9 research outputs found

    Mobility management across converged IP-based heterogeneous access networks

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 8/2/2010.In order to satisfy customer demand for a high performance “global” mobility service, network operators (ISPs, carriers, mobile operators, etc.) are facing the need to evolve to a converged “all-IP” centric heterogeneous access infrastructure. However, the integration of such heterogeneous access networks (e.g. 802.11, 802.16e, UMTS etc) brings major mobility issues. This thesis tackles issues plaguing existing mobility management solutions in converged IP-based heterogeneous networks. In order to do so, the thesis firstly proposes a cross-layer mechanism using the upcoming IEEE802.21 MIH services to make intelligent and optimized handovers. In this respect, FMIPv6 is integrated with the IEEE802.21 mechanism to provide seamless mobility during the overall handover process. The proposed solution is then applied in a simulated vehicular environment to optimize the NEMO handover process. It is shown through analysis and simulations of the signalling process that the overall expected handover (both L2 and L3) latency in FMIPv6 can be reduced by the proposed mechanism by 69%. Secondly, it is expected that the operator of a Next Generation Network will provide mobility as a service that will generate significant revenues. As a result, dynamic service bootstrapping and authorization mechanisms must be in place to efficiently deploy a mobility service (without static provisioning), which will allow only legitimate users to access the service. A GNU Linux based test-bed has been implemented to demonstrate this. The experiments presented show the handover performance of the secured FMIPv6 over the implemented test-bed compared to plain FMIPv6 and MIPv6 by providing quantitative measurements and results on the quality of experience perceived by the users of IPv6 multimedia applications. The results show the inclusion of the additional signalling of the proposed architecture for the purpose of authorization and bootstrapping (i.e. key distribution using HOKEY) has no adverse effect on the overall handover process. Also, using a formal security analysis tool, it is shown that the proposed mechanism is safe/secure from the induced security threats. Lastly, a novel IEEE802.21 assisted EAP based re-authentication scheme over a service authorization and bootstrapping framework is presented. AAA based authentication mechanisms like EAP incur signalling overheads due to large RTTs. As a result, overall handover latency also increases. Therefore, a fast re-authentication scheme is presented which utilizes IEEE802.21 MIH services to minimize the EAP authentication process delays and as a result reduce the overall handover latency. Analysis of the signalling process based on analytical results shows that the overall handover latency for mobility protocols will be approximately reduced by 70% by the proposed scheme

    Mobility management across converged IP-based heterogeneous access networks

    Get PDF
    In order to satisfy customer demand for a high performance “global” mobility service, network operators (ISPs, carriers, mobile operators, etc.) are facing the need to evolve to a converged “all-IP” centric heterogeneous access infrastructure. However, the integration of such heterogeneous access networks (e.g. 802.11, 802.16e, UMTS etc) brings major mobility issues. This thesis tackles issues plaguing existing mobility management solutions in converged IP-based heterogeneous networks. In order to do so, the thesis firstly proposes a cross-layer mechanism using the upcoming IEEE802.21 MIH services to make intelligent and optimized handovers. In this respect, FMIPv6 is integrated with the IEEE802.21 mechanism to provide seamless mobility during the overall handover process. The proposed solution is then applied in a simulated vehicular environment to optimize the NEMO handover process. It is shown through analysis and simulations of the signalling process that the overall expected handover (both L2 and L3) latency in FMIPv6 can be reduced by the proposed mechanism by 69%. Secondly, it is expected that the operator of a Next Generation Network will provide mobility as a service that will generate significant revenues. As a result, dynamic service bootstrapping and authorization mechanisms must be in place to efficiently deploy a mobility service (without static provisioning), which will allow only legitimate users to access the service. A GNU Linux based test-bed has been implemented to demonstrate this. The experiments presented show the handover performance of the secured FMIPv6 over the implemented test-bed compared to plain FMIPv6 and MIPv6 by providing quantitative measurements and results on the quality of experience perceived by the users of IPv6 multimedia applications. The results show the inclusion of the additional signalling of the proposed architecture for the purpose of authorization and bootstrapping (i.e. key distribution using HOKEY) has no adverse effect on the overall handover process. Also, using a formal security analysis tool, it is shown that the proposed mechanism is safe/secure from the induced security threats. Lastly, a novel IEEE802.21 assisted EAP based re-authentication scheme over a service authorization and bootstrapping framework is presented. AAA based authentication mechanisms like EAP incur signalling overheads due to large RTTs. As a result, overall handover latency also increases. Therefore, a fast re-authentication scheme is presented which utilizes IEEE802.21 MIH services to minimize the EAP authentication process delays and as a result reduce the overall handover latency. Analysis of the signalling process based on analytical results shows that the overall handover latency for mobility protocols will be approximately reduced by 70% by the proposed scheme.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Mobility management across converged IP-based heterogeneous access networks

    Get PDF
    In order to satisfy customer demand for a high performance “global” mobility service, network operators (ISPs, carriers, mobile operators, etc.) are facing the need to evolve to a converged “all-IP” centric heterogeneous access infrastructure. However, the integration of such heterogeneous access networks (e.g. 802.11, 802.16e, UMTS etc) brings major mobility issues. This thesis tackles issues plaguing existing mobility management solutions in converged IP-based heterogeneous networks. In order to do so, the thesis firstly proposes a cross-layer mechanism using the upcoming IEEE802.21 MIH services to make intelligent and optimized handovers. In this respect, FMIPv6 is integrated with the IEEE802.21 mechanism to provide seamless mobility during the overall handover process. The proposed solution is then applied in a simulated vehicular environment to optimize the NEMO handover process. It is shown through analysis and simulations of the signalling process that the overall expected handover (both L2 and L3) latency in FMIPv6 can be reduced by the proposed mechanism by 69%. Secondly, it is expected that the operator of a Next Generation Network will provide mobility as a service that will generate significant revenues. As a result, dynamic service bootstrapping and authorization mechanisms must be in place to efficiently deploy a mobility service (without static provisioning), which will allow only legitimate users to access the service. A GNU Linux based test-bed has been implemented to demonstrate this. The experiments presented show the handover performance of the secured FMIPv6 over the implemented test-bed compared to plain FMIPv6 and MIPv6 by providing quantitative measurements and results on the quality of experience perceived by the users of IPv6 multimedia applications. The results show the inclusion of the additional signalling of the proposed architecture for the purpose of authorization and bootstrapping (i.e. key distribution using HOKEY) has no adverse effect on the overall handover process. Also, using a formal security analysis tool, it is shown that the proposed mechanism is safe/secure from the induced security threats. Lastly, a novel IEEE802.21 assisted EAP based re-authentication scheme over a service authorization and bootstrapping framework is presented. AAA based authentication mechanisms like EAP incur signalling overheads due to large RTTs. As a result, overall handover latency also increases. Therefore, a fast re-authentication scheme is presented which utilizes IEEE802.21 MIH services to minimize the EAP authentication process delays and as a result reduce the overall handover latency. Analysis of the signalling process based on analytical results shows that the overall handover latency for mobility protocols will be approximately reduced by 70% by the proposed scheme.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Towards Seamless Mobility: An IEEE 802.21 Practical Approach

    Get PDF
    In the recent years, mobile devices such as cell phones, notebook or ultra mobile computers and videogame consoles are experiencing an impressive evolution in terms of hardware and software possibilities. Elements such a wideband Internet connection allows a broad range of possibilities for creative developers. Many of these possibilities can include applications requiring continuity of service when the user moves form a coverage area to another. Nowadays, mobile devices are equipped with one or more radio interfaces such as GSM, UMTS, WiMax or Wi‐ Fi. Many of these technologies are ready to allow transparent roaming within their own coverage areas, but they are not ready to handle a service transfer between different technologies. In order to find a solution to this issue, the IEEE has developed a standard known as Media Independent Handover (MIH) Services with the aim of easing seamless mobility between these technologies. The present work has been centered in developing a system capable to enable a service of mobility under the terms specified in the stated standard. The development of a platform aiming to provide service continuity is mandatory, being a cross‐layer solution based in elements from link and network layers supplying a transparent roaming mechanism from user’s point of view. Two applications have been implemented in C/C++ language under a Linux environment. One application is designed to work within a mobile device, and the other one in the network access point. The mobile device basically consists in a notebook equipped with two Wi‐Fi interfaces, which is not a common feature in commercial devices, allowing seamless communication transfers aided by the application. Network access points are computers equipped with a Wi‐Fi interface and configured to provide Internet wireless access and services of mobility. In order to test the operation, a test‐bed has been implemented. It consists on a pair of access points connected through a network and placed within partially overlapped coverage areas, and a mobile device, all of them properly set. The mobile detects the networks that are compatible and gets attached to the one that provides better conditions for the demanded service. When the service degrades up to certain level, the mobile transfers the communication to the other access point, which offers better service conditions. Finally, in order to check if the changes have been done properly, the duration of the required actions has been measured, as well as the data that can have been lost or buffered meanwhile. The result is a MIH‐alike system working in a proper way. The discovery and selection of a destination network is correct and is done before the old connection gets too degraded, providing seamless mobility. The measured latencies and packet losses are affordable in terms of MIH protocol, but require future work improvements in terms of network protocols that have not been considered under the scope of this work

    End to end architecture and mechanisms for mobile and wireless communications in the Internet

    Get PDF
    Architecture et mĂ©canismes de bout en bout pour les communications mobiles et sans fil dans l'Internet. La gestion performante de la mobilitĂ© et l'amĂ©lioration des performances des couches basses sont deux enjeux fondamentaux dans le contexte des rĂ©seaux sans fil. Cette thĂšse apporte des solutions originales et innovantes qui visent Ă  rĂ©pondre Ă  ces deux problĂ©matiques empĂȘchant Ă  ce jour d'offrir des possibilitĂ©s de communication performantes et sans couture aux usagers mobiles accĂ©dant Ă  l'Internet via des rĂ©seaux d'accĂšs locaux sans fil (WLAN). Ces solutions se distinguent en particulier par l'impact minimum qu'elles ont sur les protocoles standards de l'Internet (niveaux transport et rĂ©seau) ou de l'IEEE (niveaux physique et liaison de donnĂ©es). S'inscrivant dans les paradigmes de "bout en bout" et "cross-layer", notre architecture permet d'offrir des solutions efficaces pour la gestion de la mobilitĂ© : gestion de la localisation et des handover en particulier. En outre, nous montrons que notre approche permet Ă©galement d'amĂ©liorer l'efficacitĂ© des transmissions ainsi que de rĂ©soudre efficacement plusieurs syndromes identifiĂ©s au sein de 802.11 tels que les anomalies de performance, l'iniquitĂ© entre les flux et l'absence de contrĂŽle de dĂ©bit entre la couche MAC et les couches supĂ©rieures. Cette thĂšse rĂ©sout ces problĂšmes en combinant des modĂšles analytiques, des simulations et de rĂ©elles expĂ©rimentations. Ces mĂ©canismes adaptatifs ont Ă©tĂ© dĂ©veloppĂ©s et intĂ©grĂ©s dans une architecture de communication qui fournit des services de communication Ă  haute performance pour rĂ©seaux sans fils tels que WIFI et WIMAX. ABSTRACT : Wireless networks, because of the potential pervasive and mobile communication services they offer, are becoming the dominant Internet access networks. However, the legacy Internet protocols, still dominant at that time, have not been designed with mobility and wireless in mind. Therefore, numerous maladjustments and “defaults of impedance” can be observed when combining wireless physical and MAC layers with the traditional upper layers. This thesis proposes several solutions for a pacific coexistence between these communication layers that have been defined and designed independently. Reliable mobility management and Low layer performance enhancements are two main challenging issues in the context of wireless networks. Mobility management (which is mostly based on mobile IP architecture nowadays) aims to continuously assign and control the wireless connections of mobile nodes amongst a space of wireless access networks. Low layer performance enhancements mainly focus on the transmission efficiency such as higher rate, lower loss, interference avoidance. This thesis addresses these two important issues from an original and innovative approach that, conversely to the traditional contributions, entails a minimum impact on the legacy protocols and internet infrastructure. Following the “end to end” and “cross layer” paradigms, we address and offer efficient and light solutions to fast handover, location management and continuous connection support through a space of wireless networks. Moreover, we show that such an approach makes it possible to enhance transmission efficiency and solve efficiently several syndromes that plague the performances of current wireless networks such as performance anomaly, unfairness issues and maladjustment between MAC layer and upper layers. This thesis tackles these issues by combining analytical models, simulations and real experiments. The resulting mechanisms have been developed and integrated into adaptive mobility management communication architecture that delivers high performing communication services to mobile wireless systems, with a focus on WIFI and WIMAX access networks

    Contributions to Vehicular Communications Systems and Schemes

    Get PDF
    La derniĂšre dĂ©cennie a marquĂ© une grande hausse des applications vĂ©hiculaires comme une nouvelle source de revenus et un facteur de distinction dans l'industrie des vĂ©hicules. Ces applications vĂ©hiculaires sont classĂ©es en deux groupes : les applications de sĂ©curitĂ© et les applications d'info divertissement. Le premier groupe inclue le changement intelligent de voie, l'avertissement de dangers de routes et la prĂ©vention coopĂ©rative de collision qui comprend la vidĂ©o sur demande (VoD), la diffusion en direct, la diffusion de mĂ©tĂ©o et de nouvelles et les jeux interactifs. Cependant, Il est Ă  noter que d'une part, les applications vĂ©hiculaires d'info divertissement nĂ©cessitent une bande passante Ă©levĂ©e et une latence relativement faible ; D'autre part, les applications de sĂ©curitĂ© requiĂšrent exigent un dĂ©lai de bout en bout trĂšs bas et un canal de communication fiable pour la livraison des messages d'urgence. Pour satisfaire le besoin en applications efficaces, les fabricants de vĂ©hicules ainsi que la communautĂ© acadĂ©mique ont introduit plusieurs applications Ă  l’intĂ©rieur de vĂ©hicule et entre vĂ©hicule et vĂ©hicule (V2V). Sauf que, l'infrastructure du rĂ©seau sans fil n'a pas Ă©tĂ© conçue pour gĂ©rer les applications de vĂ©hicules, en raison de la haute mobilitĂ© des vĂ©hicules, de l'imprĂ©visibilitĂ© du comportement des conducteurs et des modĂšles de trafic dynamiques. La relĂšve est l'un des principaux dĂ©fis des rĂ©seaux de vĂ©hicules, car la haute mobilitĂ© exige au rĂ©seau sans fil de faire la relĂšve en un trĂšs court temps. De plus, l'imprĂ©visibilitĂ© du comportement du conducteur cause l'Ă©chec des protocoles proactifs traditionnels de relĂšve, car la prĂ©diction du prochain routeur peut changer en fonction de la dĂ©cision du conducteur. Aussi, le rĂ©seau de vĂ©hicules peut subir une mauvaise qualitĂ© de service dans les rĂ©gions de relĂšve en raison d'obstacles naturels, de vĂ©hicules de grande taille ou de mauvaises conditions mĂ©tĂ©orologiques. Cette thĂšse se concentre sur la relĂšve dans l'environnement des vĂ©hicules et son effet sur les applications vĂ©hiculaires. Nous proposons des solutions pratiques pour les rĂ©seaux actuellement dĂ©ployĂ©s, principalement les rĂ©seaux LTE, l'infrastructure vĂ©hicule Ă  vĂ©hicule (V2V) ainsi que les outils efficaces d’émulateurs de relĂšves dans les rĂ©seaux vĂ©hiculaires.----------ABSTRACT: The last decade marked the rise of vehicular applications as a new source of revenue and a key differentiator in the vehicular industry. Vehicular Applications are classified into safety and infotainment applications. The former include smart lane change, road hazard warning, and cooperative collision avoidance; however, the latter include Video on Demand (VoD), live streaming, weather and news broadcast, and interactive games. On one hand, infotainment vehicular applications require high bandwidth and relatively low latency; on the other hand, safety applications requires a very low end to end delay and a reliable communication channel to deliver emergency messages. To satisfy the thirst for practical applications, vehicle manufacturers along with research institutes introduced several in-vehicle and Vehicle to Vehicle (V2V) applications. However, the wireless network infrastructure was not designed to handle vehicular applications, due to the high mobility of vehicles, unpredictability of drivers’ behavior, and dynamic traffic patterns. Handoff is one of the main challenges of vehicular networks since the high mobility puts pressure on the wireless network to finish the handoff within a short period. Moreover, the unpredictability of driver behavior causes the traditional proactive handoff protocols to fail, since the prediction of the next router may change based on the driver’s decision. Moreover, the vehicular network may suffer from bad Quality of Service (QoS) in the regions of handoff due to natural obstacles, large vehicles, or weather conditions. This thesis focuses on the handoff on the vehicular environment and its effect on the vehicular applications. We consider practical solutions for the currently deployed networks mainly Long Term Evolution (LTE) networks, the Vehicle to Vehicle (V2V) infrastructure, and the tools that can be used effectively to emulate handoff on the vehicular networks

    Actas da 10ÂȘ ConferĂȘncia sobre Redes de Computadores

    Get PDF
    Universidade do MinhoCCTCCentro AlgoritmiCisco SystemsIEEE Portugal Sectio

    Seamless handover support over heterogeneous networks using FMIPv6 with definitive L2 triggers

    No full text
    Various wireless communication systems have been developed and will be integrated into an IP-based network to offer end users the Internet access anytime and anywhere. In heterogeneous multi-access networks, one of main issues is to manage nodes' mobility with session continuity and minimal handover latency. In order to support the mobility of mobile nodes, MIPv6 has been proposed by IETF. Even though MIPv6 provides a solution to handling nodes' mobility in IPv6 networks, there is a significant problem due to its inability to support a seamless handover caused by long latency and high packet losses during a handover. FMIPv6 has been proposed to reduce MIPv6 handover latency by using an address preconfiguration method with the aid of L2 triggers. Current research defines a general L2 trigger model for seamless handover operation, but it does not address the exact timing and definitive criteria of L2 triggers which causes a significant effect on the handover performance of FMIPv6. This paper considers the available timing and accurate criteria of L2 triggers. With the definitive L2 triggers, we present a practical handover scenario to integrate L2 and L3 layers for low handover latency and low number of packet losses during a handover. We also study the impact of definitive L2 triggers on the handover performance of the FMIPv6 protocol in real testbeds and prove that the FMIPv6 protocol performs its handover operation prior to the L2 handover and obtains a seamless handover.X117sciescopu
    corecore