputs in Rd—for example, images of a
fixed resolution or fixed-length audio snippets—to either a
finite set of labels (classification) or a typically low-
dimensional real vector (regression).
All previous work applying convolutional neural net-

works to the detection of gravitational-wave signals in
interferometric detector data has adopted a classification-
based approach. George and Huerta [29] generate white
Gaussian noise examples with a fixed length of 1 s and, for
a subset of them, add simulated gravitational-wave signals
from binary black hole mergers similar to the injections in
the PYCBC search. The maximum of the signal (which
corresponds to the coalescence time) is randomly located in
the last quarter of the sample. Using these data, they train a
deep neural net, consisting of a common combination of
convolutional and fully-connected layers with a final
sigmoid layer, to output a value between 0 and 1, indicating
the confidence of the network about the absence or
presence of a gravitational-wave signal in each 1 s example.
The network output can be thresholded to obtain a binary
response. In addition, they train a second neural network,
which estimates some basic parameters of the correspond-
ing binary merger whenever the first network claims to
have found a signal. In this setup, the CNN’s task is to

detect non-Gaussianities of a specific form in white
Gaussian noise, where the non-Gaussianities fall within
a specific region of the input snippet.
In later works, they also evaluate this method on 1 s

snippets of real LIGO recordings, and on an enlarged
dataset which also includes waveforms for binary black
hole mergers with precessing spins and nonvanishing
orbital eccentricities [42,43]. Longer samples are processed
by a sliding-window approach: recordings are split into
overlapping 1 s-windows to each of which the trained
network is applied. Multiple detectors are accounted for by
processing each recording separately first and then com-
bining the binary outputs at each time via a logical AND

function. Notably, the authors suggest that their method can
be used for gravitational-wave detection as well as param-
eter estimation and that it beats matched filtering in terms of
errors and computational efficiency while retaining similar
sensitivity [43]. We will explain in Sec. III why we believe
that a more careful and nuanced interpretation of such
claims is essential to understanding the practical merits of
CNN based approaches.
Gabbard et al. [30] employ a similar approach: the

authors also use a deep neural network consisting of both
convolutional and fully connected layers to perform a
binary classification task on 1 s samples of Gaussian noise
which either do or do not contain a simulated GW signal.
The focus of their work, however, is the comparison with
matched filtering. They conclude that their method is
indeed able to closely reproduce the results of a matched
filtering-based search on these 1 s samples.
A somewhat different approach was presented by

Li et al. [44]. In their method, they use a wavelet packet
decomposition to preprocess the data before feeding it into
a convolutional neural network, which then operates on a
frequency representation. They also work with a sliding-
window approach to apply their network to samples of
variable length. Ultimately, the practical conclusions of
their work are limited by the fact that they use Gaussian
noise for the background and an unrealistically simplified
damped sinusoid as an analytical waveform model.
Finally, there is also a growing body of work which uses

CNNs for various tasks that are different from but related to
a gravitational-wave search, such as glitch classification
(e.g., [45–49]) or parameter estimation (e.g., [50]).
Furthermore, Dreissigacker et al. [51] recently presented
a proof-of-principle study on using convolutional neural
networks to search for continuous gravitational waves.

III. GOING BEYOND BINARY CLASSIFICATION

In this section, we develop our main conceptual con-
tributions, namely that (a) convolutional neural networks
are not suited to claim statistically significant detections of
gravitational waves, however, (b) they can still be useful
tools for real-time trigger generation.

CONVOLUTIONAL NEURAL NETWORKS: … PHYS. REV. D 100, 063015 (2019)

063015-5



Our core argument for claim (a) hinges on the fact that
the “false alarm rate” which can be derived from machine
learning-based classifiers is directly linked to the training
dataset. As a consequence, there is only a single signifi-
cance level that one can assign to every claimed detection,
without being able to distinguish particularly loud events
from fainter ones. Additional difficulties stem from the fact
that in a real search, the task at hand is not to perform
binary classification on fixed-length examples, but to
identify the temporal location of potential signals in time
series data of arbitrary length, or even in streaming data.
The significance level obtained in the example-based
binary classification setup does not transfer easily to
sliding-window based approaches for streaming data.
To substantiate (b), we highlight the benefits of CNNs in

terms of computational complexity and devote the remain-
ing sections of this paper to developing a modified CNN
architecture which can overcome many of the pitfalls of the
binary classification approach.

A. True/false positive rate and class imbalance

Standard performance metrics for classification tasks are
the true positive rate (TPR; also called recall) and the false
positive rate (FPR), which are defined as:

True Positive Rate ðTPRÞ ≔ TP
TPþ FN

;

False Positive Rate ðFPRÞ ≔ FP
FPþ TN

:

Here, TP are true positives (i.e., examples correctly
classified as positives), FP are false positives (i.e., examples
falsely classified as positive; Type I error), TN are true
negatives (i.e., examples correctly classified as negative)
and FN are false negatives (i.e., examples falsely classified
as negative; Type II error).
Indeed, all previous comparisons of CNNs use a binary

classification framework and compare the true positive rate
at fixed false positive rate directly to matched filtering
results at a given false alarm rate [30,42,43]. To obtain this
measure in practice, for threshold-based binary classifiers,
one usually sweeps the threshold from 0 to 1, recording the
true positive rate and the false positive rate for each
threshold value to produce the receiver operator character-
istic (ROC) curve, that is, the true positive rate over the
false positive rate. Since the false positive rate is maximal
for threshold 0 and minimal (zero) for threshold 1, we can
then simply read off the true positive rate for any given false
positive rate. However, there is a subtle difference between
the generalization properties of this population level false
positive rate and the false alarm rate in matched filtering.
Intuitively, we may interpret the CNN as an implicit

abstract representation of all the examples—with and
without simulated waveforms—which it has seen during
training. In that sense it does not directly capture a
compressed version of the template bank alone, but the

entire training distribution including the ratio of positive
and negative examples. Therefore, unlike matched filtering,
the network’s output on new inputs depends also on the
relative frequencies of positive and negative examples in
the training set and the above performance measures only
transfer to unseen examples following the exact same
distribution. Consequently, performance evaluations of
CNNs on the training distribution (many examples with
injections) do not transfer to the test distribution (real
recordings with few signals) as is the case for matched
filtering, where the output depends only on the template
bank. For efficient and stable training, the number of
positive and negative examples should be on a similar
order of magnitude, which is a clear misrepresentation of
the true distribution and calls for caution when interpreting
the FPR on hand-crafted training or validation sets as false
alarm probability in a full search on real data. We note that
in [43], the authors have computed an estimate of their FPR
by applying their trained network to a continuous stretch of
real LIGO data.

B. Performance vs. detection

The core task of gravitational-wave searches is not a
population-level performance rating of the search pipeline
on synthetic data, but to ascertain the individual statistical
significance of a given candidate event. Hence, we must ask
ourselves the question: What would be our level of con-
fidence that there is a real event in the data when a binary
classifier outputs a 1? Here is the problem: If wewere to use
the false positive rate as a level of confidence for a claimed
detection of the CNN (output 1), we would assign the same
confidence to every candidate. In particular, we would have
no way of distinguishing particularly significant detections
from fainter ones. This is due to the fact that the false positive
rate is a statistic of the network output on the entire dataset,
not any given example. Furthermore, as described above, the
interpretation of the false positive rate as a confidence is only
valid if the test distribution (actual detector recordings)
comes in well-defined, distinct fixed-length examples
which follow the same distribution (including the frequen-
cies of positive and negative examples) as the training set.
Therefore, while the false positive rate may seem like a
tempting, convenient measure for the false alarm probability
of CNNs, it must not be interpreted as a statistical signifi-
cance. Consequently, CNNs alone cannot be used to
properly claim gravitational-wave detections.

C. Classification vs. tagging

In a real search, we must identify and annotate those
parts of an arbitrarily long input time series that contain a
signal. The existing works extend the binary classification-
based approach to longer inputs via a sliding window
approach. In addition to the fixed input size of the classifier,
this requires yet another parameter choice, namely the step
size of the sliding window.
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Both of these parameters influence the performance
metrics directly and in ways that are hard to interpret.
First, the tempting conversion of “FPR × example length ¼
temporal rate of false positives” becomes invalid due to the
overlap between neighboring windows. Second, depending
on the step size of the sliding window, waveforms may lie
only partially within the input window, which can then not
be labeled as one or zero in a principled fashion. Moreover,
there is no natural interpretation of the sequence of outputs.
For example, assume the CNN outputs the sequence
1 − 1 − 0 − 1 − 1 − 0 − 1, where the coalescence happens
roughly at the center value. How should these labels be
counted as true (false) positives (negatives)? The interpre-
tationwould perhaps also depend on the time step, that is the
temporal resolution, and the window size. Finally, while a
high temporal resolution (small step size)would be desirable
in order to localize the signal in time, it also leads to
computational redundancy as we will further elaborate
in Sec. V.
All in all, the metrics derived from the example-based

binary classification setup do not easily transfer to the
sliding window approach on streaming data; a fact which
has largely been overlooked in the literature so far.

D. Overfitting

We have seen that in the example-based approach, we
cannot easily process inputs with partially contained wave-
forms. Previous works have therefore positioned injections
only in specific regions within the examples, usually such
that the coalescence is located towards the end.
Deep learning systems are known to pick up uninten-

tional quirks in the training data which correlate with the
labels. This can result in an undesirable behavior called
overfitting, where a classifier learns to perform well on
training data, but fails on new examples in the real
application. In the above example, the CNN may overfit
on the location of the coalescence within the training
examples. In particular, the final, fully connected layer(s)
can learn location-sensitive features. Since the coalescence
is the most pronounced part of the waveform, if it is always
located in the same region, a network containing fully
connected layers may focus exclusively on high amplitude,
high frequency oscillations in this region, ignoring other
parts of the input.
One crucial measure to avoid overfitting is to make the

training set as representative as possible of the context in
which the model will be deployed to reduce its potential to
adapt to irrelevant characteristics of the training data.
In Secs. IV and V, we discuss a data generation process
and network architecture that pay particular attention to
minimizing the danger of overfitting.

E. Use-case for deep learning

To conclude this section, let us discuss how CNNs can
still complement matched filtering-based searches (instead

of replacing them). Looking into the future, various
upcoming challenges of matched filtering concern growing
computational needs. For example, as more detectors come
online, the computational complexity of matched filtering
scales at least linearly in the number of detectors (recall that
the search for triggers is performed independently for each
detector first). Moreover, this trigger generation scales
linearly also in the number of waveforms in the template
bank. As template banks grow, matched filtering becomes
increasingly expensive, causing real-time online trigger
generation to become computationally challenging and
prohibitive.
Such computational considerations are a key part of the

motivation to look into alternative search methods in the
first place. Convolutional neural networks are natural
candidates, because inference—evaluating the network
on new strain data after it has been trained—can be
substantially faster than matched filtering. Our architecture
(see Sec. VA) scales to an arbitrary number of detectors
with almost no computational overhead. Furthermore, once
an architecture is fixed, it can in principle be trained on any
distribution of simulated waveforms. Thus, we can view the
network training as building an abstract, constant size
representation of the template bank. Note that the computa-
tional cost of inference is independent of the size of the
training data. The expensive training of the network is
performed only once up front.
The benefit of fast inference of CNNs—they analyze

detector recordings much faster than real-time—makes
them natural candidates for trigger generators. Real-time
alarms can provide useful hints for follow up searches
of electromagnetic counterparts as well as for focused
analysis with matched filtering and Bayesian parameter
estimation [52]. Arguably, a straightforward extension to
also provide rough first parameter estimates could further
decrease the computational cost of subsequent analysis by
narrowing down the parameter space.
Moreover, while CNNs do not enjoy theoretical guar-

antees for stationary Gaussian data like matched filtering,
one may speculate that they can, in principle, incorporate
mechanisms to better deal with common non-Gaussianities
in the data by learning internal models not only of wave-
forms, but also of transient glitches. Testing and quantify-
ing this hypothesis is left for future work.
In the remainder of this work, we develop a promising

proof of concept implementation for such a use-case that
avoids many pitfalls presented earlier in this section.

IV. DATA GENERATION PROCESS

In this section, we describe the steps we have taken to
generate realistic, synthetic data which can be used to train
and evaluate a CNN-based model. We discuss our design
choices and explain steps where we found a need to
compromise between realistically modeling physics on
the one hand and the requirements for efficient and reliable
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machine learning on the other hand. For reasons of trans-
parency and reproducibility, as well as to foster further
research in the area, we have made our data generation code
publicly available online at [53].

A. Choice of background data

When choosing background data, one has essentially
two options: simulated Gaussian noise, which is then
colored using the power spectral density (PSD) of the
detectors, or actual detector recordings (in which the
existing matched filtering pipeline did not find any gravi-
tational-wave signals). While the first option yields back-
ground data that has on average the correct frequency
distribution, it will not contain glitches. However, as
discussed before, glitches are one of the major challenges
for the data analysis. Therefore, we have decided to use real
LIGO recordings from the first observation run (O1)
to emulate the background noise. O1 included the first
three discoveries of gravitational waves: GW150914,
GW151012 and GW151226 [7,8,12]. The exact detector
configuration during O1 is described in detail in [54–56].
The data from O1 is publicly available through the

Gravitational Wave Open Science Center (GWOSC; see
also [57,58]). In our study, we limited ourselves to a subset
of the data, specified by the following criteria:

(i) Data available: Both H1 and L1 must have data
available (due to different times when the detectors
are operating, this is not always the case).

(ii) Minimum data quality: For the scope of this study,
the data needs to pass all vetoes for CBC searches,
meaning that only recording segments with data
quality at least CBC CAT3 (using the GWOSC
definitions) are used.

(iii) No hardware injections: The data on GWOSC does
already contain a small number of simulated tran-
sient signals called hardware injections [59]. We
exclude all segments containing such signals.

(iv) No real signals: We also exclude the real events in
O1 (i.e., GW150914, GW151012, GW151226).

B. Generating a dataset

In this section, we give a detailed account of our data
generation process, which is visualized in Fig. 2.
In order to generate a new example, we first need to

select a piece of LIGO recording to be used as background.
To this end, we keep drawing a GPS time tGPS between the
start and end of O1 uniformly at random until we find a
valid time. A time tGPS is considered valid when the
symmetric δt interval around it fulfills the four criteria
defined above. To save memory, this interval is then down-
sampled from the original sampling rate of 4096 Hz of the
GWOSC data to 2048 Hz. Note that δt should be chosen
larger than half the desired sample length, because we will
later compute the (discrete) Fourier transform as part of a

whitening procedure. This corrupts the edges at both ends,
which need to be cropped off.
In parallel, a set of parameters for the waveform

simulation is sampled from the joint distribution over the
entire parameter space. This study is limited to waveforms
from mergers of binary black holes, which are simulated
using the effective-one-body model SEOBNRv4 in the
time-domain [60]. Therefore, we need to randomly sample
values for the masses of the black holes, the z-components
of their spins, the right ascension, declination, polarization,
inclination, and coalescence phase angle (which together
specify the location and orientation of the source in the
sky), as well as the injection SNR. For more details about
these parameters, see the Appendix.
Choosing the distributions of these parameters is a good

example for the contradicting requirements of correctly
modeling physics on the one hand and the practical
concerns of the ML side. In reality, most of the GW
signals are expected to be very faint, because their sources
are comparatively far away: If we assume the sources to be
distributed isotropically and uniformly in space over the
whole (spherical) search volume, approximately half of all
sources will be at 80% or more of the maximum sensitive
distance. However, if this r3-dependency is modeled
correctly when sampling parameters for simulating training
data, a large fraction of the data will be barely above the
detectability threshold. This makes it hard for the machine
learning methods to actually learn anything. One common
approach in deep learning to address this kind of problem is
to split the training into different phases, first training on
“easy” examples (in this case events with strong GW
signals), and then gradually replacing or complementing
the training set with “harder” (i.e., fainter) examples. In our
experiments, however, this so-called curriculum learning
[61] did not lead to relevant improvements of the final
performance.
The simulation routines in LALSUITE return two time

series for given parameter settings, namely the two polari-
zation modes of the gravitational wave, hþ and h×. These
are then transformed according to the interferometer
antenna patterns, which are functions that describe the
directional sensitivity of the detector [62]. PYCBC provides
methods to calculate the projection onto the antenna
patterns for the detectors in Hanford and Livingston for
a given source location in the sky and a corresponding
polarization angle. Finally, the simulated detector signals
also need to be corrected for the time offset between the
detectors, based again on the relative source location in the
sky. This gives us the “pure” signals that the detectors
would observe in the absence of noise.
Next, these signals are injected into the noise that we

selected in the beginning. For comparison later on, we
would like to know how “loud” the injection was. This can
be measured by the optimal matched filter SNR (e.g.,
[66,67]) of the injection, which is the maximal SNR
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possible resulting from using the time-inverted signal itself
as a filter. This is achieved by a two-step process:
(1) First, we simply add the two time series (noise and

signal) in such a fashion that the peak of the signal
amplitude in H1 is centered within the noise int

erval. Afterwards, we compute the optimal matched
filtering signal-to-noise ratio in both detectors, and
subsequently also the network optimal matched
filtering SNR (NOMF-SNR). The latter is then used
to determine a scaling factor by which the waveform

FIG. 2. This flowchart visualizes the process that was used to generate synthetic training and testing data by injecting simulated
waveforms into background noise comprised of real LIGO recordings.
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needs to bemultiplied to ensure that the injected signal
has the desired injection SNR. This is possible because
multiplying the waveforms of both detectors by a
factor λ results in a network SNR that has been scaled
by the same factor λ. From an astrophysical perspec-
tive, rescaling simply corresponds to moving the
source closer or further away from the detectors.

(2) Now we can add the rescaled waveform to the noise,
which guarantees that the sample has the desired
network SNR.

The result is then whitened with PYCBC using a local
estimate of the power spectral density, and high-passed at
20 Hz to remove some of the non-physical turn-on artifacts
from the simulation. Finally, the example is cropped to the
desired length (which was chosen as 8 s) in such a fashion
that the maximum of the signal always ends up at the same
(relative) location within the sample. This is permitted,
because our particular choice of model architecture (see
below) is not sensitive to the position of the signal within a
sample. The choice of 8 s for the length was governed by
memory considerations: training a neural network effi-
ciently requires that both a mini-batch of training examples
and the network parameters (together with their gradients)
fit into memory of a graphical processing unit (GPU).

C. Training and testing datasets

For this work, we created three datasets: a training
dataset with 32 768 examples, a validation set with 4096
examples, and a testing dataset with 16 384 examples.
The parameters for the waveform simulation were drawn

independently from the same joint distribution over the
parameter space (see Appendix) for all three data sets. All
data sets are mutually disjoint, that is, no single example is
used for both training and testing/validation.
To ensure that during training the net is also exposed to

sufficient data which do not contain any signals, a number of
examples not containingany injections is generated by simply
skipping the injection step. We use three times as many
examples that contain an injection than pure noise examples.
In Sec. VII, we also evaluate our trained model on real

signals from LIGO’s first observation run, which have
undergone analogous preprocessing (whitening, band-pass-
ing) like the training data.

V. MODEL AND TRAINING PROCEDURE

In this section, we develop our specific neural network
architecture (which aims to avoid some of the previously
mentioned problems of CNNs) and document the training
procedure. A high-level schematic drawing of the model
architecture is depicted in Fig. 3.

A. Model architecture

In order to achieve a model that is agnostic to the length
of the input time series, we choose a fully convolutional
architecture. This means there are no fully connected (or
dense) layers. Instead, the neural network only learns
convolutional filters (or kernels), which make no assump-
tions about the size of their input data.
This has two major advantages. First, if the size of the

receptive field of the network is r, we can directly evaluate

FIG. 3. Schematic visualization of the proposed architecture to illustrate the effect of dilated convolutions on the receptive field: the
highlighted (solid orange) value in the fourth layer depends on exactly 8 values in the input layer. It therefore has an receptive field of
size 8. The figure also shows how the length of the time input is successively reduced with each convolutional layer: the output of layer i
is ri − 1 time steps shorter than the original input, where ri denotes the receptive field of that layer.
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our model on a time series of n time steps for any n > r,
resulting in an output time series of length n − rþ 1. The
receptive field of a network refers to the number of time
steps on the input layer that affect a single time step on the
output layer. Typically, an architecture should be chosen
such that the receptive field is large enough to cover a
substantial part of the signal. Second, it is more computa-
tionally efficient than a sliding window approach, which—
due to the overlap of neighboring windows—performs
redundant computations. A fully convolutional architecture
avoids this overhead.
Moreover, instead of evaluating the network for each

detector separately, we stack the recordings from all
observatories and treat them as different channels of a
single, multidimensional input. This means that when the
number of detectors changes, we only need to adjust the
number of input channels of the first layer, while the rest of
the architecture remains fixed. While retraining is required
after such an extension, the computational complexity of
our approach at test time is virtually constant in the number
of detectors.
In practice, we use a stack of 12 (convolutional) blocks,

each based on a dilated convolutional layer with 512
convolutional kernels of size 2. Empirically, we found that
increasing the number of channels used in the convolu-
tional blocks generally improves the overall performance.
However, memory limitations during training upper-
bounded the number of channels to 512. Within each
block, the convolutional layer itself is followed by a non-
linear activation function, namely a rectified linear unit
(ReLU). We did not use any regularization techniques such
as dropout or batch normalization.
The difference between the twelve convolutional blocks

is the dilation of the kernels, which increases exponentially
in powers of two (i.e., 1; 2; 4;…; 2048) with the block
number. This simple trick yields a relatively large receptive
field of 2 seconds with a moderate depth of only 12 blocks
while avoiding loss of resolution or coverage. This was
considered sufficient to cover the relevant region around the
coalescence for all signals of interest. Other modifications
of the kernel, such as strides, were not used.
The stack of convolutional blocks is preceded by an

input convolutional layer with kernel size of 1, which maps
the input data from two channels (the strains from H1
and L1) to 512 channels. On the output side of the network,
the last convolutional block is succeeded by an output
convolutional layer, which again has a kernel size of 1 and
serves to reduce the number of channels from 512 back to
1. The now one-dimensional network output is then passed
through a sigmoid layer [68], which maps it into the
interval (0,1).
Our implementation (in PYTHON 3.6.7) is based on the

PYTORCH deep learning framework (version 1.0.1) [69].
All code that was used to obtain the results presented in this
work is available online at [70].

B. Training procedure

As usual for CNNs, before feeding an example time
series x as input during training, validation, and test time,
we normalize it via ðx − μÞ=σ, where μ and σ are computed
as the medians of the mean and standard deviation of each
individual example in the training set. During training,
we monitor the generalization performance by regularly
evaluating the model on the validation set. For the actual
training, we first use the Kaiming initialization scheme as
introduced in [71] to assign initial random values to the
network parameters (i.e., the convolutional kernels).
During training, the kernel entries are optimized using
stochastic gradient descent using Adam [72] with the
AMSgrad modification proposed in [73]. To this end,
within every epoch (i.e., a full pass over all training data)
the entire training dataset is randomly shuffled and divided
into a fixed number of minibatches. We use binary cross-
entropy (BCE) as the loss function. The batch loss is
calculated as the average of the BCE losses at every time
step of every example in the minibatch and its correspond-
ing label value. This batch loss is then automatically
differentiated with respect to all kernels, and error back-
propagation is used to update the kernel values.
At the end of every epoch, the performance of the

network with its current parameter values is evaluated both
on the full training and validation data set. The current loss
(as well as other metrics, see below) are logged and a
checkpoint of the model is created. This means that a copy
of the model parameters is saved to disk such that the
current training state can later be loaded again. We end
training after a fixed number of epochs and retrieve the
checkpoint corresponding to the lowest validation loss as
the final trained model. This is a form of validation-based
early stopping, which helps to avoid overfitting.
By default, we choose an initial learning rate of ηinit ¼

3 × 10−4. During training, the learning rate is reduced
whenever the loss on the validation set has not decreased by
more than a certain threshold over a given number of
epochs (default value: 8). This behavior is controlled by
PYTORCH’s ReduceLROnPlateau method.
In practice, we have trained our network for 64 epochs

on the full training set using 5 NVIDIATesla V100 GPUs,
each with 32 GB of memory. In total, training the model
took approximately 30 hours on our hardware. This was
deemed sufficient, as the network started to show signs of
overfitting after approximately 30 epochs. As mentioned
above, however, at test time (i.e., for all evaluation experi-
ments) we only used the model checkpoint with the lowest
validation loss.

C. Postprocessing

Finally, we apply two postprocessing steps to the raw
network output: smoothing and thresholding.
To smooth the output time series, we apply a rolling

average as a convolution with a rectangle function. The
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window size (i.e., width) of this rectangle function can be
tuned depending on the metric we want to optimize (see
next section). Smoothing removes short spikes, which
otherwise could be confused with the presence of signals.
By default, we choose a window size of 256 time steps.
In the subsequent thresholding step, the smoothed output

is mapped from (0,1) to f0; 1g depending on whether it
exceeds a threshold t. This allows for stable and efficient
peak-finding (see next section). Again, the choice of the
threshold t depends on the metric that one ultimately wants
to optimize. By default, we used t ¼ 0.5.
Both post-processing steps are only applied at test time,

and we evaluate the effect of the parameter choices on the
final performance in Sec. VII. To compute the loss during
training, we only use the raw, nonprocessed output of the
network.

VI. PERFORMANCE METRICS

A. Design and creation of labels

Let us now explain how we generate the labels, that is,
the desired network output for a given input. In our case,
the labels are also time series: Ideally, the network should
mark the exact locations of coalescences. A natural way to
represent this is a time series which is zero everywhere
except at the event time where the signal in H1 reaches its
maximum amplitude (where the label takes on a value of 1).
From a practical machine learning point of view, how-

ever, this is problematic: such sparse signals do not
contribute sufficiently to the average loss to keep the
network from simply always predicting zero. To prevent
this failure mode, instead of labeling a single time point, we
choose a fixed-width interval centered around the time
when the injected signal in the H1 channel reaches its
maximum amplitude. By construction of our data gener-
ation pipeline, this position is fixed for all examples.
(Recall that our fully convolutional network architecture
is by design unable to overfit to specific locations within
input examples.) Thus, labels need not be pre-generated or
stored, but can be computed on the fly during training or
testing. By default, the labels width (i.e., the length of the
symmetric interval around the event time in which the label
time series takes on a value of 1) is 0.2 s.

B. Evaluation metrics at test time

In Sec. II we discussed the drawbacks of the true positive
rate and the false positive rate as performance measures for
gravitational-wave searches in the example based binary
classification setup. The fact that our data generation
pipeline also generates individual examples is merely
to make training convenient. Our model could equivalently
be trained on a single time series (of sufficient length)
containing any number of injections at arbitrary locations.
This is possible because our architecture does not perform
binary classification on an example level, but outputs yet

another time series. As a consequence, different perfor-
mance metrics are required.
Our objective is to tag signals in the data by outputting a

peak close to the actual coalescence time. This intuition can
be formalized to obtain interpretable performance metrics
using the following evaluation procedure:
(1) We identify all intervals of value 1 in the smoothed

and thresholded network output.
(2) The interval centers are stored as candidate times.
(3) For each candidate time tc, we test for coincidence

with the ground truth injection time ti, that is, if
jtc − tij ≤ Δt. By default, we use Δt ¼ 0.05 s. Note
that Δt is another free, tuneable hyperparameter
whose value will directly affect the performance
metrics defined below.

(4) If a candidate time passes this coincidence check, we
count it as a true positive or detection (see note
below); otherwise, it is a false positive.

(5) Per example, there can only be one true positive. If
multiple candidate times pass the coincidence test
for a single example, only one of them is counted as
a detection, while the others are false positives.

Note: We use the term detection in this context to refer to
an injected signal which was successfully recovered (in
the sense of the procedure described above) by the
network. This is, however, purely for ease of terminol-
ogy. A “detection” by the CNN cannot be compared to
and must not be confused with the (statistically signifi-
cant) detection of a gravitational wave as described in
Sec. II B. Similarly, the false positive rate (see below)
cannot directly be compared to a false alarm rate.

We can now discuss the network performance on the test
set in terms of the detection ratio and the false positive
ratio. The detection ratio is simply the number of injected
signals in the test set that the network could recover,
divided by the total number of injected signals. We there-
fore also call it sensitivity. The false positive ratio is the
number of false positives divided by the number of all
produced candidate times. It is thus an estimate of the error
probability; the probability that any given candidate time
does not coincide with an actual signal.
Additionally, we can also define the false positive rate:

the total number of false positives divided by the combined
duration of all samples in the test set. Its inverse is more
intuitive: the inverse false positive rate is the average time
between two false positives. Naturally, this number should
be as high as possible, meaning false positives should be as
infrequent as possible.
Again, note that our metrics do not rely on the existence

of distinct examples, but could equally be evaluated on a
single time series of arbitrary length containing multiple
signals. To illustrate this key difference further, let us go
back to our argument why the true positive rate and the
false positive rate can not be used to evaluate example
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based binary classification approaches in the sliding
windowmode of operation considering the output sequence
1 − 1 − 1 − 0 − 1 − 1 − 0. First, previous approaches do
not explain how to interpret such an undesirable situation.
Moreover, their performance metrics are blind to these
occurrences, because they are derived only from fixed-
length examples, which all have an unambiguous binary
label. Taking into account the continuous nature of the task,
our metrics acknowledge this issue by counting at least
one of the two positive intervals as a false positive if there
was only one real signal within the corresponding time
interval.

VII. EXPERIMENTS AND RESULTS

A. Performance evaluation

When evaluated on our full test set using the default
parameters, our trained model is able to successfully
recover approximately 89% of all injections, while on
average producing a false positive about once every
19.5 minutes.
For a more fine grained analysis, we then split the

positive examples (i.e., the ones that do contain an
injection) in the test set into 30 bins based on their
respective injection SNR. The bins are distributed equi-
distantly and cover the full injection SNR range of
ð5.0; 5.5Þ; ð5.5; 6.0Þ;…; ð19.5; 20Þ. On average, every bin
therefore contains 0.75 · 16384=30 ≈ 410 examples. We
then compute the detection ratio independently for each of
these bins using different values of Δt to investigate how
the sensitivity of our method scales with the faintness of the
signals as well as a function of Δt. The results in Fig. 4
show that the detection ratio increases steeply with the
injection SNR and achieves essentially 100% roughly at an

SNR of 11 for Δt ≥ 0.01 s. Furthermore, we find that
the value of Δt only has a very moderate influence on the
performance of the model: for all values Δt ≥ 0.05 s, the
results are virtually indistinguishable.
For comparison, the threshold for a coincident trigger to

even be analyzed within the PYCBC search pipeline isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5.52 þ 5.52

p
¼ 7.79. At this injection SNR, our model

(using Δt ¼ 0.05 s) already recovers more than 80% of all
injected signals. Furthermore, the first ten real binary black
hole mergers observed so far had network SNRs between
9.5 and 30.9 [12], which is well within the region in which
our model has a virtually perfect detection ratio.
Additionally, we also compute the global inverse false

positive rate (i.e., averaged over all SNRs) as a function of
Δt. We show the results for this in Fig. 5. For values
Δ ≥ 0.05 s, the IFPR is virtually constant, which motivates
our choice for the default value (namely Δt ¼ 0.05 s).

B. Effects of postprocessing

Next, we systematically investigate the effect of both the
smoothing and thresholding parameters. To this end, we
postprocess the raw network output on the test set with
different sizes of the smoothing window (1, 2, 4, 8, 16, 32,
64, 128, and 256) and different thresholds (0.1, 0.3, 0.5,
0.7, and 0.9) using our default value for Δt. In the
parametric plot in Fig. 6, we show the detection ratio
and the inverse false positive rate averaged over the entire
test set for each combination of parameter settings (mean-
ing up and right are better). While there is no single best
option, this plot shows that our two parameters provide
clearly interpretable tuning knobs to choose an operating
point by trading off the sensitivity and the false positive
rate. Depending on the application requirements one may
use this plot to optimize detection ratio at fixed false
positive rate or vice versa.

C. Recovering real gravitational-wave events

In the next experiment, we evaluate our model’s ability to
generalize from synthetic training data to real events. The
first two observations announced during LIGO’s first
observation run were GW150914 and GW151226 [7,8].

FIG. 4. The detection ratio (DR) for positive examples binned
by their network injection SNR (shown for different values
ofΔt). The DR increases steeply and plateaus at essentially 100%
for an SNR≳11 (for Δt ≥ 0.01 s). The vertical red line indicates
the network SNR threshold above which the PYCBC search
pipeline considers events for further analysis.

FIG. 5. The inverse false positive rate (IFPR) as a function of
the parameter Δt that controls how much a predicted event time tc
may deviate from the ground truth injection time ti to still be
counted as a detection (see step 3 in Sec. VI B).
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These real signals were not included in the training data. At
test time, we select an interval centered around the event
times from the original recordings for both events, and apply
the establishedwhitening and band-passing procedure. Both
samples are then cropped to 16 s, again centered around the
event time. After normalizing and passing them through the
network, we apply our usual postprocessing steps, using a
window size of 256 time steps for the smoothing and
thresholding the result at 0.5.
The results in Fig. 7 show that in both cases, the model

was able to successfully recover the real GW signal at the
correct position despite being slightly less accurate on the
fainter event GW151226 (with a network SNR of 13) than
the first observed event GW150914 (with a network SNR
of 24) [7,8]. The fainter example highlights the effect of
postprocessing: Instead of causing multiple false positives
when thresholding the raw network output directly, the
additional smoothing step yields a single connected interval
(i.e., a single predicted event time).
Finally, we also apply our trained network to all other

events in the GWTC-1 catalog [12], which consists of 11

FIG. 6. This figure shows the effect of the smoothing and
thresholding parameters used during the postprocessing step on
the detection ratio and the inverse false positive rate. Symbols
encode the different threshold values, while the number next to
the data points indicates the size of the smoothing window. The
plot shows that these two parameters provide interpretable tuning
knobs to choose an operating point.

(a) Results for GW150914.

(b) Results for GW151226.

FIG. 7. Results for recovering the first two confirmed real events in O1, GW150914, and GW151226. The top two panels of each plot
show the whitened, normalized strain for H1 and L1, centered around the time at which the peak of the gravitational-wave amplitude
passed through the center of the Earth. The last panel shows the different postprocessing stages, namely, the raw, smoothed, and
thresholded network output (smoothing window size 256, threshold 0.5). The vertical red line indicates the predicted position of the
event, calculated as the center of the interval of ones in the thresholded output.
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confirmed binary mergers from both the first and second
observation run of LIGO. Using the event data available
from the GWOSC (which was preprocessed in the same
way as before), we find that our network can indeed recover
all known events, with the exception of GW170817. This
is, however, not a surprise: While all other events are binary
black hole mergers, and we also trained our model using
simulated BBH waveforms, GW170817 is the only con-
firmed binary neutron star merger [14].
Lastly, the fact that we are able to also successfully

recover the events from O2 after using only recordings
from O1 to train also indicates that the model is, to a certain
extent, robust to changes in the detector characteristics.

D. A note of caution

In a final experiment, we once more want to emphasize
our call for caution when interpreting CNNs in the context
of gravitational-wave searches. To address the question

“What has the model actually learned?,” we use techniques
inspired from activation maximization or feature visuali-
zation (see, e.g., [74,75]), as well as adversarial examples
or adversarial attacks (see, e.g., [76]), which are currently
active areas of research within the machine learning
community. Specifically, we perform the following test
in which we make use of the differentiability of our model
to find examples of inputs which cause the network to
produce a given target output:
(1) We randomly select a noise-only example (i.e., an

example that does not contain an injection) from our
testing set and crop it from the end to a length of 3 s.
This is our initial network input.

(2) Next, we generate a target label, which is about 1 s
long (3 s minus the receptive field of the model) and
zero everywhere except for the interval from 0.45 s
to 0.55 s, where it takes on a value of 1.

(a) Examples that visually seem to resemble a gravitational-wave signal (i.e., chirp-like increase in frequency and amplitude).

(b) Examples where no clear chirp-like pattern is visually discernible.

(c) Examples which satisfy unphysical constraints, yet still cause the network to predict the presence of a signal. In the first example, the
input strain is constrained to only non-negative values. In the second example, the input strain is constrained to 0 in the 0.25 s-interval

around predicted event time. In the last example, the entire example is constrained to have a minimal strain amplitude.

FIG. 8. This figures shows different example results where we—using a fixed pretrained model—optimized the network inputs
(starting from noise-only examples) in order to produce a given desired output. The top and middle panel show the strain for the two
detectors, H1 and L1. The original inputs (i.e., the pure background noise) are shown in blue, and the difference between the original and
the optimized input is shown in orange. This is the component that is added to the noise in order to make the network predict the
presence of a “signal.” Ideally, we would therefore expect the orange component to look like a gravitational-wave waveform. For the
examples in subfigure (c), only the effective (i.e., optimized and constrained) inputs to the network are shown (in green). The bottom
panel of every figure shows the desired output (i.e., the optimization target) in dotted gray, and the raw network prediction in blue
(i.e., without any postprocessing).
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(3) If applicable, we enforce additional constraints on
the inputs. For example, we pass the input through a
maxðx; 0Þ-function to create the physically nonsen-
sical scenario of a strain that is strictly non-negative
(see first example in Fig. 8(c)).

(4) We pass the constrained network input through the
trained model from the previous experiments. We
then compute a weighted sum of a binary cross-
entropy and a mean squared error loss between the
network prediction and the target. The exact weight-
ing depends on the optimization target.

(5) Unlike when training a neural network, this loss is
then not back-propagated to the weights of the
network, which stay fixed during this experiment.
Instead, the loss is back-propagated to the input,
which is updated in order to minimize the loss.

(6) We repeat this procedure (starting with enforcing
possible constraints on the inputs) for 256 iterations,
again using Adam as the optimizer, with an initial
learning rate of η ¼ 0.3. PYTORCH’s default cosine
annealing scheduler is used to gradually decrease the
learning rate every epoch.

(7) Finally, we compute the difference between the
original network input and the optimized input.
This can be interpreted as the hypothetical “signal,”
which—when added into the pure noise example—
makes our network produce the target output.

We repeat this procedure for different initial inputs and
manually inspect the results in form of the hypothetical
“signals” to check if they match our expectation: If the
network had truly learned to respond only to gravitational
waves, we would expect these hypothetical signals to
closely resemble gravitational-wave signals.
However, while some of the inputs that have undergone

the described optimization procedure do exhibit a chirplike
structure (i.e., oscillations increasing in both amplitude and
frequency), we find that this is not always the case; see panel
(a) and (b) of Fig. 8. Worse yet, we can also achieve the
desired output even when imposing nonphysical constraints
on the inputs.We investigate three types of such constraints:
First, we allow only non-negative strain values. Second, we
enforce the strain to be zero in a 0.25 s-interval covering the
interval in which the target output is one. Third, we clip the
network input values to a small interval around zero to
minimize the overall amplitude. In all three cases, we can
still find examples that obey the constraints and, when
passed through the network, yield the desired target output.
Examples for this are shown in panel (c) of Fig. 8.
Since we crafted these examples in a supervised fashion,

one may argue that the cases in panel (c) are unrealistically
out of distribution, that is, they would never occur in real
detector recordings and therefore donot lead to complications
in practice. However, in particular the unconstrained exam-
ples in panel (b) ofFig. 8 are unsettling, because they illustrate
just how easily the network can be fooled even by small
changes in the inputs. These results suggest a detailed

quantification of how contrived these hypothetical signals
really are (measured by how likely they are to occur
accidentally in future detector recordings) to assess whether
one must account for them in the false positive rate. Without
such an analysis the worry of overconfident positive CNN
output on pure noise or faint non-Gaussian transients remains.

VIII. DISCUSSION AND CONCLUSION

In this work we provide an interdisciplinary, in-depth
analysis of the potential of deep convolutional neural
networks (CNNs) as part of the effort around searching
for gravitational waves from binary coalescences in strain
data. First, we critically scrutinize both the methods as well
as the contributions of existing works on this topic by
carefully analyzing how standard machine learning
approaches and metrics map to the specific task at hand.
This analysis yields two major conclusions: 1. CNNs alone
cannot be used to claim statistically significant gravita-
tional-wave detections. 2. Fast inference times, favorable
computational scaling in the number of detectors, and a
compact internal representation of a large number of
waveforms presented during training still make CNNs a
useful and promising tool to produce real-time triggers for
detailed analysis and follow up searches.
As part of these key conceptual insights, we hope to

foster further interdisciplinary research on this topic by
highlighting important subtleties of GW searches to
machine learning experts and exposing some potential
pitfalls and surprising properties of CNNs to physicists.
Building on these insights, we have designed a flexible

data generation pipeline which we make publicly available
as an open source package. We use a novel network
architecture which is more tailored to the physical task
at hand than a binary classification-based approach and also
overcomes some subtle pitfalls, such as the danger of
overfitting to some particular properties of the training data.
We evaluate this approach on real LIGO recordings and
demonstrate the potential of such a system as a trigger
generator by achieving a detection ratio of 86% with a false
positive on average once every 40 minutes. Two tuneable
post-processing parameters allow us to intuitively trade off
between the detection ratio and the false positive rate
without having to retrain the model.
Finally, as part of our effort for cross-disciplinary under-

standing, we showcase a selection of “failure modes” of our
model which are typical for deep convolutional neural net-
works. We contrive inputs which the network believes to
contain gravitational-wave signalswithhighconfidence, even
though they are structurally very different from real detector
signals for compact binary coalescences.While some of these
inputs are physically unrealistic and thus unlikely to be
observed in practice, others appear quite plausible (e.g., tiny
modifications of pure noise examples). Because the detector
noise properties change on an hourly timescale, the rate of
false triggers due to such failures may be hard to predict even
for a well-tuned CNN. We leave the required quantitative
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analysis of how such incidences may affect the performance
on real-world recordings under changing detector character-
istics for future research, and conclude this work with a note
of caution: CNNs are a promising tool for gravitational-wave
data analysis; however, their exact interpretation requires
great care and attention.
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APPENDIX: DATA GENERATION PARAMETERS

The following list explains the different parameters and
the distributions from which their values are randomly
sampled before being passed as inputs to the SEOBNRv4
waveform model in order to simulate synthetic gravita-
tional-wave signals. Because the true astrophysical distri-
butions for compact binary coalescences are unknown, we
choose the following generic values:

(i) mass1 and mass2 : Themasses of the twomerging
black holes, chosen independently and uniformly at
random between 10 and 80 solar masses.

(ii) spin1z and spin2z : The z-component of the
spin of the merging black holes, chosen independ-
ently and uniformly at random between 0 and 0.998
(to improve the numerical stability).

(iii) ra and dec : The right ascension of declination
defining the position of the source in the sky. Both
values are sampled together from a uniform distri-
bution over the sky.

(iv) polarization : The polarization angle is one of
the three Euler angles relating the radiation frame,
which is the reference frame in which the gravita-
tional wave propagates in the z-direction, to the
reference frame of the detector. It is sampled uni-
formly at random from the interval ½0; 2π�.

(v) coa phase and inclination : To understand
the significance of the coalescence phase and the
inclination, one needs to introduce a third reference
frame beside the detector and radiation frame,
namely, the reference frame of the source itself.
In the case of a binary coalescence, this source
reference frame is chosen such that its z-axis is
perpendicular to the plane in which the two black
holes orbit each other. Then, the coa phase and
the inclination are the two angles that specify
the location in the sky of the detector as seen from
this source frame. Their values are sampled jointly
from a uniform distribution over a sphere.

(vi) injection snr : For evaluation purposes, it is
useful to generate samples with a pre-defined
signal-to-noise ratio. This can be achieved by re-
scaling the waveform, which is physically equiv-
alent to moving the source closer or further from
the detector. The injection snr is the desired
network SNR for the example, which is sampled
uniformly from [5, 20]. It is not directly passed to
the simulation routine, but only used later when
adding the simulated signal into the background
noise.
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