225,028 research outputs found

    Ontologies in Cloud Computing - Review and Future Directions

    Get PDF
    Cloud computing as a technology has the capacity to enhance cooperation, scalability, accessibility, and offers discount prospects using improved and effective computing, and this capability helps organizations to stay focused. Ontologies are used to model knowledge. Once knowledge is modeled, knowledge management systems can be used to search, match, visualize knowledge, and also infer new knowledge. Ontologies use semantic analysis to define information within an environment with interconnecting relationships between heterogeneous sets. This paper aims to provide a comprehensive review of the existing literature on ontology in cloud computing and defines the state of the art. We applied the systematic literature review (SLR) approach and identified 400 articles; 58 of the articles were selected after further selection based on set selection criteria, and 35 articles were considered relevant to the study. The study shows that four predominant areas of cloud computing—cloud security, cloud interoperability, cloud resources and service description, and cloud services discovery and selection—have attracted the attention of researchers as dominant areas where cloud ontologies have made great impact. The proposed methods in the literature applied 30 ontologies in the cloud domain, and five of the methods are still practiced in the legacy computing environment. From the analysis, it was found that several challenges exist, including those related to the application of ontologies to enhance business operations in the cloud and multi-cloud. Based on this review, the study summarizes some unresolved challenges and possible future directions for cloud ontology researchers.publishedVersio

    Biomedical Question Answering: A Survey of Approaches and Challenges

    Full text link
    Automatic Question Answering (QA) has been successfully applied in various domains such as search engines and chatbots. Biomedical QA (BQA), as an emerging QA task, enables innovative applications to effectively perceive, access and understand complex biomedical knowledge. There have been tremendous developments of BQA in the past two decades, which we classify into 5 distinctive approaches: classic, information retrieval, machine reading comprehension, knowledge base and question entailment approaches. In this survey, we introduce available datasets and representative methods of each BQA approach in detail. Despite the developments, BQA systems are still immature and rarely used in real-life settings. We identify and characterize several key challenges in BQA that might lead to this issue, and discuss some potential future directions to explore.Comment: In submission to ACM Computing Survey

    Systematic Review Protocol: Requirements Engineering in Quantum Computing

    Full text link
    Context: Quantum computing (QC) represents a paradigm shift in computational capabilities, presenting unique challenges in requirements engineering (RE). The complexity of quantum systems and rapid technological advancements necessitate a comprehensive understanding of the current state and future trajectories in RE for QC. Objective: A protocol for carrying out a systematic literature review about the evidence for identifying and analyzing the challenges in RE for QC software. It seeks to evaluate the current methodologies employed in this domain and propose a forward-looking perspective on the evolution of these methodologies to meet future industry and academic needs. Method: This protocol employs a structured approach to search and analyze relevant literature systematically, according to Barbara Kitchenham's guidelines. Results: A validated protocol to conduct a systematic review. The protocol is expected to yield diverse literature spanning theoretical frameworks, empirical studies, and methodological advancements in RE for QC. It will highlight the current challenges, opportunities, and future directions, offering insights into the field's academic and practical aspects. Conclusions: The systematic review aims to provide a nuanced understanding of the RE landscape in QC. It will offer valuable insights for academic researchers, industry professionals, software engineers, industry analysts, and educators, shaping the future discourse in QC development.Comment: 12 pages, 6 table

    Fast Cell Discovery in mm-wave 5G Networks with Context Information

    Full text link
    The exploitation of mm-wave bands is one of the key-enabler for 5G mobile radio networks. However, the introduction of mm-wave technologies in cellular networks is not straightforward due to harsh propagation conditions that limit the mm-wave access availability. Mm-wave technologies require high-gain antenna systems to compensate for high path loss and limited power. As a consequence, directional transmissions must be used for cell discovery and synchronization processes: this can lead to a non-negligible access delay caused by the exploration of the cell area with multiple transmissions along different directions. The integration of mm-wave technologies and conventional wireless access networks with the objective of speeding up the cell search process requires new 5G network architectural solutions. Such architectures introduce a functional split between C-plane and U-plane, thereby guaranteeing the availability of a reliable signaling channel through conventional wireless technologies that provides the opportunity to collect useful context information from the network edge. In this article, we leverage the context information related to user positions to improve the directional cell discovery process. We investigate fundamental trade-offs of this process and the effects of the context information accuracy on the overall system performance. We also cope with obstacle obstructions in the cell area and propose an approach based on a geo-located context database where information gathered over time is stored to guide future searches. Analytic models and numerical results are provided to validate proposed strategies.Comment: 14 pages, submitted to IEEE Transaction on Mobile Computin

    Exploring Maintainability Assurance Research for Service- and Microservice-Based Systems: Directions and Differences

    Get PDF
    To ensure sustainable software maintenance and evolution, a diverse set of activities and concepts like metrics, change impact analysis, or antipattern detection can be used. Special maintainability assurance techniques have been proposed for service- and microservice-based systems, but it is difficult to get a comprehensive overview of this publication landscape. We therefore conducted a systematic literature review (SLR) to collect and categorize maintainability assurance approaches for service-oriented architecture (SOA) and microservices. Our search strategy led to the selection of 223 primary studies from 2007 to 2018 which we categorized with a threefold taxonomy: a) architectural (SOA, microservices, both), b) methodical (method or contribution of the study), and c) thematic (maintainability assurance subfield). We discuss the distribution among these categories and present different research directions as well as exemplary studies per thematic category. The primary finding of our SLR is that, while very few approaches have been suggested for microservices so far (24 of 223, ?11%), we identified several thematic categories where existing SOA techniques could be adapted for the maintainability assurance of microservices
    • 

    corecore