2,635 research outputs found

    Compressed Shaping: Concept and FPGA Demonstration

    Full text link
    Probabilistic shaping (PS) has been widely studied and applied to optical fiber communications. The encoder of PS expends the number of bit slots and controls the probability distribution of channel input symbols. Not only studies focused on PS but also most works on optical fiber communications have assumed source uniformity (i.e. equal probability of marks and spaces) so far. On the other hand, the source information is in general nonuniform, unless bit-scrambling or other source coding techniques to balance the bit probability is performed. Interestingly, one can exploit the source nonuniformity to reduce the entropy of the channel input symbols with the PS encoder, which leads to smaller required signal-to-noise ratio at a given input logic rate. This benefit is equivalent to a combination of data compression and PS, and thus we call this technique compressed shaping. In this work, we explain its theoretical background in detail, and verify the concept by both numerical simulation and a field programmable gate array (FPGA) implementation of such a system. In particular, we find that compressed shaping can reduce power consumption in forward error correction decoding by up to 90% in nonuniform source cases. The additional hardware resources required for compressed shaping are not significant compared with forward error correction coding, and an error insertion test is successfully demonstrated with the FPGA.Comment: 10 pages, 12 figure

    Data and Predictive Analytics Use for Logistics and Supply Chain Management

    Get PDF
    Purpose The purpose of this paper is to explore the social process of Big Data and predictive analytics (BDPA) use for logistics and supply chain management (LSCM), focusing on interactions among technology, human behavior and organizational context that occur at the technology’s post-adoption phases in retail supply chain (RSC) organizations. Design/methodology/approach The authors follow a grounded theory approach for theory building based on interviews with senior managers of 15 organizations positioned across multiple echelons in the RSC. Findings Findings reveal how user involvement shapes BDPA to fit organizational structures and how changes made to the technology retroactively affect its design and institutional properties. Findings also reveal previously unreported aspects of BDPA use for LSCM. These include the presence of temporal and spatial discontinuities in the technology use across RSC organizations. Practical implications This study unveils that it is impossible to design a BDPA technology ready for immediate use. The emergent process framework shows that institutional and social factors require BDPA use specific to the organization, as the technology comes to reflect the properties of the organization and the wider social environment for which its designers originally intended. BDPA is, thus, not easily transferrable among collaborating RSC organizations and requires managerial attention to the institutional context within which its usage takes place. Originality/value The literature describes why organizations will use BDPA but fails to provide adequate insight into how BDPA use occurs. The authors address the “how” and bring a social perspective into a technology-centric area

    RAPID CLOCK RECOVERY ALGORITHMS FOR DIGITAL MAGNETIC RECORDING AND DATA COMMUNICATIONS

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN024293 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Receiver algorithms that enable multi-mode baseband terminals

    Get PDF

    A Novel Seed Based Random Interleaving for OFDM System and Its PHY Layer Security Implications

    Get PDF
    Wireless channels are characterized by multipath and fading that can often cause long burst of errors. Even though, to date, many very sophisticated error correcting codes have been designed, yet none can handle long burst of errors efficiently. An interleaver, a device that distributes a burst of errors, possibly caused by a deep fade, and makes them appear as simple random errors, therefore, proves to a very useful technique when used in conjunction with an efficient error correcting code. In this work, a novel near optimal seed based random interleaver is designed. An optimal interleaver scatters a given burst of errors uniformly over a fixed block of data - a property that is measured by so called ‘spread’. The design makes use of a unique seed based pseudo-random sequence generator or logistic map based chaotic sequence generator to scramble the given block of data. Since the proposed design is based on a seed based scrambler, the nature of input is irrelevant. Therefore, the proposed interleaver can interleave either the bits or the symbols or the packets or even the frames. Accordingly, in this work, we analyze the suitability of interleaver when introduced before or after the modulation in single carrier communication systems and show that interleaving the bits before modulation or interleaving the symbols after modulation has same advantage. We further show that, in an orthogonal frequency division multiplexing (OFDM) systems, the position of interleaver, whether before or after constellation mapper, has no significance, and is interchangeable. However, scrambling symbols is computationally less expensive than scrambling bits. For the purpose of analyzing the performance of the proposed seed based random interleaver, simulations are carried out in MATLAB®. Results show that our proposed seed based random interleaver has near optimal properties of ‘spread’ and ‘dispersion’. Furthermore, the proposed interleaver is evaluated in terms of bit error rate (BER) versus length of burst error in a single carrier system both before and after modulation. The proposed interleaver out-performs the built in RANDINTLV in MATLAB® when used in the same system. It shows that proposed interleaver can convert greater amount of burst errors into simple random errors than that of MATLAB® interleaver. The proposed interleaver is also tested in IEEE 802.16e based WiMAX system with Stanford University Interim (SUI) channels to compare the performance of average BER versus SNR for both pre modulation and post modulation interleaver. Results show that pre modulation interleaver and post modulation has same performance. There is also a side advantage of this seed based interleaver, in that it generates a variety of unique random-looking interleaving sequences. Only a receiver that has the knowledge of the input seed can generate this sequence and no one else. If the interleaving patterns are kept secure then it can possibly be used to introduce an extra layer of security at physical (PHY) layer. In that way, at PHY layer, one builds an additional entry barrier to break through and it comes with no extra cost. This property has been investigated by carrying out key sensitivity analysis to show that the attacks to guess key can be very futile, as difference at 4th decimal place in the initial condition can lead to entirely different scrambling

    Bubble memory module

    Get PDF
    Design, fabrication and test of partially populated prototype recorder using 100 kilobit serial chips is described. Electrical interface, operating modes, and mechanical design of several module configurations are discussed. Fabrication and test of the module demonstrated the practicality of multiplexing resulting in lower power, weight, and volume. This effort resulted in the completion of a module consisting of a fully engineered printed circuit storage board populated with 5 of 8 possible cells and a wire wrapped electronics board. Interface of the module is 16 bits parallel at a maximum of 1.33 megabits per second data rate on either of two interface buses

    Interference Cancellation in a Full duplex System

    Get PDF
    In a full duplex system as WCDMA a mobile phone transmits and receives at the same time, but at different frequencies. The transmitted signal will cause interference in the receiver which must be suppressed to not get degraded sensitivity in the receiver. This Master Thesis was carried out at Ericsson Mobile Platforms in Lund and the purpose was to examine a method to suppress the interference in the digital domain of a WCDMA transceiver. The method is based on that information from the transmitter is fed forward to the receiver to be able to recreate a resembled replica of the interference and subtract it from the desired signal. Further an adaptive least mean square algorithm is used to estimate correct amount of the interference and to provide a tracking ability for temperature variations. A simulator model was developed in matlab to be able to analyze the interference and design a proper cancellation block between the transmitter and the receiver. This simulator model was designed with complexity reductions that did not affect the study of the phenomena. According to simulations, the LMS algorithm turned out to be a sufficient choice concerning rate of convergence, misadjustment and robustness. The main limitation of the improvement by using a cancellation block, was instead determined by the distortion in the transmitter. The trend today is to achieve lower and lower distortions in the uplink making this method more interesting

    Radial Velocity Prospects Current and Future: A White Paper Report prepared by the Study Analysis Group 8 for the Exoplanet Program Analysis Group (ExoPAG)

    Full text link
    [Abridged] The Study Analysis Group 8 of the NASA Exoplanet Analysis Group was convened to assess the current capabilities and the future potential of the precise radial velocity (PRV) method to advance the NASA goal to "search for planetary bodies and Earth-like planets in orbit around other stars.: (U.S. National Space Policy, June 28, 2010). PRVs complement other exoplanet detection methods, for example offering a direct path to obtaining the bulk density and thus the structure and composition of transiting exoplanets. Our analysis builds upon previous community input, including the ExoPlanet Community Report chapter on radial velocities in 2008, the 2010 Decadal Survey of Astronomy, the Penn State Precise Radial Velocities Workshop response to the Decadal Survey in 2010, and the NSF Portfolio Review in 2012. The radial-velocity detection of exoplanets is strongly endorsed by both the Astro 2010 Decadal Survey "New Worlds, New Horizons" and the NSF Portfolio Review, and the community has recommended robust investment in PRVs. The demands on telescope time for the above mission support, especially for systems of small planets, will exceed the number of nights available using instruments now in operation by a factor of at least several for TESS alone. Pushing down towards true Earth twins will require more photons (i.e. larger telescopes), more stable spectrographs than are currently available, better calibration, and better correction for stellar jitter. We outline four hypothetical situations for PRV work necessary to meet NASA mission exoplanet science objectives.Comment: ExoPAG SAG 8 final report, 112 pages, fixed author name onl

    Variability in Singing and in Song in the Zebra Finch

    Get PDF
    Variability is a defining feature of the oscine song learning process, reflected in song and in the neural pathways involved in song learning. For the zebra finch, juveniles learning to sing typically exhibit a high degree of vocal variability, and this variability appears to be driven by a key brain nucleus. It has been suggested that this variability is a necessary part of a trial-­â€and-­â€error learning process in which the bird must search for possible improvements to its song. Our work examines the role this variability plays in learning in two ways: through behavioral experiments with juvenile zebra finches, and through a computational model of parts of the oscine brain. Previous studies have shown that some finches exhibit less variability during the learning process than others by producing repetitive vocalizations. A constantly changing song model was played to juvenile zebra finches to determine whether auditory stimuli can affect this behavior. This stimulus was shown to cause an overall increase in repetitiveness; furthermore, there was a correlation between repetitiveness at an early stage in the learning process and the length of time a bird is repetitive overall, and birds that were repetitive tended to repeat the same thing over an extended period of time. The role of a key brain nucleus involved in song learning was examined through computational modeling. Previous studies have shown that this nucleus produces variability in song, but can also bias the song of a bird in such a way as to reduce errors while singing. Activity within this nucleus during singing is predominantly uncorrelated with the timing of the song, however a portion of this activity is correlated in such a manner. The modeling experiments consider the possibility that this persistent signal is part of a trial-­â€and-­â€error search and contrast this with the possibility that the persistent signal is the product of some mechanism to directly improve song. Simulation results show that a mixture of timing-­â€dependent and timing-­â€independent activity in this nucleus produces optimal learning results for the case where the persistent signal is a key component of a trial-­â€and-­â€error search, but not in the case where this signal will directly improve song. Although a mixture of timing-­â€locked and timing-­â€independent activity produces optimal results, the ratio found to be optimal within the model differs from what has been observed in vivo. Finally, novel methods for the analysis of birdsong, motivated by the high variability of juvenile song, are presented. These methods are designed to work with sets of song samples rather than through pairwise comparison. The utility of these methods is demonstrated, as well as results illustrating how such methods can be used as the basis for aggregate measures of song such as repertoire complexity
    corecore