2,347 research outputs found

    Techniques for effective and efficient fire detection from social media images

    Get PDF
    Social media could provide valuable information to support decision making in crisis management, such as in accidents, explosions and fires. However, much of the data from social media are images, which are uploaded in a rate that makes it impossible for human beings to analyze them. Despite the many works on image analysis, there are no fire detection studies on social media. To fill this gap, we propose the use and evaluation of a broad set of content-based image retrieval and classification techniques for fire detection. Our main contributions are: (i) the development of the Fast-Fire Detection method (FFDnR), which combines feature extractor and evaluation functions to support instance-based learning, (ii) the construction of an annotated set of images with ground-truth depicting fire occurrences -- the FlickrFire dataset, and (iii) the evaluation of 36 efficient image descriptors for fire detection. Using real data from Flickr, our results showed that FFDnR was able to achieve a precision for fire detection comparable to that of human annotators. Therefore, our work shall provide a solid basis for further developments on monitoring images from social media.Comment: 12 pages, Proceedings of the International Conference on Enterprise Information Systems. Specifically: Marcos Bedo, Gustavo Blanco, Willian Oliveira, Mirela Cazzolato, Alceu Costa, Jose Rodrigues, Agma Traina, Caetano Traina, 2015, Techniques for effective and efficient fire detection from social media images, ICEIS, 34-4

    An Integrated Content and Metadata based Retrieval System for Art

    No full text
    In this paper we describe aspects of the Artiste project to develop a distributed content and metadata based analysis, retrieval and navigation system for a number of major European Museums. In particular, after a brief overview of the complete system, we describe the design and evaluation of some of the image analysis algorithms developed to meet the specific requirements of the users from the museums. These include a method for retrievals based on sub images, retrievals based on very low quality images and retrieval using craquelure type

    A Learning Health System for Radiation Oncology

    Get PDF
    The proposed research aims to address the challenges faced by clinical data science researchers in radiation oncology accessing, integrating, and analyzing heterogeneous data from various sources. The research presents a scalable intelligent infrastructure, called the Health Information Gateway and Exchange (HINGE), which captures and structures data from multiple sources into a knowledge base with semantically interlinked entities. This infrastructure enables researchers to mine novel associations and gather relevant knowledge for personalized clinical outcomes. The dissertation discusses the design framework and implementation of HINGE, which abstracts structured data from treatment planning systems, treatment management systems, and electronic health records. It utilizes disease-specific smart templates for capturing clinical information in a discrete manner. HINGE performs data extraction, aggregation, and quality and outcome assessment functions automatically, connecting seamlessly with local IT/medical infrastructure. Furthermore, the research presents a knowledge graph-based approach to map radiotherapy data to an ontology-based data repository using FAIR (Findable, Accessible, Interoperable, Reusable) concepts. This approach ensures that the data is easily discoverable and accessible for clinical decision support systems. The dissertation explores the ETL (Extract, Transform, Load) process, data model frameworks, ontologies, and provides a real-world clinical use case for this data mapping. To improve the efficiency of retrieving information from large clinical datasets, a search engine based on ontology-based keyword searching and synonym-based term matching tool was developed. The hierarchical nature of ontologies is leveraged to retrieve patient records based on parent and children classes. Additionally, patient similarity analysis is conducted using vector embedding models (Word2Vec, Doc2Vec, GloVe, and FastText) to identify similar patients based on text corpus creation methods. Results from the analysis using these models are presented. The implementation of a learning health system for predicting radiation pneumonitis following stereotactic body radiotherapy is also discussed. 3D convolutional neural networks (CNNs) are utilized with radiographic and dosimetric datasets to predict the likelihood of radiation pneumonitis. DenseNet-121 and ResNet-50 models are employed for this study, along with integrated gradient techniques to identify salient regions within the input 3D image dataset. The predictive performance of the 3D CNN models is evaluated based on clinical outcomes. Overall, the proposed Learning Health System provides a comprehensive solution for capturing, integrating, and analyzing heterogeneous data in a knowledge base. It offers researchers the ability to extract valuable insights and associations from diverse sources, ultimately leading to improved clinical outcomes. This work can serve as a model for implementing LHS in other medical specialties, advancing personalized and data-driven medicine

    XML Matchers: approaches and challenges

    Full text link
    Schema Matching, i.e. the process of discovering semantic correspondences between concepts adopted in different data source schemas, has been a key topic in Database and Artificial Intelligence research areas for many years. In the past, it was largely investigated especially for classical database models (e.g., E/R schemas, relational databases, etc.). However, in the latest years, the widespread adoption of XML in the most disparate application fields pushed a growing number of researchers to design XML-specific Schema Matching approaches, called XML Matchers, aiming at finding semantic matchings between concepts defined in DTDs and XSDs. XML Matchers do not just take well-known techniques originally designed for other data models and apply them on DTDs/XSDs, but they exploit specific XML features (e.g., the hierarchical structure of a DTD/XSD) to improve the performance of the Schema Matching process. The design of XML Matchers is currently a well-established research area. The main goal of this paper is to provide a detailed description and classification of XML Matchers. We first describe to what extent the specificities of DTDs/XSDs impact on the Schema Matching task. Then we introduce a template, called XML Matcher Template, that describes the main components of an XML Matcher, their role and behavior. We illustrate how each of these components has been implemented in some popular XML Matchers. We consider our XML Matcher Template as the baseline for objectively comparing approaches that, at first glance, might appear as unrelated. The introduction of this template can be useful in the design of future XML Matchers. Finally, we analyze commercial tools implementing XML Matchers and introduce two challenging issues strictly related to this topic, namely XML source clustering and uncertainty management in XML Matchers.Comment: 34 pages, 8 tables, 7 figure

    Providing Diversity in K-Nearest Neighbor Query Results

    Full text link
    Given a point query Q in multi-dimensional space, K-Nearest Neighbor (KNN) queries return the K closest answers according to given distance metric in the database with respect to Q. In this scenario, it is possible that a majority of the answers may be very similar to some other, especially when the data has clusters. For a variety of applications, such homogeneous result sets may not add value to the user. In this paper, we consider the problem of providing diversity in the results of KNN queries, that is, to produce the closest result set such that each answer is sufficiently different from the rest. We first propose a user-tunable definition of diversity, and then present an algorithm, called MOTLEY, for producing a diverse result set as per this definition. Through a detailed experimental evaluation on real and synthetic data, we show that MOTLEY can produce diverse result sets by reading only a small fraction of the tuples in the database. Further, it imposes no additional overhead on the evaluation of traditional KNN queries, thereby providing a seamless interface between diversity and distance.Comment: 20 pages, 11 figure

    Semantics-based approach for generating partial views from linked life-cycle highway project data

    Get PDF
    The purpose of this dissertation is to develop methods that can assist data integration and extraction from heterogeneous sources generated throughout the life-cycle of a highway project. In the era of computerized technologies, project data is largely available in digital format. Due to the fragmented nature of the civil infrastructure sector, digital data are created and managed separately by different project actors in proprietary data warehouses. The differences in the data structure and semantics greatly hinder the exchange and fully reuse of digital project data. In order to address those issues, this dissertation carries out the following three individual studies. The first study aims to develop a framework for interconnecting heterogeneous life cycle project data into an unified and linked data space. This is an ontology-based framework that consists of two phases: (1) translating proprietary datasets into homogeneous RDF data graphs; and (2) connecting separate data networks to each other. Three domain ontologies for design, construction, and asset condition survey phases are developed to support data transformation. A merged ontology that integrates the domain ontologies is constructed to provide guidance on how to connect data nodes from domain graphs. The second study is to deal with the terminology inconsistency between data sources. An automated method is developed that employs Natural Language Processing (NLP) and machine learning techniques to support constructing a domain specific lexicon from design manuals. The method utilizes pattern rules to extract technical terms from texts and learns their representation vectors using a neural network based word embedding approach. The study also includes the development of an integrated method of minimal-supervised machine learning, clustering analysis, and word vectors, for computing the term semantics and classifying the relations between terms in the target lexicon. In the last study, a data retrieval technique for extracting subsets of an XML civil data schema is designed and tested. The algorithm takes a keyword input of the end user and returns a ranked list of the most relevant XML branches. This study utilizes a lexicon of the highway domain generated from the second study to analyze the semantics of the end user keywords. A context-based similarity measure is introduced to evaluate the relevance between a certain branch in the source schema and the user query. The methods and algorithms resulting from this research were tested using case studies and empirical experiments. The results indicate that the study successfully address the heterogeneity in the structure and terminology of data and enable a fast extraction of sub-models of data. The study is expected to enhance the efficiency in reusing digital data generated throughout the project life-cycle, and contribute to the success in transitioning from paper-based to digital project delivery for civil infrastructure projects

    SciQL, Bridging the Gap between Science and Relational DBMS

    Get PDF
    Scientific discoveries increasingly rely on the ability to efficiently grind massive amounts of experimental data using database technologies. To bridge the gap between the needs of the Data-Intensive Research fields and the current DBMS technologies, we propose SciQL (pronounced as ‘cycle’), the first SQL-based query language for scientific applications with both tables and arrays as first class citizens. It provides a seamless symbiosis of array-, set- and sequence- interpretations. A key innovation is the extension of value-based grouping of SQL:2003 with structural grouping, i.e., fixed-sized and unbounded groups based on explicit relationships between elements positions. This leads to a generalisation of window-based query processing with wide applicability in science domains. This paper describes the main language features of SciQL and illustrates it using time-series concepts

    Spatial Database Support for Virtual Engineering

    Get PDF
    The development, design, manufacturing and maintenance of modern engineering products is a very expensive and complex task. Shorter product cycles and a greater diversity of models are becoming decisive competitive factors in the hard-fought automobile and plane market. In order to support engineers to create complex products when being pressed for time, systems are required which answer collision and similarity queries effectively and efficiently. In order to achieve industrial strength, the required specialized functionality has to be integrated into fully-fledged database systems, so that fundamental services of these systems can be fully reused, including transactions, concurrency control and recovery. This thesis aims at the development of theoretical sound and practical realizable algorithms which effectively and efficiently detect colliding and similar complex spatial objects. After a short introductory Part I, we look in Part II at different spatial index structures and discuss their integrability into object-relational database systems. Based on this discussion, we present two generic approaches for accelerating collision queries. The first approach exploits available statistical information in order to accelerate the query process. The second approach is based on a cost-based decompositioning of complex spatial objects. In a broad experimental evaluation based on real-world test data sets, we demonstrate the usefulness of the presented techniques which allow interactive query response times even for large data sets of complex objects. In Part III of the thesis, we discuss several similarity models for spatial objects. We show by means of a new evaluation method that data-partitioning similarity models yield more meaningful results than space-partitioning similarity models. We introduce a very effective similarity model which is based on a new paradigm in similarity search, namely the use of vector set represented objects. In order to guarantee efficient query processing, suitable filters are introduced for accelerating similarity queries on complex spatial objects. Based on clustering and the introduced similarity models we present an industrial prototype which helps the user to navigate through massive data sets.Ein schneller und reibungsloser Entwicklungsprozess neuer Produkte ist ein wichtiger Faktor für den wirtschaftlichen Erfolg vieler Unternehmen insbesondere aus der Luft- und Raumfahrttechnik und der Automobilindustrie. Damit Ingenieure in immer kürzerer Zeit immer anspruchsvollere Produkte entwickeln können, werden effektive und effiziente Kollisions- und Ähnlichkeitsanfragen auf komplexen räumlichen Objekten benötigt. Um den hohen Anforderungen eines produktiven Einsatzes zu genügen, müssen entsprechend spezialisierte Zugriffsmethoden in vollwertige Datenbanksysteme integriert werden, so dass zentrale Datenbankdienste wie Trans-aktionen, kontrollierte Nebenläufigkeit und Wiederanlauf sichergestellt sind. Ziel dieser Doktorarbeit ist es deshalb, effektive und effiziente Algorithmen für Kollisions- und Ähnlichkeitsanfragen auf komplexen räumlichen Objekten zu ent-wickeln und diese in kommerzielle Objekt-Relationale Datenbanksysteme zu integrieren. Im ersten Teil der Arbeit werden verschiedene räumliche Indexstrukturen zur effizienten Bearbeitung von Kollisionsanfragen diskutiert und auf ihre Integrationsfähigkeit in Objekt-Relationale Datenbanksysteme hin untersucht. Daran an-knüpfend werden zwei generische Verfahren zur Beschleunigung von Kollisionsanfragen vorgestellt. Das erste Verfahren benutzt statistische Informationen räumlicher Indexstrukturen, um eine gegebene Anfrage zu beschleunigen. Das zweite Verfahren beruht auf einer kostenbasierten Zerlegung komplexer räumlicher Datenbank- Objekte. Diese beiden Verfahren ergänzen sich gegenseitig und können unabhängig voneinander oder zusammen eingesetzt werden. In einer ausführlichen experimentellen Evaluation wird gezeigt, dass die beiden vorgestellten Verfahren interaktive Kollisionsanfragen auf umfangreichen Datenmengen und komplexen Objekten ermöglichen. Im zweiten Teil der Arbeit werden verschiedene Ähnlichkeitsmodelle für räum-liche Objekte vorgestellt. Es wird experimentell aufgezeigt, dass datenpartitionierende Modelle effektiver sind als raumpartitionierende Verfahren. Weiterhin werden geeignete Filtertechniken zur Beschleunigung des Anfrageprozesses entwickelt und experimentell untersucht. Basierend auf Clustering und den entwickelten Ähnlichkeitsmodellen wird ein industrietauglicher Prototyp vorgestellt, der Benutzern hilft, durch große Datenmengen zu navigieren
    corecore